Abstract

We present a mask-aligner lithographic system operated with a frequency-quadrupled continuous-wave diode laser emitting at 193 nm. For this purpose, a 772 nm diode laser is amplified by a tapered amplifier in the master-oscillator power-amplifier configuration. The emission wavelength is upconverted twice, using LBO and KBBF nonlinear crystals in second-harmonic generation enhancement cavities. An optical output power of 10 mW is achieved. As uniform exposure field illumination is crucial in mask-aligner lithography, beam shaping is realized with optical elements made from fused silica and CaF2 featuring a diffractive non-imaging homogenizer. A tandem setup of shaped random diffusers, one static and one rotating, is used to control speckle formation. We demonstrate first experimental soft contact and proximity prints for a field size of 1 cm2 with a standard binary photomask and proximity prints with a two-level phase mask, both printed into 120 nm layers of photoresist on unstructured silicon substrates.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Printing sub-micron structures using Talbot mask-aligner lithography with a 193 nm CW laser light source

Andreas Vetter, Raoul Kirner, Dmitrijs Opalevs, Matthias Scholz, Patrick Leisching, Toralf Scharf, Wilfried Noell, Carsten Rockstuhl, and Reinhard Voelkel
Opt. Express 26(17) 22218-22233 (2018)

Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect

Lorenz Stuerzebecher, Torsten Harzendorf, Uwe Vogler, Uwe D. Zeitner, and Reinhard Voelkel
Opt. Express 18(19) 19485-19494 (2010)

Mask aligner lithography using laser illumination for versatile pattern generation

T. Weichelt, Y. Bourgin, and U. D. Zeitner
Opt. Express 25(18) 20983-20992 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Stürzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
    [Crossref]
  2. R. Völkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stürzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968–20978 (2010).
    [Crossref]
  3. K. Jain, C. Willson, and B. Lin, “Ultrafast deep UV Lithography with excimer lasers,” IEEE Electron Device Lett. 3, 53–55 (1982).
    [Crossref]
  4. K. Jain, “Advances In Excimer Laser Lithography,” Proc. SPIE 774, 115 (1987).
    [Crossref]
  5. T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
    [Crossref]
  6. V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
    [Crossref]
  7. S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Völkel, “Contact and proximity lithography using 193nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87, 936–939 (2010).
    [Crossref]
  8. D. Basting and G. Marowsky, eds. Excimer Laser Technology (Springer, 2005).
    [Crossref]
  9. M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Color center formation and time-resolved photoluminescence for ArF excimer laser irradiation in CaF2 single crystals,” Proc. SPIE 3424, 60 (1998).
    [Crossref]
  10. R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193 nm and 213 nm,” Proc. SPIE 2440, 118 (1995).
    [Crossref]
  11. J. M. Algots, R. Sandstrom, W. N. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Linder, and F. Stietz, “Compaction and rarefaction of fused silica with 193-nm excimer laser exposure,” Proc. SPIE 5040, 1639 (2003).
    [Crossref]
  12. D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.
  13. M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
    [Crossref]
  14. C. Mack, Fundamental Principles of Optical Lithography (John Wiley & Sons, 2007).
    [Crossref]
  15. C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach,” J. Appl. Phys. 77, 2268 (1995).
    [Crossref]
  16. D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth 222, 125–129 (2001).
    [Crossref]
  17. T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17, 8696–8703 (2009).
    [Crossref] [PubMed]
  18. S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
    [Crossref]
  19. T. Weichelt, Y. Bourgin, and U. D. Zeitner, “Mask aligner lithography using laser illumination for versatile pattern generation,” Opt. Express 25, 20983–20992 (2017).
    [Crossref] [PubMed]
  20. R. Völkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 71020J (2008).
    [Crossref]
  21. R. Völkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent2 253 997 A2 (2009).
  22. P. Rai-Choudhury, ed., Handbook of microlithography, micromachining, and microfabrication, vol. 1 of IEE materials & devices series; SPIE Press monograph (SPIE Optical Engineering Pr., 1997).
    [Crossref]
  23. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  24. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co, 2007).
  25. F. M. Dickey and T. E. Lizotte, Laser Beam Shaping Applications (CRC Press, 2017).
    [Crossref]
  26. Q. B. Li and F. P. Chiang, “A New Formula for Fringe Localization in Holographic Interferometry,” Opt. Lasers Eng. 9, 137–157 (1988).
    [Crossref]
  27. H. T. Yura, S. G. Hanson, R. S. Hansen, and B. Rose, “Three-dimensional speckle dynamics in paraxial optical systems,” J. Opt. Soc. Am. A 16, 1402–1412 (1999).
    [Crossref]
  28. D. Li, D. P. Kelly, R. Kirner, and J. T. Sheridan, “Speckle orientation in paraxial optical systems,” Appl. Opt. 51, A1–A10 (2012).
    [Crossref] [PubMed]
  29. F. M. Dickey, ed., Laser Beam Shaping: Theory and Techniques (CRC Press, 2017).
  30. G. J. Swanson, “Binary optics technology: Theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” Tech. rep., M.I.T. Lincoln Laboratory (1991).
  31. N. G. Douglas, A. R. Jones, and F. J. van Hoesel, “Ray-based simulation of an optical interferometer,” J. Opt. Soc. Am. A 12, 124–131 (1995).
    [Crossref]
  32. N. Lindlein and H. P. Herzig, “Design and modeling of a miniature system containing micro-optics,” Proc. SPIE 4437, 1 (2001).
    [Crossref]
  33. N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, S1–S9 (2002).
    [Crossref]
  34. T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406, 1027–1031 (2000).
    [Crossref] [PubMed]
  35. F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” Proc. SPIE 5377, 1 (2004).
    [Crossref]
  36. R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
    [Crossref]
  37. M. Lampton, “The Microchannel Image Intensifier,” Scientific American 245, 62–71 (1981).
    [Crossref]
  38. T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications,” Small 7, 1653–1663 (2011).
    [Crossref] [PubMed]

2017 (1)

2016 (1)

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

2015 (1)

L. Stürzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

2013 (1)

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

2012 (2)

D. Li, D. P. Kelly, R. Kirner, and J. T. Sheridan, “Speckle orientation in paraxial optical systems,” Appl. Opt. 51, A1–A10 (2012).
[Crossref] [PubMed]

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
[Crossref]

2011 (1)

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

2010 (2)

R. Völkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stürzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968–20978 (2010).
[Crossref]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Völkel, “Contact and proximity lithography using 193nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

2009 (1)

2008 (1)

R. Völkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 71020J (2008).
[Crossref]

2004 (1)

F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” Proc. SPIE 5377, 1 (2004).
[Crossref]

2003 (2)

J. M. Algots, R. Sandstrom, W. N. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Linder, and F. Stietz, “Compaction and rarefaction of fused silica with 193-nm excimer laser exposure,” Proc. SPIE 5040, 1639 (2003).
[Crossref]

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

2002 (1)

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, S1–S9 (2002).
[Crossref]

2001 (3)

D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth 222, 125–129 (2001).
[Crossref]

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

N. Lindlein and H. P. Herzig, “Design and modeling of a miniature system containing micro-optics,” Proc. SPIE 4437, 1 (2001).
[Crossref]

2000 (1)

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406, 1027–1031 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (1)

M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Color center formation and time-resolved photoluminescence for ArF excimer laser irradiation in CaF2 single crystals,” Proc. SPIE 3424, 60 (1998).
[Crossref]

1995 (3)

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193 nm and 213 nm,” Proc. SPIE 2440, 118 (1995).
[Crossref]

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach,” J. Appl. Phys. 77, 2268 (1995).
[Crossref]

N. G. Douglas, A. R. Jones, and F. J. van Hoesel, “Ray-based simulation of an optical interferometer,” J. Opt. Soc. Am. A 12, 124–131 (1995).
[Crossref]

1988 (1)

Q. B. Li and F. P. Chiang, “A New Formula for Fringe Localization in Holographic Interferometry,” Opt. Lasers Eng. 9, 137–157 (1988).
[Crossref]

1987 (1)

K. Jain, “Advances In Excimer Laser Lithography,” Proc. SPIE 774, 115 (1987).
[Crossref]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1982 (1)

K. Jain, C. Willson, and B. Lin, “Ultrafast deep UV Lithography with excimer lasers,” IEEE Electron Device Lett. 3, 53–55 (1982).
[Crossref]

1981 (1)

M. Lampton, “The Microchannel Image Intensifier,” Scientific American 245, 62–71 (1981).
[Crossref]

Adachi, S.

Algots, J. M.

J. M. Algots, R. Sandstrom, W. N. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Linder, and F. Stietz, “Compaction and rarefaction of fused silica with 193-nm excimer laser exposure,” Proc. SPIE 5040, 1639 (2003).
[Crossref]

Arakawa, M.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Besaucele, H.

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

Bich, A.

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Völkel, “Contact and proximity lithography using 193nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

R. Völkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stürzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968–20978 (2010).
[Crossref]

R. Völkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent2 253 997 A2 (2009).

Bourgin, Y.

Bramati, A.

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
[Crossref]

Brown, D. J. W.

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

Chen, C.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17, 8696–8703 (2009).
[Crossref] [PubMed]

D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth 222, 125–129 (2001).
[Crossref]

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach,” J. Appl. Phys. 77, 2268 (1995).
[Crossref]

Chiang, F. P.

Q. B. Li and F. P. Chiang, “A New Formula for Fringe Localization in Holographic Interferometry,” Opt. Lasers Eng. 9, 137–157 (1988).
[Crossref]

Colon, D. J.

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

Cullmann, E.

R. Völkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stürzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968–20978 (2010).
[Crossref]

R. Völkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent2 253 997 A2 (2009).

Dahlin, A. B.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

Dickey, F. M.

F. M. Dickey and T. E. Lizotte, Laser Beam Shaping Applications (CRC Press, 2017).
[Crossref]

Douglas, N. G.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Eichner, L.

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193 nm and 213 nm,” Proc. SPIE 2440, 118 (1995).
[Crossref]

Eisner, M.

R. Völkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent2 253 997 A2 (2009).

Enami, T.

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

Erdmann, A.

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
[Crossref]

Ershov, A. I.

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

Eva, E.

J. M. Algots, R. Sandstrom, W. N. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Linder, and F. Stietz, “Compaction and rarefaction of fused silica with 193-nm excimer laser exposure,” Proc. SPIE 5040, 1639 (2003).
[Crossref]

Fleurov, V. B.

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Fuchimukai, A.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Fuchs, F.

L. Stürzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

Gerhard, M.

J. M. Algots, R. Sandstrom, W. N. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Linder, and F. Stietz, “Compaction and rarefaction of fused silica with 193-nm excimer laser exposure,” Proc. SPIE 5040, 1639 (2003).
[Crossref]

Gilfert, C.

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co, 2007).

Hafner, C.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hansen, R. S.

Hanson, S. G.

Harzendorf, T.

Herzig, H. P.

N. Lindlein and H. P. Herzig, “Design and modeling of a miniature system containing micro-optics,” Proc. SPIE 4437, 1 (2001).
[Crossref]

Hornung, M.

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
[Crossref]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Völkel, “Contact and proximity lithography using 193nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

R. Völkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stürzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968–20978 (2010).
[Crossref]

R. Völkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent2 253 997 A2 (2009).

Hosono, H.

M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Color center formation and time-resolved photoluminescence for ArF excimer laser irradiation in CaF2 single crystals,” Proc. SPIE 3424, 60 (1998).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hudek, P.

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Völkel, “Contact and proximity lithography using 193nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

Igarashi, H.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Igarashi, T.

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

Ishihara, T.

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

Ito, S.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Ito, T.

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406, 1027–1031 (2000).
[Crossref] [PubMed]

Jain, K.

K. Jain, “Advances In Excimer Laser Lithography,” Proc. SPIE 774, 115 (1987).
[Crossref]

K. Jain, C. Willson, and B. Lin, “Ultrafast deep UV Lithography with excimer lasers,” IEEE Electron Device Lett. 3, 53–55 (1982).
[Crossref]

Jefimovs, K.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

Jones, A. R.

Kaenders, W.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

Kaiser, P.

R. Völkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent2 253 997 A2 (2009).

Kakizaki, K.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Kamba, Y.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Kanai, T.

Kawazoe, H.

M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Color center formation and time-resolved photoluminescence for ArF excimer laser irradiation in CaF2 single crystals,” Proc. SPIE 3424, 60 (1998).
[Crossref]

Kelly, D. P.

Kirner, R.

D. Li, D. P. Kelly, R. Kirner, and J. T. Sheridan, “Speckle orientation in paraxial optical systems,” Appl. Opt. 51, A1–A10 (2012).
[Crossref] [PubMed]

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Kobayashi, Y.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Lampton, M.

M. Lampton, “The Microchannel Image Intensifier,” Scientific American 245, 62–71 (1981).
[Crossref]

Leisching, P.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Li, D.

Li, Q. B.

Q. B. Li and F. P. Chiang, “A New Formula for Fringe Localization in Holographic Interferometry,” Opt. Lasers Eng. 9, 137–157 (1988).
[Crossref]

Li, R.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Lin, B.

K. Jain, C. Willson, and B. Lin, “Ultrafast deep UV Lithography with excimer lasers,” IEEE Electron Device Lett. 3, 53–55 (1982).
[Crossref]

Linder, R.

J. M. Algots, R. Sandstrom, W. N. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Linder, and F. Stietz, “Compaction and rarefaction of fused silica with 193-nm excimer laser exposure,” Proc. SPIE 5040, 1639 (2003).
[Crossref]

Lindlein, N.

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, S1–S9 (2002).
[Crossref]

N. Lindlein and H. P. Herzig, “Design and modeling of a miniature system containing micro-optics,” Proc. SPIE 4437, 1 (2001).
[Crossref]

Liu, L.

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Lizotte, T. E.

F. M. Dickey and T. E. Lizotte, Laser Beam Shaping Applications (CRC Press, 2017).
[Crossref]

Lukashev, A.

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

Mack, C.

C. Mack, Fundamental Principles of Optical Lithography (John Wiley & Sons, 2007).
[Crossref]

Maroevic, P.

J. M. Algots, R. Sandstrom, W. N. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Linder, and F. Stietz, “Compaction and rarefaction of fused silica with 193-nm excimer laser exposure,” Proc. SPIE 5040, 1639 (2003).
[Crossref]

Matsunaga, T.

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

Mei, L.

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach,” J. Appl. Phys. 77, 2268 (1995).
[Crossref]

Mitsuhashi, K.-i.

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

Mizoguchi, H.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Mizuguchi, M.

M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Color center formation and time-resolved photoluminescence for ArF excimer laser irradiation in CaF2 single crystals,” Proc. SPIE 3424, 60 (1998).
[Crossref]

Motzek, K.

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Noell, W.

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

O’Keeffe, P.

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

Ogawa, T.

M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Color center formation and time-resolved photoluminescence for ArF excimer laser irradiation in CaF2 single crystals,” Proc. SPIE 3424, 60 (1998).
[Crossref]

Ohta, T.

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

Oizumi, H.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Okazaki, S.

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406, 1027–1031 (2000).
[Crossref] [PubMed]

Oldham, W. G.

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193 nm and 213 nm,” Proc. SPIE 2440, 118 (1995).
[Crossref]

Onose, T.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Opalevs, D.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Partel, S.

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Völkel, “Contact and proximity lithography using 193nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

Partlo, W. N.

J. M. Algots, R. Sandstrom, W. N. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Linder, and F. Stietz, “Compaction and rarefaction of fused silica with 193-nm excimer laser exposure,” Proc. SPIE 5040, 1639 (2003).
[Crossref]

Pernet, P.

Qu, C.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Rafac, R. J.

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

Rockstuhl, C.

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Rose, B.

Saito, T.

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

Sandstrom, R.

J. M. Algots, R. Sandstrom, W. N. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Linder, and F. Stietz, “Compaction and rarefaction of fused silica with 193-nm excimer laser exposure,” Proc. SPIE 5040, 1639 (2003).
[Crossref]

Sannomiya, T.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

Sasaki, Y.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Scharf, T.

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Schellenberg, F. M.

F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” Proc. SPIE 5377, 1 (2004).
[Crossref]

Schenker, R. E.

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193 nm and 213 nm,” Proc. SPIE 2440, 118 (1995).
[Crossref]

Scholder, O.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

Scholz, M.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Sheridan, J. T.

Stietz, F.

J. M. Algots, R. Sandstrom, W. N. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Linder, and F. Stietz, “Compaction and rarefaction of fused silica with 193-nm excimer laser exposure,” Proc. SPIE 5040, 1639 (2003).
[Crossref]

Stürzebecher, L.

L. Stürzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
[Crossref]

R. Völkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stürzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968–20978 (2010).
[Crossref]

Swanson, G. J.

G. J. Swanson, “Binary optics technology: Theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” Tech. rep., M.I.T. Lincoln Laboratory (1991).

Tada, A.

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

Tamiya, M.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Tanaka, S.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Tang, D.

D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth 222, 125–129 (2001).
[Crossref]

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach,” J. Appl. Phys. 77, 2268 (1995).
[Crossref]

Terashima, K.

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

Tomaru, H.

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

Trintchouk, F.

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

Tsushima, H.

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

Tünnermann, A.

L. Stürzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

Vaidya, H.

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193 nm and 213 nm,” Proc. SPIE 2440, 118 (1995).
[Crossref]

Vaidya, S.

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193 nm and 213 nm,” Proc. SPIE 2440, 118 (1995).
[Crossref]

van Hoesel, F. J.

Vetter, A.

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Vogler, U.

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
[Crossref]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Völkel, “Contact and proximity lithography using 193nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

R. Völkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stürzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968–20978 (2010).
[Crossref]

R. Völkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent2 253 997 A2 (2009).

Völkel, R.

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
[Crossref]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Völkel, “Contact and proximity lithography using 193nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

R. Völkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stürzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968–20978 (2010).
[Crossref]

R. Völkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 71020J (2008).
[Crossref]

R. Völkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent2 253 997 A2 (2009).

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Wang, G.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

Wang, X.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17, 8696–8703 (2009).
[Crossref] [PubMed]

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Wang, Y.

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach,” J. Appl. Phys. 77, 2268 (1995).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Watanabe, S.

Weible, K. J.

R. Völkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stürzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968–20978 (2010).
[Crossref]

R. Völkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 71020J (2008).
[Crossref]

R. Völkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent2 253 997 A2 (2009).

Weichelt, T.

T. Weichelt, Y. Bourgin, and U. D. Zeitner, “Mask aligner lithography using laser illumination for versatile pattern generation,” Opt. Express 25, 20983–20992 (2017).
[Crossref] [PubMed]

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
[Crossref]

Wenrong, Z.

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach,” J. Appl. Phys. 77, 2268 (1995).
[Crossref]

Willson, C.

K. Jain, C. Willson, and B. Lin, “Ultrafast deep UV Lithography with excimer lasers,” IEEE Electron Device Lett. 3, 53–55 (1982).
[Crossref]

Wu, B.

D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth 222, 125–129 (2001).
[Crossref]

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach,” J. Appl. Phys. 77, 2268 (1995).
[Crossref]

Wu, K.

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach,” J. Appl. Phys. 77, 2268 (1995).
[Crossref]

Xia, Y.

D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth 222, 125–129 (2001).
[Crossref]

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach,” J. Appl. Phys. 77, 2268 (1995).
[Crossref]

Xuan, H.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Yoshino, M.

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

Yu, L.

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach,” J. Appl. Phys. 77, 2268 (1995).
[Crossref]

Yura, H. T.

Zambon, P.

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

Zeitner, U. D.

T. Weichelt, Y. Bourgin, and U. D. Zeitner, “Mask aligner lithography using laser illumination for versatile pattern generation,” Opt. Express 25, 20983–20992 (2017).
[Crossref] [PubMed]

L. Stürzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
[Crossref]

R. Völkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stürzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968–20978 (2010).
[Crossref]

Zhao, Z.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Zoberbier, R.

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
[Crossref]

R. Völkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stürzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968–20978 (2010).
[Crossref]

R. Völkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent2 253 997 A2 (2009).

Zoppel, S.

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Völkel, “Contact and proximity lithography using 193nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (1)

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[Crossref]

IEEE Electron Device Lett. (1)

K. Jain, C. Willson, and B. Lin, “Ultrafast deep UV Lithography with excimer lasers,” IEEE Electron Device Lett. 3, 53–55 (1982).
[Crossref]

J. Appl. Phys. (1)

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach,” J. Appl. Phys. 77, 2268 (1995).
[Crossref]

J. Cryst. Growth (1)

D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth 222, 125–129 (2001).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, S1–S9 (2002).
[Crossref]

J. Opt. Soc. Am. A (2)

Microelectron. Eng. (2)

L. Stürzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Völkel, “Contact and proximity lithography using 193nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87, 936–939 (2010).
[Crossref]

Nature (1)

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406, 1027–1031 (2000).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lasers Eng. (1)

Q. B. Li and F. P. Chiang, “A New Formula for Fringe Localization in Holographic Interferometry,” Opt. Lasers Eng. 9, 137–157 (1988).
[Crossref]

Proc. SPIE (11)

F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” Proc. SPIE 5377, 1 (2004).
[Crossref]

R. Völkel, U. Vogler, A. Bramati, T. Weichelt, L. Stürzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE 20, 83261Y (2012).
[Crossref]

R. Völkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 71020J (2008).
[Crossref]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Color center formation and time-resolved photoluminescence for ArF excimer laser irradiation in CaF2 single crystals,” Proc. SPIE 3424, 60 (1998).
[Crossref]

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193 nm and 213 nm,” Proc. SPIE 2440, 118 (1995).
[Crossref]

J. M. Algots, R. Sandstrom, W. N. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Linder, and F. Stietz, “Compaction and rarefaction of fused silica with 193-nm excimer laser exposure,” Proc. SPIE 5040, 1639 (2003).
[Crossref]

K. Jain, “Advances In Excimer Laser Lithography,” Proc. SPIE 774, 115 (1987).
[Crossref]

T. Saito, T. Matsunaga, K.-i. Mitsuhashi, K. Terashima, T. Ohta, A. Tada, T. Ishihara, M. Yoshino, H. Tsushima, T. Enami, H. Tomaru, and T. Igarashi, “Ultranarrow-bandwidth 4-kHz ArF excimer laser for 193-nm lithography,” Proc. SPIE 4346, 1229 (2001).
[Crossref]

V. B. Fleurov, D. J. Colon, D. J. W. Brown, P. O’Keeffe, H. Besaucele, A. I. Ershov, F. Trintchouk, T. Ishihara, P. Zambon, R. J. Rafac, and A. Lukashev, “Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography,” Proc. SPIE 5040, 1694 (2003).
[Crossref]

N. Lindlein and H. P. Herzig, “Design and modeling of a miniature system containing micro-optics,” Proc. SPIE 4437, 1 (2001).
[Crossref]

Scientific American (1)

M. Lampton, “The Microchannel Image Intensifier,” Scientific American 245, 62–71 (1981).
[Crossref]

Small (1)

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

Other (9)

F. M. Dickey, ed., Laser Beam Shaping: Theory and Techniques (CRC Press, 2017).

G. J. Swanson, “Binary optics technology: Theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” Tech. rep., M.I.T. Lincoln Laboratory (1991).

R. Völkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, and E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” European Patent2 253 997 A2 (2009).

P. Rai-Choudhury, ed., Handbook of microlithography, micromachining, and microfabrication, vol. 1 of IEE materials & devices series; SPIE Press monograph (SPIE Optical Engineering Pr., 1997).
[Crossref]

C. Mack, Fundamental Principles of Optical Lithography (John Wiley & Sons, 2007).
[Crossref]

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co, 2007).

F. M. Dickey and T. E. Lizotte, Laser Beam Shaping Applications (CRC Press, 2017).
[Crossref]

D. Basting and G. Marowsky, eds. Excimer Laser Technology (Springer, 2005).
[Crossref]

D. Opalevs, M. Scholz, C. Gilfert, R. Li, X. Wang, L. Liu, A. Vetter, R. Kirner, T. Scharf, W. Noell, C. Rockstuhl, R. Völkel, and P. Leisching, “Semiconductor-based narrow-line and high-brilliance 193nm laser system for industrial applications,” submitted.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic layout of the 193 nm CW laser. The output of a diode laser is routed through a Faraday isolator (FI) and magnified in a tapered amplifier (TA). For frequency conversion, a lithium triborate (LBO) and a potassium fluoro-beryllo-borate (KBBF) crystal is used. Active feedback control is implemented via piezo elements (PZT). Adapted from [13]. (b) Beam profile measured at the laser output.
Fig. 2
Fig. 2 (a) Optical setup with beam-shaping elements. Depicted are static and rotating diffusers, dielectric mirrors M1−4, condenser lens L1, illumination filter plate (IFP), diffractive optical element (DOE) in Fresnel configuration, Fourier lens L2, front lens L3, changeable area blocking aperture (CABA), zero-order blocking filter (ZOBF), and imaging lens L4. (b) Diffuser setup to adjust the coherence of the illumination. Different possible combinations of static and rotating diffusers are depicted.
Fig. 3
Fig. 3 (a) White light interferometric image of a shaped random diffuser. (b) Goniometric measurements of static (blue dots) and rotating (red triangles) diffusers. The full width at half maximum (FWHM) is denoted.
Fig. 4
Fig. 4 Upper row: Simulation of the illumination system; intensity distribution in different planes. (a) Single beamlets in a plane conjugated to the DOE. (b) Mask plane intensity distribution without ZOBF. (c) Mask plane intensity distribution with ZOBF. Lower row: measurements of the actual illumination system at the same planes and in similar configuration as (a-c). (d) and (f) were imaged through a 150 mm lens instead of the 200 mm lens used for (e) and are thus scaled by a factor of 1.3.
Fig. 5
Fig. 5 SEM micrograph of resolution structures in photoresist, patterned in soft contact between mask and wafer. The lines and spaces have critical dimensions of (a) 375 nm and (b) 500 nm.
Fig. 6
Fig. 6 SEM images of resolution structures in photoresist, patterned with a proximity gap of 20 µm. Here the lines and spaces have critical dimensions of (a) 1750 nm and (b) 2000 nm. The emergence of line-end deviations are caused by diffraction, and can be improved by principles of optical proximity correction (OPC).
Fig. 7
Fig. 7 SEM images of resolution structures in photoresist, patterned with a proximity gap of 15 µm between mask and wafer. The lines and spaces have critical dimensions of (a) 1750 nm and (b) 2000 nm.
Fig. 8
Fig. 8 SEM micrographs of etched structures in silicon, still covered with chromium etch mask, which has been patterned with a proximity gap of 10 µm between photomask and wafer. The lines and spaces have critical dimensions of (a) 2000 nm and (b) 1500 nm, and the etch depth is approximately 800 nm and 400 nm, respectively.
Fig. 9
Fig. 9 Periodic structures in photoresist using a phase mask, patterned with a proximity gap of 20 µm between mask and wafer. The grating period in (a) amounts to 1 µm, and the center-to-center distance in (b) is 650 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Resolution ~ g λ

Metrics