Abstract

A metal-dielectric is designed and fabricated as a compact polarization beam splitter. High p-polarized transmission is achieved by admittance matching, which is developed using a normalized admittance diagram. High s-polarized reflection is achieved with a metal-like equivalent s-polarized admittance which real part is much smaller than its imaginary part. An ultra-thin silver film with a thickness of around 11 nm is deposited to form an Ag-SiO2 multilayer. The polarization beam splitter requires only three or five layers of thin films to perform broadband beam splitting over wavelengths from 450 nm to 850 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of the equivalent coupling layer on ultra- long-range surface-plasmon-polariton waves

Ching-Wei Yu and Yi-Jun Jen
Opt. Express 18(8) 7982-7993 (2010)

Multilayered structures for p- and s-polarized long-range surface-plasmon-polariton propagation

Yi-Jun Jen, Akhlesh Lakhtakia, Ching-Wei Yu, and Tzu-Yi Chan
J. Opt. Soc. Am. A 26(12) 2600-2606 (2009)

Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances

Mohammad Mehrabi, Hamid Rajabalipanah, Ali Abdolali, and Majid Tayarani
Appl. Opt. 57(14) 3693-3703 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [Crossref] [PubMed]
  2. Y. J. Jen, A. Lakhtakia, M. J. Lin, W. H. Wang, H. M. Wu, and H. S. Liao, “Metal/dielectric/metal sandwich film for broadband reflection reduction,” Sci. Rep. 3(1), 1672 (2013).
    [Crossref] [PubMed]
  3. J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
    [Crossref] [PubMed]
  4. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  5. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
    [Crossref] [PubMed]
  6. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  7. Y. J. Jen, C. C. Lee, K. H. Lu, C. Y. Jheng, and Y. J. Chen, “Fabry-Perot based metal-dielectric multilayered filters and metamaterials,” Opt. Express 23(26), 33008–33017 (2015).
    [Crossref] [PubMed]
  8. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  9. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
    [Crossref] [PubMed]
  10. A. V. Kildishev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refractive index in optics of metal–dielectric composites,” J. Opt. Soc. Am. B 23(3), 423–433 (2006).
    [Crossref]
  11. Y. J. Jen, W. C. Liu, T. K. Chen, S. W. Lin, and Y. C. Jhang, “Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber,” Sci. Rep. 7(1), 3076 (2017).
    [Crossref] [PubMed]
  12. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
    [Crossref]
  13. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  14. F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 889 (2012).
    [Crossref] [PubMed]
  15. S. M. Macneille, “Beam splitter,” US Patent 2,403,731 (July 9, 1943). (1946).
  16. L. Li and J. A. Dobrowolski, “High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle,” Appl. Opt. 39(16), 2754–2771 (2000).
    [Crossref] [PubMed]
  17. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  18. F. Lemarquis and E. Pelletier, “Buffer layers for the design of broadband optical filters,” Appl. Opt. 34(25), 5665–5672 (1995).
    [Crossref] [PubMed]
  19. A. F. Turner and P. W. Baumeister, “Multilayer mirrors with high reflectance over an extended spectral region,” Appl. Opt. 5(1), 69–76 (1966).
    [Crossref] [PubMed]

2017 (1)

Y. J. Jen, W. C. Liu, T. K. Chen, S. W. Lin, and Y. C. Jhang, “Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber,” Sci. Rep. 7(1), 3076 (2017).
[Crossref] [PubMed]

2015 (2)

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Y. J. Jen, C. C. Lee, K. H. Lu, C. Y. Jheng, and Y. J. Chen, “Fabry-Perot based metal-dielectric multilayered filters and metamaterials,” Opt. Express 23(26), 33008–33017 (2015).
[Crossref] [PubMed]

2013 (5)

Y. J. Jen, A. Lakhtakia, M. J. Lin, W. H. Wang, H. M. Wu, and H. S. Liao, “Metal/dielectric/metal sandwich film for broadband reflection reduction,” Sci. Rep. 3(1), 1672 (2013).
[Crossref] [PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

2012 (2)

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 889 (2012).
[Crossref] [PubMed]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

2011 (3)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

2007 (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

2006 (1)

2000 (1)

1995 (1)

1966 (1)

Abashin, M.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Agrawal, A.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Baumeister, P. W.

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Cai, W.

Chau, K. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Chen, T. K.

Y. J. Jen, W. C. Liu, T. K. Chen, S. W. Lin, and Y. C. Jhang, “Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber,” Sci. Rep. 7(1), 3076 (2017).
[Crossref] [PubMed]

Chen, Y. J.

Chettiar, U. K.

Dobrowolski, J. A.

Drachev, V. P.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Fink, M.

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 889 (2012).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Jen, Y. J.

Y. J. Jen, W. C. Liu, T. K. Chen, S. W. Lin, and Y. C. Jhang, “Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber,” Sci. Rep. 7(1), 3076 (2017).
[Crossref] [PubMed]

Y. J. Jen, C. C. Lee, K. H. Lu, C. Y. Jheng, and Y. J. Chen, “Fabry-Perot based metal-dielectric multilayered filters and metamaterials,” Opt. Express 23(26), 33008–33017 (2015).
[Crossref] [PubMed]

Y. J. Jen, A. Lakhtakia, M. J. Lin, W. H. Wang, H. M. Wu, and H. S. Liao, “Metal/dielectric/metal sandwich film for broadband reflection reduction,” Sci. Rep. 3(1), 1672 (2013).
[Crossref] [PubMed]

Jhang, Y. C.

Y. J. Jen, W. C. Liu, T. K. Chen, S. W. Lin, and Y. C. Jhang, “Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber,” Sci. Rep. 7(1), 3076 (2017).
[Crossref] [PubMed]

Jheng, C. Y.

Kildishev, A. V.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Lakhtakia, A.

Y. J. Jen, A. Lakhtakia, M. J. Lin, W. H. Wang, H. M. Wu, and H. S. Liao, “Metal/dielectric/metal sandwich film for broadband reflection reduction,” Sci. Rep. 3(1), 1672 (2013).
[Crossref] [PubMed]

Landy, N.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

Lee, C. C.

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lemarquis, F.

Lemoult, F.

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 889 (2012).
[Crossref] [PubMed]

Lerosey, G.

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 889 (2012).
[Crossref] [PubMed]

Lezec, H. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Li, L.

Liao, H. S.

Y. J. Jen, A. Lakhtakia, M. J. Lin, W. H. Wang, H. M. Wu, and H. S. Liao, “Metal/dielectric/metal sandwich film for broadband reflection reduction,” Sci. Rep. 3(1), 1672 (2013).
[Crossref] [PubMed]

Lin, M. J.

Y. J. Jen, A. Lakhtakia, M. J. Lin, W. H. Wang, H. M. Wu, and H. S. Liao, “Metal/dielectric/metal sandwich film for broadband reflection reduction,” Sci. Rep. 3(1), 1672 (2013).
[Crossref] [PubMed]

Lin, S. W.

Y. J. Jen, W. C. Liu, T. K. Chen, S. W. Lin, and Y. C. Jhang, “Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber,” Sci. Rep. 7(1), 3076 (2017).
[Crossref] [PubMed]

Litchinitser, N. M.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Liu, W. C.

Y. J. Jen, W. C. Liu, T. K. Chen, S. W. Lin, and Y. C. Jhang, “Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber,” Sci. Rep. 7(1), 3076 (2017).
[Crossref] [PubMed]

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lu, K. H.

Pelletier, E.

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Rho, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Sarychev, A. K.

Shalaev, M. I.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

Smith, D. R.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Sun, J.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Turner, A. F.

Wang, W. H.

Y. J. Jen, A. Lakhtakia, M. J. Lin, W. H. Wang, H. M. Wu, and H. S. Liao, “Metal/dielectric/metal sandwich film for broadband reflection reduction,” Sci. Rep. 3(1), 1672 (2013).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Wu, H. M.

Y. J. Jen, A. Lakhtakia, M. J. Lin, W. H. Wang, H. M. Wu, and H. S. Liao, “Metal/dielectric/metal sandwich film for broadband reflection reduction,” Sci. Rep. 3(1), 1672 (2013).
[Crossref] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Xu, T.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Yang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Yao, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Yin, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Yuan, H. K.

Zhang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Appl. Opt. (3)

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Commun. (3)

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 889 (2012).
[Crossref] [PubMed]

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

Nat. Photonics (4)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Nature (1)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Sci. Rep. (2)

Y. J. Jen, A. Lakhtakia, M. J. Lin, W. H. Wang, H. M. Wu, and H. S. Liao, “Metal/dielectric/metal sandwich film for broadband reflection reduction,” Sci. Rep. 3(1), 1672 (2013).
[Crossref] [PubMed]

Y. J. Jen, W. C. Liu, T. K. Chen, S. W. Lin, and Y. C. Jhang, “Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber,” Sci. Rep. 7(1), 3076 (2017).
[Crossref] [PubMed]

Science (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Other (1)

S. M. Macneille, “Beam splitter,” US Patent 2,403,731 (July 9, 1943). (1946).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Admittance loci of (a) a dielectric film and (b) a metal film with = fractive index N=nik in normalized admittance diagram with (c) constant reflectance circles (pink) and constant phase circles (blue).
Fig. 2
Fig. 2 P(S)-polarized admittance as a function of angle of incidence for a Glass- SiO2-Glass structure.
Fig. 3
Fig. 3 P(S)-polarized admittance diagram of Prism-SiO2 (150 nm)-Ag (11 nm)-SiO2 (150 nm)-Prism system at θ i = 74° for wavelengths of 500 nm, 650 nm, and 800 nm.
Fig. 4
Fig. 4 Simulated transmittance and reflectance spectra of Prism-SiO2 (150nm)- Ag (11nm)-SiO2 (150nm)-Prism system.
Fig. 5
Fig. 5 P(S)-polarized admittance diagram of Prism-SiO2 (110 nm)-Ag (11 nm)-SiO2 (260 nm)-Ag (11 nm)-SiO2 (110 nm)-Prism system at θ i = 74° for wavelengths of 500 nm, 650 nm, and 800 nm.
Fig. 6
Fig. 6 Simulated transmittance and reflectance spectra of Prism-SiO2 (110 nm)-Ag (11 nm)-SiO2 (260 nm)-Ag (11 nm)-SiO2 (110 nm)-Prism system.
Fig. 7
Fig. 7 Measured (dotted line) and simulated (solid lines) spectra of Prism-SiO2-Ag-SiO2-Prism system vs. wavelength for p-polarized and s-polarized states. Insets: cross-sectional image of layered structure.
Fig. 8
Fig. 8 Measured (dotted line) and simulated (solid lines) spectra of Prism-SiO2-Ag-SiO2-Ag-SiO2-Prism system vs. wavelength for p-polarized and s-polarized states. Insets: cross-sectional image of layered structure.
Fig. 9
Fig. 9 P(S)-polarized admittance diagram of Prism-SiO2 (150 nm)-Ag (11 nm)-SiO2 (300 nm)-Ag (11 nm)-SiO2 (150 nm)-Prism system at θ i = 74° for wavelengths of 500 nm, 650 nm, and 800 nm.
Fig. 10
Fig. 10 Simulated transmittance and reflectance spectra of Prism-SiO2 (150 nm)-Ag (11 nm)-SiO2 (300 nm)-Ag (11 nm)-SiO2 (150 nm)-Prism system.
Fig. 11
Fig. 11 P(S)-polarized admittance diagram of Prism-Ta2O5 (60 nm)-SiO2 (150 nm)-Ag (11 nm)-SiO2 (150 nm)-Ta2O5 (60 nm)-Prism system at θ i = 63.5° for wavelengths of 500 nm, 650 nm, and 800 nm.
Fig. 12
Fig. 12 Simulated transmittance and reflectance spectra of Prism-Ta2O5 (60 nm)-SiO2 (150 nm)-Ag (11 nm)-SiO2 (150 nm)-Ta2O5 (60 nm)-Prism system.

Metrics