Abstract

We demonstrated a novel cascaded nonlinear frequency conversion that integrated OPO, SFG and SRS in two KTA crystals, realizing an efficient wavelength conversion from 1064 nm to multi-wavelength around 630 nm. The OPO and SRS were both performed in an x-cut KTA crystal to realize a noncritically phase-matched OPO and X(ZZ)X Raman conversion. The SFG was achieved in a (θ = 90, φ = 24.3)-cut KTA crystal with a type-II phase-matching configuration. Benefitting from the strong pulse-narrowing induced by the combined effect of OPO and SRS, a minimum pulse width of 13.5 ns was obtained, corresponding to a pulse energy of 0.3 mJ and a pulse peak power of 22.2 kW. The multiple operation parameters of wavelength, average output power, pulse duration and repetition rate can be coordinated to explore new treatment plan in photodynamic therapy. Furthermore, the designability of cascaded nonlinear optical frequency conversion could make the nonlinear optical technology accessible to a much wider range of potential users.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A high-peak-power orthogonally-polarized multi-wavelength laser at 1.6-1.7 µm based on the cascaded nonlinear optical frequency conversion

Haiwei Chen, Haitao Huang, Shiqiang Wang, and Deyuan Shen
Opt. Express 27(17) 24857-24865 (2019)

High-average-power KTiOAsO4 optical parametric oscillator

Mark S. Webb, Peter F. Moulton, Jeffrey J. Kasinski, Ralph L. Burnham, Gabe Loiacono, and Richard Stolzenberger
Opt. Lett. 23(15) 1161-1163 (1998)

Multi-order Stokes output based on intra-cavity KTiOAsO4 Raman crystal

Haiyong Zhu, Zhenhua Shao, Hongyan Wang, Yanmin Duan, Jian Zhang, Dingyuan Tang, and A. A. Kaminskii
Opt. Express 22(16) 19662-19667 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [Crossref]
  2. C. Chen, J. Lu, T. Togashi, T. Suganuma, T. Sekikawa, S. Watanabe, Z. Xu, and J. Wang, “Second-harmonic generation from a KBe2 BO3F2 crystal in the deep ultraviolet,” Opt. Lett. 27(8), 637–639 (2002).
    [Crossref] [PubMed]
  3. B. Q. Chen, C. Zhang, C. Y. Hu, R. J. Liu, and Z. Y. Li, “High-Efficiency Broadband High-Harmonic Generation from a Single Quasi-Phase-Matching Nonlinear Crystal,” Phys. Rev. Lett. 115(8), 083902 (2015).
    [Crossref] [PubMed]
  4. K. Balskus, Z. Zhang, R. A. McCracken, and D. T. Reid, “Mid-infrared 333 MHz frequency comb continuously tunable from 1.95 to 4.0 μm,” Opt. Lett. 40(17), 4178–4181 (2015).
    [Crossref] [PubMed]
  5. Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 8926–8936 (2017).
    [Crossref] [PubMed]
  6. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23(3), 207–209 (1998).
    [Crossref] [PubMed]
  7. Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
    [Crossref]
  8. H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, X. L. Dong, J. L. Xu, C. H. Zuo, and S. Zhao, “An efficient and compact laser-diode end-pumped intracavity frequency-tripled Nd: YVO4 355 nm laser,” Opt. Commun. 282(13), 2586–2589 (2009).
    [Crossref]
  9. D. Eimerl, J. M. Auerbach, C. E. Barker, D. Milam, and P. W. Milonni, “Multicrystal designs for efficient third-harmonic generation,” Opt. Lett. 22(16), 1208–1210 (1997).
    [Crossref] [PubMed]
  10. F. Bai, Q. Wang, Z. Liu, X. Zhang, W. Sun, X. Wan, P. Li, G. Jin, and H. Zhang, “Efficient 1.8 μm KTiOPO4 optical parametric oscillator pumped within an Nd:YAG/SrWO4 Raman laser,” Opt. Lett. 36(6), 813–815 (2011).
    [Crossref] [PubMed]
  11. Z. Liu, Q. Wang, X. Zhang, S. Zhang, J. Chang, S. Fan, W. Sun, G. Jin, X. Tao, Y. Sun, S. Zhang, and Z. Liu, “Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573 nm,” Opt. Lett. 34(14), 2183–2185 (2009).
    [Crossref] [PubMed]
  12. H. T. Huang, D. Y. Shen, and J. L. He, “Compact 1625-nm noncritically phase-matched KTiOPO4 optical parametric oscillator intracavity driven by the KTiOAsO4 Raman laser,” IEEE Photonics Technol. Lett. 25(4), 359–361 (2013).
    [Crossref]
  13. Y. Hu and K. Masamune, “Flexible laser endoscope for minimally invasive photodynamic diagnosis (PDD) and therapy (PDT) toward efficient tumor removal,” Opt. Express 25(14), 16795–16812 (2017).
    [Crossref] [PubMed]
  14. K. Kato, “Second-harmonic and sum-frequency generation in KTiOAsO4,” IEEE J. Quantum Electron. 30(4), 881–883 (1994).
    [Crossref]
  15. G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39(27), 5058–5069 (2000).
    [Crossref] [PubMed]
  16. Y. Duan, H. Zhu, C. Xu, X. Ruan, G. Cui, Y. Zhang, D. Tang, and D. Fan, “Compact self-cascaded KTA-OPO for 2.6 μm laser generation,” Opt. Express 24(23), 26529–26535 (2016).
    [Crossref] [PubMed]
  17. H. Huang, D. Shen, and J. He, “Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1091 and 1095 nm by coupled stimulated Raman scattering,” Opt. Express 20(25), 27838–27846 (2012).
    [Crossref] [PubMed]
  18. Z. Liu, Q. Wang, X. Zhang, S. Zhang, J. Chang, Z. Cong, W. Sun, G. Jin, X. Tao, Y. Sun, and S. Zhang, “A diode side-pumped KTiOAsO4 Raman laser,” Opt. Express 17(9), 6968–6974 (2009).
    [Crossref] [PubMed]
  19. H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO4 Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
    [Crossref] [PubMed]
  20. Y. Duan, H. Zhu, H. Wang, Y. Zhang, and Z. Chen, “Comparison of 1.15 µm Nd:YAGRaman lasers with 234 and 671 cm-1 shifts,” Opt. Express 24(5), 5565–5571 (2016).
    [Crossref] [PubMed]
  21. H. Y. Zhu, Y. L. Ye, Y. M. Duan, Y. J. Zhang, D. Zhang, B. Zhao, and A. A. Kaminskii, “Third-Stokes light operation in KTA crystal derived by Nd:Lu0.5Y0.5VO4 crystal laser,” J. Opt. 17(3), 035503 (2015).
    [Crossref]
  22. H. T. Huang, J. L. He, X. L. Dong, C. H. Zuo, B. T. Zhang, G. Qiu, and Z. K. Liu, “High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 90(1), 43–45 (2008).
    [Crossref]
  23. D. L. Fenimore, K. L. Schepler, U. B. Ramabadran, and S. R. McPherson, “Infrared corrected Sellmeier coefficients for potassium titanyl arsenate,” J. Opt. Soc. Am. B 12(5), 794–796 (1995).
    [Crossref]
  24. K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
    [Crossref]
  25. B. J. Perrett, P. D. Mason, and D. A. Orchard, “Assessment of diffusion-bonded KTP crystals for efficient, low pulse energy conversion from 1 to 2 µm,” Appl. Opt. 45(18), 4424–4427 (2006).
    [Crossref] [PubMed]
  26. C. Du, S. Ruan, Y. Yu, and F. Zeng, “6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm,” Opt. Express 13(6), 2013–2018 (2005).
    [Crossref] [PubMed]
  27. H. S. Lim, S. C. Lee, and J. O. Kim, “The optimization of laser systems for photodynamic therapy of malignancies,” Proc. SPIE 5689, 588863 (2005).
  28. L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci. 17(3), 173–186 (2002).
    [Crossref] [PubMed]

2017 (2)

2016 (2)

2015 (3)

H. Y. Zhu, Y. L. Ye, Y. M. Duan, Y. J. Zhang, D. Zhang, B. Zhao, and A. A. Kaminskii, “Third-Stokes light operation in KTA crystal derived by Nd:Lu0.5Y0.5VO4 crystal laser,” J. Opt. 17(3), 035503 (2015).
[Crossref]

B. Q. Chen, C. Zhang, C. Y. Hu, R. J. Liu, and Z. Y. Li, “High-Efficiency Broadband High-Harmonic Generation from a Single Quasi-Phase-Matching Nonlinear Crystal,” Phys. Rev. Lett. 115(8), 083902 (2015).
[Crossref] [PubMed]

K. Balskus, Z. Zhang, R. A. McCracken, and D. T. Reid, “Mid-infrared 333 MHz frequency comb continuously tunable from 1.95 to 4.0 μm,” Opt. Lett. 40(17), 4178–4181 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

H. T. Huang, D. Y. Shen, and J. L. He, “Compact 1625-nm noncritically phase-matched KTiOPO4 optical parametric oscillator intracavity driven by the KTiOAsO4 Raman laser,” IEEE Photonics Technol. Lett. 25(4), 359–361 (2013).
[Crossref]

2012 (1)

2011 (1)

2009 (3)

2008 (1)

H. T. Huang, J. L. He, X. L. Dong, C. H. Zuo, B. T. Zhang, G. Qiu, and Z. K. Liu, “High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 90(1), 43–45 (2008).
[Crossref]

2006 (2)

B. J. Perrett, P. D. Mason, and D. A. Orchard, “Assessment of diffusion-bonded KTP crystals for efficient, low pulse energy conversion from 1 to 2 µm,” Appl. Opt. 45(18), 4424–4427 (2006).
[Crossref] [PubMed]

Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

2005 (2)

C. Du, S. Ruan, Y. Yu, and F. Zeng, “6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm,” Opt. Express 13(6), 2013–2018 (2005).
[Crossref] [PubMed]

H. S. Lim, S. C. Lee, and J. O. Kim, “The optimization of laser systems for photodynamic therapy of malignancies,” Proc. SPIE 5689, 588863 (2005).

2004 (1)

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[Crossref]

2002 (2)

2000 (1)

1998 (1)

1997 (1)

1995 (1)

1994 (1)

K. Kato, “Second-harmonic and sum-frequency generation in KTiOAsO4,” IEEE J. Quantum Electron. 30(4), 881–883 (1994).
[Crossref]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Alexander, J. I.

Auerbach, J. M.

Bai, F.

Balskus, K.

Barker, C. E.

Bosenberg, W. R.

Brancaleon, L.

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci. 17(3), 173–186 (2002).
[Crossref] [PubMed]

Chang, J.

Chen, B. Q.

B. Q. Chen, C. Zhang, C. Y. Hu, R. J. Liu, and Z. Y. Li, “High-Efficiency Broadband High-Harmonic Generation from a Single Quasi-Phase-Matching Nonlinear Crystal,” Phys. Rev. Lett. 115(8), 083902 (2015).
[Crossref] [PubMed]

Chen, C.

Chen, Z.

Cong, Z.

Cui, G.

Dong, X. L.

H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, X. L. Dong, J. L. Xu, C. H. Zuo, and S. Zhao, “An efficient and compact laser-diode end-pumped intracavity frequency-tripled Nd: YVO4 355 nm laser,” Opt. Commun. 282(13), 2586–2589 (2009).
[Crossref]

H. T. Huang, J. L. He, X. L. Dong, C. H. Zuo, B. T. Zhang, G. Qiu, and Z. K. Liu, “High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 90(1), 43–45 (2008).
[Crossref]

Du, C.

Duan, Y.

Duan, Y. M.

H. Y. Zhu, Y. L. Ye, Y. M. Duan, Y. J. Zhang, D. Zhang, B. Zhao, and A. A. Kaminskii, “Third-Stokes light operation in KTA crystal derived by Nd:Lu0.5Y0.5VO4 crystal laser,” J. Opt. 17(3), 035503 (2015).
[Crossref]

Eimerl, D.

Fan, D.

Fan, S.

Feng, J.

Fenimore, D. L.

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Gao, Z. D.

Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

Hansson, G.

He, J.

He, J. L.

H. T. Huang, D. Y. Shen, and J. L. He, “Compact 1625-nm noncritically phase-matched KTiOPO4 optical parametric oscillator intracavity driven by the KTiOAsO4 Raman laser,” IEEE Photonics Technol. Lett. 25(4), 359–361 (2013).
[Crossref]

H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, X. L. Dong, J. L. Xu, C. H. Zuo, and S. Zhao, “An efficient and compact laser-diode end-pumped intracavity frequency-tripled Nd: YVO4 355 nm laser,” Opt. Commun. 282(13), 2586–2589 (2009).
[Crossref]

H. T. Huang, J. L. He, X. L. Dong, C. H. Zuo, B. T. Zhang, G. Qiu, and Z. K. Liu, “High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 90(1), 43–45 (2008).
[Crossref]

He, Y.

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Hu, C. Y.

B. Q. Chen, C. Zhang, C. Y. Hu, R. J. Liu, and Z. Y. Li, “High-Efficiency Broadband High-Harmonic Generation from a Single Quasi-Phase-Matching Nonlinear Crystal,” Phys. Rev. Lett. 115(8), 083902 (2015).
[Crossref] [PubMed]

Hu, Y.

Huang, H.

Huang, H. T.

H. T. Huang, D. Y. Shen, and J. L. He, “Compact 1625-nm noncritically phase-matched KTiOPO4 optical parametric oscillator intracavity driven by the KTiOAsO4 Raman laser,” IEEE Photonics Technol. Lett. 25(4), 359–361 (2013).
[Crossref]

H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, X. L. Dong, J. L. Xu, C. H. Zuo, and S. Zhao, “An efficient and compact laser-diode end-pumped intracavity frequency-tripled Nd: YVO4 355 nm laser,” Opt. Commun. 282(13), 2586–2589 (2009).
[Crossref]

H. T. Huang, J. L. He, X. L. Dong, C. H. Zuo, B. T. Zhang, G. Qiu, and Z. K. Liu, “High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 90(1), 43–45 (2008).
[Crossref]

Jin, G.

Kaminskii, A. A.

H. Y. Zhu, Y. L. Ye, Y. M. Duan, Y. J. Zhang, D. Zhang, B. Zhao, and A. A. Kaminskii, “Third-Stokes light operation in KTA crystal derived by Nd:Lu0.5Y0.5VO4 crystal laser,” J. Opt. 17(3), 035503 (2015).
[Crossref]

H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO4 Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
[Crossref] [PubMed]

Karlsson, H.

Kato, K.

K. Kato, “Second-harmonic and sum-frequency generation in KTiOAsO4,” IEEE J. Quantum Electron. 30(4), 881–883 (1994).
[Crossref]

Kim, J. O.

H. S. Lim, S. C. Lee, and J. O. Kim, “The optimization of laser systems for photodynamic therapy of malignancies,” Proc. SPIE 5689, 588863 (2005).

Kung, A. H.

Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

Laurell, F.

Lee, S. C.

H. S. Lim, S. C. Lee, and J. O. Kim, “The optimization of laser systems for photodynamic therapy of malignancies,” Proc. SPIE 5689, 588863 (2005).

Li, G. Q.

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[Crossref]

Li, P.

Li, Z. Y.

B. Q. Chen, C. Zhang, C. Y. Hu, R. J. Liu, and Z. Y. Li, “High-Efficiency Broadband High-Harmonic Generation from a Single Quasi-Phase-Matching Nonlinear Crystal,” Phys. Rev. Lett. 115(8), 083902 (2015).
[Crossref] [PubMed]

Lim, H. S.

H. S. Lim, S. C. Lee, and J. O. Kim, “The optimization of laser systems for photodynamic therapy of malignancies,” Proc. SPIE 5689, 588863 (2005).

Liu, H.

Liu, R. J.

B. Q. Chen, C. Zhang, C. Y. Hu, R. J. Liu, and Z. Y. Li, “High-Efficiency Broadband High-Harmonic Generation from a Single Quasi-Phase-Matching Nonlinear Crystal,” Phys. Rev. Lett. 115(8), 083902 (2015).
[Crossref] [PubMed]

Liu, Z.

Liu, Z. K.

H. T. Huang, J. L. He, X. L. Dong, C. H. Zuo, B. T. Zhang, G. Qiu, and Z. K. Liu, “High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 90(1), 43–45 (2008).
[Crossref]

Lu, J.

Masamune, K.

Mason, P. D.

McCracken, R. A.

McPherson, S. R.

Milam, D.

Milonni, P. W.

Moseley, H.

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci. 17(3), 173–186 (2002).
[Crossref] [PubMed]

Myers, L. E.

Nie, M.

Orchard, D. A.

Perrett, B. J.

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Qiu, G.

H. T. Huang, J. L. He, X. L. Dong, C. H. Zuo, B. T. Zhang, G. Qiu, and Z. K. Liu, “High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 90(1), 43–45 (2008).
[Crossref]

Ramabadran, U. B.

Reid, D. T.

Ruan, S.

Ruan, X.

Schepler, K. L.

Sekikawa, T.

Shao, Z.

Shen, D.

Shen, D. Y.

H. T. Huang, D. Y. Shen, and J. L. He, “Compact 1625-nm noncritically phase-matched KTiOPO4 optical parametric oscillator intracavity driven by the KTiOAsO4 Raman laser,” IEEE Photonics Technol. Lett. 25(4), 359–361 (2013).
[Crossref]

Shi, J.

Suganuma, T.

Sun, W.

Sun, Y.

Tang, D.

Tang, L.

Tao, X.

Togashi, T.

Tu, S.

Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

Wallace, R. W.

Wan, X.

Wang, H.

Wang, J.

Wang, Q.

Wang, S.

Wang, Y.

Watanabe, S.

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Xu, C.

Xu, D.

Xu, J. L.

H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, X. L. Dong, J. L. Xu, C. H. Zuo, and S. Zhao, “An efficient and compact laser-diode end-pumped intracavity frequency-tripled Nd: YVO4 355 nm laser,” Opt. Commun. 282(13), 2586–2589 (2009).
[Crossref]

Xu, Z.

Yan, C.

Yan, D.

Yang, J. F.

H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, X. L. Dong, J. L. Xu, C. H. Zuo, and S. Zhao, “An efficient and compact laser-diode end-pumped intracavity frequency-tripled Nd: YVO4 355 nm laser,” Opt. Commun. 282(13), 2586–2589 (2009).
[Crossref]

Yang, K. J.

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[Crossref]

Yao, J.

Ye, Y. L.

H. Y. Zhu, Y. L. Ye, Y. M. Duan, Y. J. Zhang, D. Zhang, B. Zhao, and A. A. Kaminskii, “Third-Stokes light operation in KTA crystal derived by Nd:Lu0.5Y0.5VO4 crystal laser,” J. Opt. 17(3), 035503 (2015).
[Crossref]

Yu, Y.

Zeng, F.

Zhang, B. T.

H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, X. L. Dong, J. L. Xu, C. H. Zuo, and S. Zhao, “An efficient and compact laser-diode end-pumped intracavity frequency-tripled Nd: YVO4 355 nm laser,” Opt. Commun. 282(13), 2586–2589 (2009).
[Crossref]

H. T. Huang, J. L. He, X. L. Dong, C. H. Zuo, B. T. Zhang, G. Qiu, and Z. K. Liu, “High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 90(1), 43–45 (2008).
[Crossref]

Zhang, C.

B. Q. Chen, C. Zhang, C. Y. Hu, R. J. Liu, and Z. Y. Li, “High-Efficiency Broadband High-Harmonic Generation from a Single Quasi-Phase-Matching Nonlinear Crystal,” Phys. Rev. Lett. 115(8), 083902 (2015).
[Crossref] [PubMed]

Zhang, D.

H. Y. Zhu, Y. L. Ye, Y. M. Duan, Y. J. Zhang, D. Zhang, B. Zhao, and A. A. Kaminskii, “Third-Stokes light operation in KTA crystal derived by Nd:Lu0.5Y0.5VO4 crystal laser,” J. Opt. 17(3), 035503 (2015).
[Crossref]

Zhang, H.

Zhang, J.

Zhang, S.

Zhang, X.

Zhang, Y.

Zhang, Y. J.

H. Y. Zhu, Y. L. Ye, Y. M. Duan, Y. J. Zhang, D. Zhang, B. Zhao, and A. A. Kaminskii, “Third-Stokes light operation in KTA crystal derived by Nd:Lu0.5Y0.5VO4 crystal laser,” J. Opt. 17(3), 035503 (2015).
[Crossref]

Zhang, Z.

Zhao, B.

H. Y. Zhu, Y. L. Ye, Y. M. Duan, Y. J. Zhang, D. Zhang, B. Zhao, and A. A. Kaminskii, “Third-Stokes light operation in KTA crystal derived by Nd:Lu0.5Y0.5VO4 crystal laser,” J. Opt. 17(3), 035503 (2015).
[Crossref]

Zhao, H. M.

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[Crossref]

Zhao, S.

H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, X. L. Dong, J. L. Xu, C. H. Zuo, and S. Zhao, “An efficient and compact laser-diode end-pumped intracavity frequency-tripled Nd: YVO4 355 nm laser,” Opt. Commun. 282(13), 2586–2589 (2009).
[Crossref]

Zhao, S. Z.

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[Crossref]

Zhu, H.

Zhu, H. Y.

H. Y. Zhu, Y. L. Ye, Y. M. Duan, Y. J. Zhang, D. Zhang, B. Zhao, and A. A. Kaminskii, “Third-Stokes light operation in KTA crystal derived by Nd:Lu0.5Y0.5VO4 crystal laser,” J. Opt. 17(3), 035503 (2015).
[Crossref]

Zhu, S. N.

Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

Zuo, C. H.

H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, X. L. Dong, J. L. Xu, C. H. Zuo, and S. Zhao, “An efficient and compact laser-diode end-pumped intracavity frequency-tripled Nd: YVO4 355 nm laser,” Opt. Commun. 282(13), 2586–2589 (2009).
[Crossref]

H. T. Huang, J. L. He, X. L. Dong, C. H. Zuo, B. T. Zhang, G. Qiu, and Z. K. Liu, “High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 90(1), 43–45 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

H. T. Huang, J. L. He, X. L. Dong, C. H. Zuo, B. T. Zhang, G. Qiu, and Z. K. Liu, “High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 90(1), 43–45 (2008).
[Crossref]

Appl. Phys. Lett. (1)

Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

K. Kato, “Second-harmonic and sum-frequency generation in KTiOAsO4,” IEEE J. Quantum Electron. 30(4), 881–883 (1994).
[Crossref]

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. T. Huang, D. Y. Shen, and J. L. He, “Compact 1625-nm noncritically phase-matched KTiOPO4 optical parametric oscillator intracavity driven by the KTiOAsO4 Raman laser,” IEEE Photonics Technol. Lett. 25(4), 359–361 (2013).
[Crossref]

J. Opt. (1)

H. Y. Zhu, Y. L. Ye, Y. M. Duan, Y. J. Zhang, D. Zhang, B. Zhao, and A. A. Kaminskii, “Third-Stokes light operation in KTA crystal derived by Nd:Lu0.5Y0.5VO4 crystal laser,” J. Opt. 17(3), 035503 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Lasers Med. Sci. (1)

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci. 17(3), 173–186 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, X. L. Dong, J. L. Xu, C. H. Zuo, and S. Zhao, “An efficient and compact laser-diode end-pumped intracavity frequency-tripled Nd: YVO4 355 nm laser,” Opt. Commun. 282(13), 2586–2589 (2009).
[Crossref]

Opt. Express (8)

Y. Hu and K. Masamune, “Flexible laser endoscope for minimally invasive photodynamic diagnosis (PDD) and therapy (PDT) toward efficient tumor removal,” Opt. Express 25(14), 16795–16812 (2017).
[Crossref] [PubMed]

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 8926–8936 (2017).
[Crossref] [PubMed]

Y. Duan, H. Zhu, C. Xu, X. Ruan, G. Cui, Y. Zhang, D. Tang, and D. Fan, “Compact self-cascaded KTA-OPO for 2.6 μm laser generation,” Opt. Express 24(23), 26529–26535 (2016).
[Crossref] [PubMed]

H. Huang, D. Shen, and J. He, “Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1091 and 1095 nm by coupled stimulated Raman scattering,” Opt. Express 20(25), 27838–27846 (2012).
[Crossref] [PubMed]

Z. Liu, Q. Wang, X. Zhang, S. Zhang, J. Chang, Z. Cong, W. Sun, G. Jin, X. Tao, Y. Sun, and S. Zhang, “A diode side-pumped KTiOAsO4 Raman laser,” Opt. Express 17(9), 6968–6974 (2009).
[Crossref] [PubMed]

H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO4 Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
[Crossref] [PubMed]

Y. Duan, H. Zhu, H. Wang, Y. Zhang, and Z. Chen, “Comparison of 1.15 µm Nd:YAGRaman lasers with 234 and 671 cm-1 shifts,” Opt. Express 24(5), 5565–5571 (2016).
[Crossref] [PubMed]

C. Du, S. Ruan, Y. Yu, and F. Zeng, “6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm,” Opt. Express 13(6), 2013–2018 (2005).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (2)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

B. Q. Chen, C. Zhang, C. Y. Hu, R. J. Liu, and Z. Y. Li, “High-Efficiency Broadband High-Harmonic Generation from a Single Quasi-Phase-Matching Nonlinear Crystal,” Phys. Rev. Lett. 115(8), 083902 (2015).
[Crossref] [PubMed]

Proc. SPIE (1)

H. S. Lim, S. C. Lee, and J. O. Kim, “The optimization of laser systems for photodynamic therapy of malignancies,” Proc. SPIE 5689, 588863 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The diagrammatic sketch and photo picture for the experimental setup of the cascaded frequency convertor.
Fig. 2
Fig. 2 The dependences of the total average output power and pulse width on the LD pump power for this cascaded frequency convertor.
Fig. 3
Fig. 3 The emission spectrum of the cascaded frequency convertor at an average output power of 0.6 W (a) and 2.1W (b).
Fig. 4
Fig. 4 The dependences of the output powers on the LD pump power for the 1064 nm Nd:YAG laser in the CW and Q-switched mode.
Fig. 5
Fig. 5 Typical single pulse with the pulse width of 13.5 ns (a); the corresponding pulse train with a repetition rate of 7 kHz (b).

Tables (1)

Tables Icon

Table 1 Phase-matching configurations for 1535 nm + 1064 nm → 628 nm in the often-used nonlinear crystals.

Metrics