Abstract

It is known that ultrashort laser welding of materials requires an accurate laser beam focusing and positioning onto the samples interface. This puts forward severe challenges for controlling the focus position particularly considering that the tightly focused Gaussian beam has a short, micron-sized Rayleigh range. Here we propose a large-focal-depth welding method to bond materials by using non-diffractive femtosecond laser Bessel beams. A zero-order Bessel beam is produced by an axicon and directly imaged on the interface between silicon and borosilicate glass to write welding lines, ensuring a non-diffractive length in the 500 μm range and micron-sized FWHM diameter. The focal-position tolerant zone for effective welding increases thus many-fold compared to traditional Gaussian beam welding. The shear joining strength of the sample welded by this method could be as high as 16.5 MPa. The Raman spectrum and element distribution analyses within the cross section of welding line reveal that substance mixing has occurred during laser irradiation, which is considered as the main reason for femtosecond laser induced bonding.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Interface modification based ultrashort laser microwelding between SiC and fused silica

Guodong Zhang, Jing Bai, Wei Zhao, Kaiming Zhou, and Guanghua Cheng
Opt. Express 25(3) 1702-1709 (2017)

Direct welding of glass and metal by 1  kHz femtosecond laser pulses

Guodong Zhang and Guanghua Cheng
Appl. Opt. 54(30) 8957-8961 (2015)

Reinforced direct bonding of optical materials by femtosecond laser welding

David Hélie, Michael Bégin, Fabrice Lacroix, and Réal Vallée
Appl. Opt. 51(12) 2098-2106 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
    [Crossref]
  2. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 1726 (2006).
    [Crossref]
  3. T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
    [Crossref] [PubMed]
  4. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient States of Matter during Short Pulse Laser Ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
    [Crossref]
  5. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
    [Crossref] [PubMed]
  6. P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
    [Crossref] [PubMed]
  7. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  8. W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
    [Crossref]
  9. D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt. 51(12), 2098–2106 (2012).
    [Crossref] [PubMed]
  10. K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
    [Crossref] [PubMed]
  11. A. Volpe, F. Di Niso, C. Gaudiuso, A. De Rosa, R. M. Vázquez, A. Ancona, P. M. Lugarà, and R. Osellame, “Welding of PMMA by a femtosecond fiber laser,” Opt. Express 23(4), 4114–4124 (2015).
    [Crossref] [PubMed]
  12. J. Chen, R. M. Carter, R. R. Thomson, and D. P. Hand, “Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding: erratum,” Opt. Express 23(21), 28104–28105 (2015).
    [Crossref] [PubMed]
  13. G. Zhang, J. Bai, W. Zhao, K. Zhou, and G. Cheng, “Interface modification based ultrashort laser microwelding between SiC and fused silica,” Opt. Express 25(3), 1702–1709 (2017).
    [Crossref]
  14. K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  15. I. Miyamoto, Y. Okamoto, A. Hansen, J. Vihinen, T. Amberla, and J. Kangastupa, “High speed, high strength microwelding of Si/glass using ps-laser pulses,” Opt. Express 23(3), 3427–3439 (2015).
    [Crossref] [PubMed]
  16. I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
    [Crossref]
  17. K. Sugioka, M. Iida, H. Takai, and K. Micorikawa, “Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train,” Opt. Lett. 36(14), 2734–2736 (2011).
    [Crossref] [PubMed]
  18. S. Wu, D. Wu, J. Xu, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding,” Opt. Express 21(20), 24049–24059 (2013).
    [Crossref] [PubMed]
  19. C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A Phys. 97, 398–404 (2002).
    [Crossref]
  20. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
    [Crossref]
  21. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref] [PubMed]
  22. F. Courvoisier, P. A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Furfaro, and J. M. Dudley, “Material nanoprocessing with nondiffracting femtosecond Bessel beams,” Opt. Lett. 34(20), 3163–3165 (2009).
    [Crossref] [PubMed]
  23. M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104(2), 219–377 (2014).
    [Crossref]
  24. A. Marcinkevicious, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel Beams for Microfabrication of Dielectrics by Femtosecond Laser,” Jpn. J. Appl. Phys. 40, 1197 (2001).
    [Crossref]
  25. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
    [Crossref]
  26. G. Cheng, A. Rudenko, C. D’Amico, T. E. Itina, J. P. Colombier, and R. Stoian, “Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation,” Appl. Phys. Lett. 110(26), 261901 (2017).
    [Crossref]
  27. G. Wang, Y. Yu, L. Jiang, X. Li, Q. Xie, and Y. Lu, “Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA,” Appl. Phys. Lett. 110(16), 161907 (2017).
    [Crossref]
  28. N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill, and R. Roy, “Generation of nondiffracting Bessel beams by use of a spatial light modulator,” Opt. Lett. 28(22), 2183–2185 (2003).
    [Crossref] [PubMed]
  29. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8(6), 932–942 (1991).
    [Crossref]
  30. J. H. Mcleod, “The Axicon: A New Type of Optical Element,” J. Opt. Soc. Am. 44(8), 592 (1954).
    [Crossref]
  31. G. Roy and R. Tremblay, “Influence of the divergence of a laser beam on the axial intensity distribution of an axicon,” Opt. Commun. 34(1), 1–3 (1980).
    [Crossref]
  32. Q. Xie, X. Li, L. Jiang, B. Xia, X. Yan, W. Zhao, and Y. Lu, “High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam,” Appl. Phys., A Mater. Sci. Process. 122(2), 136 (2016).
    [Crossref]
  33. A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
    [Crossref]
  34. T. Furukawa and W. B. White, “Raman spectroscopic investigation of sodium borosilicate glass structure,” J. Mater. Sci. 16(10), 2689–2700 (1981).
    [Crossref]
  35. B. Parkinson, D. Holland, M. E. Smith, C. Larson, J. Doerr, M. Affatigato, S. A. Feller, A. Howes, and C. Scales, “Quantitative measurement of Q 3 species in silicate and borosilicate glasses using Raman spectroscopy,” J. Non-Cryst. Sol. 354, 1936–1942 (2008).
  36. W. L. Konijnendijk and J. Stevels, “The structure of borosilicate glasses studied by Raman scattering,” J. Non-Cryst. Sol. 20, 193–224 (1976).
  37. J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B 106(3), 295–299 (2004).
    [Crossref]
  38. K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modification in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
    [Crossref]
  39. H. Richter, Z. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun. 39(5), 625–629 (1981).
    [Crossref]

2017 (3)

G. Zhang, J. Bai, W. Zhao, K. Zhou, and G. Cheng, “Interface modification based ultrashort laser microwelding between SiC and fused silica,” Opt. Express 25(3), 1702–1709 (2017).
[Crossref]

G. Cheng, A. Rudenko, C. D’Amico, T. E. Itina, J. P. Colombier, and R. Stoian, “Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation,” Appl. Phys. Lett. 110(26), 261901 (2017).
[Crossref]

G. Wang, Y. Yu, L. Jiang, X. Li, Q. Xie, and Y. Lu, “Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA,” Appl. Phys. Lett. 110(16), 161907 (2017).
[Crossref]

2016 (1)

Q. Xie, X. Li, L. Jiang, B. Xia, X. Yan, W. Zhao, and Y. Lu, “High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam,” Appl. Phys., A Mater. Sci. Process. 122(2), 136 (2016).
[Crossref]

2015 (4)

2014 (3)

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104(2), 219–377 (2014).
[Crossref]

2013 (2)

S. Wu, D. Wu, J. Xu, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding,” Opt. Express 21(20), 24049–24059 (2013).
[Crossref] [PubMed]

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modification in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

2012 (2)

D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt. 51(12), 2098–2106 (2012).
[Crossref] [PubMed]

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

2011 (1)

2009 (1)

2008 (3)

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

B. Parkinson, D. Holland, M. E. Smith, C. Larson, J. Doerr, M. Affatigato, S. A. Feller, A. Howes, and C. Scales, “Quantitative measurement of Q 3 species in silicate and borosilicate glasses using Raman spectroscopy,” J. Non-Cryst. Sol. 354, 1936–1942 (2008).

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (1)

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
[Crossref]

2006 (2)

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 1726 (2006).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

2005 (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

2004 (1)

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B 106(3), 295–299 (2004).
[Crossref]

2003 (2)

N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill, and R. Roy, “Generation of nondiffracting Bessel beams by use of a spatial light modulator,” Opt. Lett. 28(22), 2183–2185 (2003).
[Crossref] [PubMed]

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

2002 (2)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A Phys. 97, 398–404 (2002).
[Crossref]

2001 (1)

A. Marcinkevicious, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel Beams for Microfabrication of Dielectrics by Femtosecond Laser,” Jpn. J. Appl. Phys. 40, 1197 (2001).
[Crossref]

1998 (1)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient States of Matter during Short Pulse Laser Ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

1991 (1)

1987 (2)

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
[Crossref]

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

1981 (2)

T. Furukawa and W. B. White, “Raman spectroscopic investigation of sodium borosilicate glass structure,” J. Mater. Sci. 16(10), 2689–2700 (1981).
[Crossref]

H. Richter, Z. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun. 39(5), 625–629 (1981).
[Crossref]

1980 (1)

G. Roy and R. Tremblay, “Influence of the divergence of a laser beam on the axial intensity distribution of an axicon,” Opt. Commun. 34(1), 1–3 (1980).
[Crossref]

1976 (1)

W. L. Konijnendijk and J. Stevels, “The structure of borosilicate glasses studied by Raman scattering,” J. Non-Cryst. Sol. 20, 193–224 (1976).

1954 (1)

Affatigato, M.

B. Parkinson, D. Holland, M. E. Smith, C. Larson, J. Doerr, M. Affatigato, S. A. Feller, A. Howes, and C. Scales, “Quantitative measurement of Q 3 species in silicate and borosilicate glasses using Raman spectroscopy,” J. Non-Cryst. Sol. 354, 1936–1942 (2008).

Amberla, T.

Ancona, A.

Anisimov, S. I.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient States of Matter during Short Pulse Laser Ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Bai, J.

Bégin, M.

Bhuyan, M. K.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104(2), 219–377 (2014).
[Crossref]

F. Courvoisier, P. A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Furfaro, and J. M. Dudley, “Material nanoprocessing with nondiffracting femtosecond Bessel beams,” Opt. Lett. 34(20), 3163–3165 (2009).
[Crossref] [PubMed]

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient States of Matter during Short Pulse Laser Ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Boukenter, A.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modification in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Brenk, U.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Carter, R. M.

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient States of Matter during Short Pulse Laser Ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Chattrapiban, N.

Chen, J.

Cheng, G.

G. Zhang, J. Bai, W. Zhao, K. Zhou, and G. Cheng, “Interface modification based ultrashort laser microwelding between SiC and fused silica,” Opt. Express 25(3), 1702–1709 (2017).
[Crossref]

G. Cheng, A. Rudenko, C. D’Amico, T. E. Itina, J. P. Colombier, and R. Stoian, “Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation,” Appl. Phys. Lett. 110(26), 261901 (2017).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Cofield, D.

Colombier, J. P.

G. Cheng, A. Rudenko, C. D’Amico, T. E. Itina, J. P. Colombier, and R. Stoian, “Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation,” Appl. Phys. Lett. 110(26), 261901 (2017).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104(2), 219–377 (2014).
[Crossref]

Courvoisier, F.

Cvecek, K.

K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

D’Amico, C.

G. Cheng, A. Rudenko, C. D’Amico, T. E. Itina, J. P. Colombier, and R. Stoian, “Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation,” Appl. Phys. Lett. 110(26), 261901 (2017).
[Crossref]

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modification in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Davies, G.

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B 106(3), 295–299 (2004).
[Crossref]

De Rosa, A.

Dehmel, S.

Di Niso, F.

Doerr, J.

B. Parkinson, D. Holland, M. E. Smith, C. Larson, J. Doerr, M. Affatigato, S. A. Feller, A. Howes, and C. Scales, “Quantitative measurement of Q 3 species in silicate and borosilicate glasses using Raman spectroscopy,” J. Non-Cryst. Sol. 354, 1936–1942 (2008).

Dudley, J. M.

Duocastella, M.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Durnin, J.

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
[Crossref]

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Eberly, J. H.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Faure, N.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104(2), 219–377 (2014).
[Crossref]

Feller, S. A.

B. Parkinson, D. Holland, M. E. Smith, C. Larson, J. Doerr, M. Affatigato, S. A. Feller, A. Howes, and C. Scales, “Quantitative measurement of Q 3 species in silicate and borosilicate glasses using Raman spectroscopy,” J. Non-Cryst. Sol. 354, 1936–1942 (2008).

Furfaro, L.

Furukawa, T.

T. Furukawa and W. B. White, “Raman spectroscopic investigation of sodium borosilicate glass structure,” J. Mater. Sci. 16(10), 2689–2700 (1981).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gaudiuso, C.

Hand, D. P.

Hansen, A.

Hélie, D.

Herman, R. M.

Hill, W. T.

Holland, D.

B. Parkinson, D. Holland, M. E. Smith, C. Larson, J. Doerr, M. Affatigato, S. A. Feller, A. Howes, and C. Scales, “Quantitative measurement of Q 3 species in silicate and borosilicate glasses using Raman spectroscopy,” J. Non-Cryst. Sol. 354, 1936–1942 (2008).

Horn, A.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Howes, A.

B. Parkinson, D. Holland, M. E. Smith, C. Larson, J. Doerr, M. Affatigato, S. A. Feller, A. Howes, and C. Scales, “Quantitative measurement of Q 3 species in silicate and borosilicate glasses using Raman spectroscopy,” J. Non-Cryst. Sol. 354, 1936–1942 (2008).

Iida, M.

Itina, T. E.

G. Cheng, A. Rudenko, C. D’Amico, T. E. Itina, J. P. Colombier, and R. Stoian, “Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation,” Appl. Phys. Lett. 110(26), 261901 (2017).
[Crossref]

Itoh, K.

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 1726 (2006).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Jacquot, M.

Jiang, L.

G. Wang, Y. Yu, L. Jiang, X. Li, Q. Xie, and Y. Lu, “Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA,” Appl. Phys. Lett. 110(16), 161907 (2017).
[Crossref]

Q. Xie, X. Li, L. Jiang, B. Xia, X. Yan, W. Zhao, and Y. Lu, “High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam,” Appl. Phys., A Mater. Sci. Process. 122(2), 136 (2016).
[Crossref]

Juodkazis, S.

A. Marcinkevicious, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel Beams for Microfabrication of Dielectrics by Femtosecond Laser,” Jpn. J. Appl. Phys. 40, 1197 (2001).
[Crossref]

Kachel, M.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Kangastupa, J.

Konijnendijk, W. L.

W. L. Konijnendijk and J. Stevels, “The structure of borosilicate glasses studied by Raman scattering,” J. Non-Cryst. Sol. 20, 193–224 (1976).

Lacourt, P. A.

Lacroix, F.

Larson, C.

B. Parkinson, D. Holland, M. E. Smith, C. Larson, J. Doerr, M. Affatigato, S. A. Feller, A. Howes, and C. Scales, “Quantitative measurement of Q 3 species in silicate and borosilicate glasses using Raman spectroscopy,” J. Non-Cryst. Sol. 354, 1936–1942 (2008).

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

Ley, L.

H. Richter, Z. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun. 39(5), 625–629 (1981).
[Crossref]

Li, X.

G. Wang, Y. Yu, L. Jiang, X. Li, Q. Xie, and Y. Lu, “Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA,” Appl. Phys. Lett. 110(16), 161907 (2017).
[Crossref]

Q. Xie, X. Li, L. Jiang, B. Xia, X. Yan, W. Zhao, and Y. Lu, “High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam,” Appl. Phys., A Mater. Sci. Process. 122(2), 136 (2016).
[Crossref]

Lin, L.

C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A Phys. 97, 398–404 (2002).
[Crossref]

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

Lu, Y.

G. Wang, Y. Yu, L. Jiang, X. Li, Q. Xie, and Y. Lu, “Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA,” Appl. Phys. Lett. 110(16), 161907 (2017).
[Crossref]

Q. Xie, X. Li, L. Jiang, B. Xia, X. Yan, W. Zhao, and Y. Lu, “High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam,” Appl. Phys., A Mater. Sci. Process. 122(2), 136 (2016).
[Crossref]

Lugarà, P. M.

Luo, C.

C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A Phys. 97, 398–404 (2002).
[Crossref]

Makimura, T.

Marcinkevicious, A.

A. Marcinkevicious, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel Beams for Microfabrication of Dielectrics by Femtosecond Laser,” Jpn. J. Appl. Phys. 40, 1197 (2001).
[Crossref]

Matsuo, S.

A. Marcinkevicious, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel Beams for Microfabrication of Dielectrics by Femtosecond Laser,” Jpn. J. Appl. Phys. 40, 1197 (2001).
[Crossref]

Mauclair, C.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modification in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Mcleod, J. H.

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

Meyer-ter-Vehn, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient States of Matter during Short Pulse Laser Ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Miceli, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Micorikawa, K.

Midorikawa, K.

Mingareev, I.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Misawa, H.

A. Marcinkevicious, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel Beams for Microfabrication of Dielectrics by Femtosecond Laser,” Jpn. J. Appl. Phys. 40, 1197 (2001).
[Crossref]

Mishchik, K.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modification in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Miyamoto, I.

Mizeikis, V.

A. Marcinkevicious, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel Beams for Microfabrication of Dielectrics by Femtosecond Laser,” Jpn. J. Appl. Phys. 40, 1197 (2001).
[Crossref]

Mo, X.

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B 106(3), 295–299 (2004).
[Crossref]

Nishii, J.

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 1726 (2006).
[Crossref]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Odato, R.

Okamoto, Y.

I. Miyamoto, Y. Okamoto, A. Hansen, J. Vihinen, T. Amberla, and J. Kangastupa, “High speed, high strength microwelding of Si/glass using ps-laser pulses,” Opt. Express 23(3), 3427–3439 (2015).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

Olivier, T.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104(2), 219–377 (2014).
[Crossref]

Onda, S.

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 1726 (2006).
[Crossref]

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient States of Matter during Short Pulse Laser Ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Osellame, R.

Ouerdane, Y.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modification in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Parkinson, B.

B. Parkinson, D. Holland, M. E. Smith, C. Larson, J. Doerr, M. Affatigato, S. A. Feller, A. Howes, and C. Scales, “Quantitative measurement of Q 3 species in silicate and borosilicate glasses using Raman spectroscopy,” J. Non-Cryst. Sol. 354, 1936–1942 (2008).

Richter, H.

H. Richter, Z. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun. 39(5), 625–629 (1981).
[Crossref]

Rogers, E. A.

Roy, G.

G. Roy and R. Tremblay, “Influence of the divergence of a laser beam on the axial intensity distribution of an axicon,” Opt. Commun. 34(1), 1–3 (1980).
[Crossref]

Roy, R.

Rudenko, A.

G. Cheng, A. Rudenko, C. D’Amico, T. E. Itina, J. P. Colombier, and R. Stoian, “Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation,” Appl. Phys. Lett. 110(26), 261901 (2017).
[Crossref]

Scales, C.

B. Parkinson, D. Holland, M. E. Smith, C. Larson, J. Doerr, M. Affatigato, S. A. Feller, A. Howes, and C. Scales, “Quantitative measurement of Q 3 species in silicate and borosilicate glasses using Raman spectroscopy,” J. Non-Cryst. Sol. 354, 1936–1942 (2008).

Schmidt, M.

K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

Smith, M. E.

B. Parkinson, D. Holland, M. E. Smith, C. Larson, J. Doerr, M. Affatigato, S. A. Feller, A. Howes, and C. Scales, “Quantitative measurement of Q 3 species in silicate and borosilicate glasses using Raman spectroscopy,” J. Non-Cryst. Sol. 354, 1936–1942 (2008).

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient States of Matter during Short Pulse Laser Ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Stevels, J.

W. L. Konijnendijk and J. Stevels, “The structure of borosilicate glasses studied by Raman scattering,” J. Non-Cryst. Sol. 20, 193–224 (1976).

Stoian, R.

G. Cheng, A. Rudenko, C. D’Amico, T. E. Itina, J. P. Colombier, and R. Stoian, “Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation,” Appl. Phys. Lett. 110(26), 261901 (2017).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104(2), 219–377 (2014).
[Crossref]

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modification in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Sugioka, K.

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Takai, H.

Tamaki, T.

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 1726 (2006).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Tan, J.

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B 106(3), 295–299 (2004).
[Crossref]

Thomson, R. R.

Tremblay, R.

G. Roy and R. Tremblay, “Influence of the divergence of a laser beam on the axial intensity distribution of an axicon,” Opt. Commun. 34(1), 1–3 (1980).
[Crossref]

Vallée, R.

Vázquez, R. M.

Velpula, P. K.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104(2), 219–377 (2014).
[Crossref]

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modification in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Vihinen, J.

Volpe, A.

von der Linde, D.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient States of Matter during Short Pulse Laser Ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Wang, G.

G. Wang, Y. Yu, L. Jiang, X. Li, Q. Xie, and Y. Lu, “Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA,” Appl. Phys. Lett. 110(16), 161907 (2017).
[Crossref]

Wang, H.

Wang, W.

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B 106(3), 295–299 (2004).
[Crossref]

Wang, Z.

H. Richter, Z. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun. 39(5), 625–629 (1981).
[Crossref]

Watanabe, W.

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 1726 (2006).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Werth, A.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

White, W. B.

T. Furukawa and W. B. White, “Raman spectroscopic investigation of sodium borosilicate glass structure,” J. Mater. Sci. 16(10), 2689–2700 (1981).
[Crossref]

Wiggins, T. A.

Wu, D.

Wu, S.

Xia, B.

Q. Xie, X. Li, L. Jiang, B. Xia, X. Yan, W. Zhao, and Y. Lu, “High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam,” Appl. Phys., A Mater. Sci. Process. 122(2), 136 (2016).
[Crossref]

Xie, Q.

G. Wang, Y. Yu, L. Jiang, X. Li, Q. Xie, and Y. Lu, “Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA,” Appl. Phys. Lett. 110(16), 161907 (2017).
[Crossref]

Q. Xie, X. Li, L. Jiang, B. Xia, X. Yan, W. Zhao, and Y. Lu, “High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam,” Appl. Phys., A Mater. Sci. Process. 122(2), 136 (2016).
[Crossref]

Xu, J.

Yan, X.

Q. Xie, X. Li, L. Jiang, B. Xia, X. Yan, W. Zhao, and Y. Lu, “High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam,” Appl. Phys., A Mater. Sci. Process. 122(2), 136 (2016).
[Crossref]

Yu, Y.

G. Wang, Y. Yu, L. Jiang, X. Li, Q. Xie, and Y. Lu, “Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA,” Appl. Phys. Lett. 110(16), 161907 (2017).
[Crossref]

Zhang, G.

Zhao, S.

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B 106(3), 295–299 (2004).
[Crossref]

Zhao, W.

G. Zhang, J. Bai, W. Zhao, K. Zhou, and G. Cheng, “Interface modification based ultrashort laser microwelding between SiC and fused silica,” Opt. Express 25(3), 1702–1709 (2017).
[Crossref]

Q. Xie, X. Li, L. Jiang, B. Xia, X. Yan, W. Zhao, and Y. Lu, “High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam,” Appl. Phys., A Mater. Sci. Process. 122(2), 136 (2016).
[Crossref]

Zhou, K.

Appl. Opt. (1)

Appl. Phys. B (1)

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
[Crossref]

Appl. Phys. Lett. (4)

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 1726 (2006).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104(2), 219–377 (2014).
[Crossref]

G. Cheng, A. Rudenko, C. D’Amico, T. E. Itina, J. P. Colombier, and R. Stoian, “Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation,” Appl. Phys. Lett. 110(26), 261901 (2017).
[Crossref]

G. Wang, Y. Yu, L. Jiang, X. Li, Q. Xie, and Y. Lu, “Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA,” Appl. Phys. Lett. 110(16), 161907 (2017).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

Q. Xie, X. Li, L. Jiang, B. Xia, X. Yan, W. Zhao, and Y. Lu, “High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam,” Appl. Phys., A Mater. Sci. Process. 122(2), 136 (2016).
[Crossref]

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

J. Appl. Phys. (1)

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modification in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

J. Mater. Sci. (1)

T. Furukawa and W. B. White, “Raman spectroscopic investigation of sodium borosilicate glass structure,” J. Mater. Sci. 16(10), 2689–2700 (1981).
[Crossref]

J. Non-Cryst. Sol. (2)

B. Parkinson, D. Holland, M. E. Smith, C. Larson, J. Doerr, M. Affatigato, S. A. Feller, A. Howes, and C. Scales, “Quantitative measurement of Q 3 species in silicate and borosilicate glasses using Raman spectroscopy,” J. Non-Cryst. Sol. 354, 1936–1942 (2008).

W. L. Konijnendijk and J. Stevels, “The structure of borosilicate glasses studied by Raman scattering,” J. Non-Cryst. Sol. 20, 193–224 (1976).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (2)

A. Marcinkevicious, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel Beams for Microfabrication of Dielectrics by Femtosecond Laser,” Jpn. J. Appl. Phys. 40, 1197 (2001).
[Crossref]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Laser Photonics Rev. (1)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Mater. Sci. Eng. B (1)

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B 106(3), 295–299 (2004).
[Crossref]

Nat. Mater. (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (1)

G. Roy and R. Tremblay, “Influence of the divergence of a laser beam on the axial intensity distribution of an axicon,” Opt. Commun. 34(1), 1–3 (1980).
[Crossref]

Opt. Express (7)

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

S. Wu, D. Wu, J. Xu, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding,” Opt. Express 21(20), 24049–24059 (2013).
[Crossref] [PubMed]

I. Miyamoto, Y. Okamoto, A. Hansen, J. Vihinen, T. Amberla, and J. Kangastupa, “High speed, high strength microwelding of Si/glass using ps-laser pulses,” Opt. Express 23(3), 3427–3439 (2015).
[Crossref] [PubMed]

A. Volpe, F. Di Niso, C. Gaudiuso, A. De Rosa, R. M. Vázquez, A. Ancona, P. M. Lugarà, and R. Osellame, “Welding of PMMA by a femtosecond fiber laser,” Opt. Express 23(4), 4114–4124 (2015).
[Crossref] [PubMed]

K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
[Crossref] [PubMed]

J. Chen, R. M. Carter, R. R. Thomson, and D. P. Hand, “Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding: erratum,” Opt. Express 23(21), 28104–28105 (2015).
[Crossref] [PubMed]

G. Zhang, J. Bai, W. Zhao, K. Zhou, and G. Cheng, “Interface modification based ultrashort laser microwelding between SiC and fused silica,” Opt. Express 25(3), 1702–1709 (2017).
[Crossref]

Opt. Lett. (3)

Phys. Rev. Lett. (3)

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient States of Matter during Short Pulse Laser Ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A Phys. 97, 398–404 (2002).
[Crossref]

Solid State Commun. (1)

H. Richter, Z. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun. 39(5), 625–629 (1981).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Experimental setup of ultrashort laser welding using Bessel beam; (b) longitudinal and (c) radial intensity distribution of Bessel beam, (d) longitudinal and (e) radial intensity distribution of Gaussian beam.
Fig. 2
Fig. 2 The samples welded by femtosecond laser Bessel beam with different focus positions under a fixed pulse energy of 8.0 μJ and speed of 200 μm/s. The left part is the cross section of the sample characterized by OTM, and the right part is the enlarged images characterized by ORM.
Fig. 3
Fig. 3 The samples welded by femtosecond laser Gaussian beam with different focus position under a fixed pulse energy of 2.0 μJ and speed of 200 μm/s. The left part is the cross section of the sample characterized by OTM, and the right part is the enlarged images characterized by ORM.
Fig. 4
Fig. 4 Top view of welding lines induced by femtosecond laser Bessel beam and Gaussian beam at a same welding speed of 200 μm/s: (a) Bessel beam at pulse energy of 8.0 μJ, (b) Gaussian beam at pulse energy of 2.0 μJ.
Fig. 5
Fig. 5 Shear joining strength of samples welded by femtosecond laser (a) Bessel beam and (b) Gaussian beam varying focal position.
Fig. 6
Fig. 6 Raman Spectrum within the cross section of sample: (a) borosilicate glass side (outside laser irradiated region), (b) silicon side (outside laser irradiated region), (c) borosilicate glass side (within the cross section of melting pool).
Fig. 7
Fig. 7 (a) Morphology and (b) chemical elements analysis of the cross section of welding line induced by femtosecond laser Bessel beam. The dotted line in white color represents the sample interface before irradiating. The laser beam incident along the X direction. The welding lines were written in the Z direction. The concentration gradients of Na and Si along the longitudinal direction (yellow line) indicate that material mixing has occurred within the laser irradiating region.

Metrics