Abstract

We report and demonstrate a reconfigurable photonic anamorphic stretch transform to realize time-bandwidth product (TBP) compression for microwave signals. A time-spectrum convolution system is employed to provide an ultra-high nonlinear dispersion up to several nanoseconds per gigahertz, which is required for processing nanosecond-long microwave signals. The group delay of the system can be engineered easily by programming a WaveShaper. Based on the proposed scheme, the TBP of a double pulse microwave signal is compressed by 1.9 times. Our proposal can provide a more efficient way to sample, digitize and store high-speed microwave signals, opening up entirely new perspectives for generation of many critical microwave signal processing modules.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio

Hongbiao Gao, Cheng Lei, Minghua Chen, Fangjian Xing, Hongwei Chen, and Shizhong Xie
Opt. Express 21(20) 23107-23115 (2013)

Anamorphic transformation and its application to time–bandwidth compression

Mohammad H. Asghari and Bahram Jalali
Appl. Opt. 52(27) 6735-6743 (2013)

Reconfigurable microwave signal processor with a phase shift of π

Hao Sun, Xinyi Zhu, Wei Li, Ninghua Zhu, and Ming Li
Opt. Express 26(8) 10358-10370 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretche danalogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
    [Crossref]
  2. F. Coppinger, A. S. Bhushan, and B. Jalali, “Time magnification of electrical signals using chirped optical pulses,” Electron. Lett. 34(4), 399–400 (1998).
    [Crossref]
  3. A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
    [Crossref]
  4. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref] [PubMed]
  5. F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282(24), 4672–4675 (2009).
    [Crossref]
  6. C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source,” Opt. Express 19(17), 15810–15816 (2011).
    [Crossref] [PubMed]
  7. F. Xing, H. Chen, M. Chen, S. Yang, and S. Xie, “Simple approach for fast real-time line scan microscopic imaging,” Appl. Opt. 52(28), 7049–7053 (2013).
    [Crossref] [PubMed]
  8. K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
    [Crossref]
  9. Y. Deng, M. Li, N. Huang, J. Azaña, and N. Zhu, “Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser,” Chin. Sci. Bull. 59(22), 2693–2701 (2014).
    [Crossref]
  10. T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
    [Crossref] [PubMed]
  11. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  12. J. Stigwall and S. Galt, “Signal reconstruction by phase retrieval and optical backpropagation in phase-diverse photonic time-stretch systems,” J. Lightwave Technol. 25(10), 3017–3027 (2007).
    [Crossref]
  13. W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (m=41) photonic analog-to-digital converter with 8 enob for an input signal bandwidth of 10 ghz,” IEEE Photon. Technol. Lett. 24(14), 1185–1187 (2012).
    [Crossref]
  14. Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch a/d converter employing phase diversity,” IEEE Trans. Microw.Theory 53(4), 1404–1408 (2005).
    [Crossref]
  15. J. Fuster, D. Novak, A. Nirmalathas, and J. Marti, “Singlesideband modulation in photonic time-stretch analogue-todigital conversion,” Electron. Lett. 37(1), 67–68 (2001).
    [Crossref]
  16. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
    [Crossref]
  17. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [Crossref] [PubMed]
  18. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
    [Crossref] [PubMed]
  19. M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compressiona),” Appl. Phys. Lett. 104(11), 111101 (2014).
    [Crossref]
  20. M. H. Asghari and B. Jalali, “Anamorphic transformation and its application to time-bandwidth compression,” Appl. Opt. 52(27), 6735–6743 (2013).
    [Crossref] [PubMed]
  21. B. Jalali, J. Chan, and M. H. Asghari, “Time-bandwidth engineering,” Optica 1(1), 23–31 (2014).
    [Crossref]
  22. B. Jalali and A. Mahjoubfar, “Tailoring wideband signals with a photonic hardware accelerator,” Proc. IEEE 103(7), 1071–1086 (2015).
    [Crossref]
  23. Y. Park and J. Azaña, “Ultrahigh dispersion of broadband microwave signals by incoherent photonic processing,” Opt. Express 18(14), 14752–14761 (2010).
    [Crossref] [PubMed]
  24. A. Mahjoubfar, C. L. Chen, and B. Jalali, “Design of warped stretch transform,” Sci. Rep. 5(1), 17148 (2015).
    [Crossref] [PubMed]
  25. B. Li and J. Azaña, “Incoherent-light temporal stretching of high-speed intensity waveforms,” Opt. Lett. 39(14), 4243–4246 (2014).
    [Crossref] [PubMed]

2015 (3)

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

B. Jalali and A. Mahjoubfar, “Tailoring wideband signals with a photonic hardware accelerator,” Proc. IEEE 103(7), 1071–1086 (2015).
[Crossref]

A. Mahjoubfar, C. L. Chen, and B. Jalali, “Design of warped stretch transform,” Sci. Rep. 5(1), 17148 (2015).
[Crossref] [PubMed]

2014 (4)

B. Li and J. Azaña, “Incoherent-light temporal stretching of high-speed intensity waveforms,” Opt. Lett. 39(14), 4243–4246 (2014).
[Crossref] [PubMed]

B. Jalali, J. Chan, and M. H. Asghari, “Time-bandwidth engineering,” Optica 1(1), 23–31 (2014).
[Crossref]

M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compressiona),” Appl. Phys. Lett. 104(11), 111101 (2014).
[Crossref]

Y. Deng, M. Li, N. Huang, J. Azaña, and N. Zhu, “Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser,” Chin. Sci. Bull. 59(22), 2693–2701 (2014).
[Crossref]

2013 (3)

2012 (1)

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (m=41) photonic analog-to-digital converter with 8 enob for an input signal bandwidth of 10 ghz,” IEEE Photon. Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (2)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282(24), 4672–4675 (2009).
[Crossref]

2008 (1)

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

2007 (4)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

J. Stigwall and S. Galt, “Signal reconstruction by phase retrieval and optical backpropagation in phase-diverse photonic time-stretch systems,” J. Lightwave Technol. 25(10), 3017–3027 (2007).
[Crossref]

2005 (1)

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch a/d converter employing phase diversity,” IEEE Trans. Microw.Theory 53(4), 1404–1408 (2005).
[Crossref]

2001 (1)

J. Fuster, D. Novak, A. Nirmalathas, and J. Marti, “Singlesideband modulation in photonic time-stretch analogue-todigital conversion,” Electron. Lett. 37(1), 67–68 (2001).
[Crossref]

1998 (2)

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretche danalogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Time magnification of electrical signals using chirped optical pulses,” Electron. Lett. 34(4), 399–400 (1998).
[Crossref]

Asghari, M. H.

Azaña, J.

Bhushan, A. S.

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretche danalogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Time magnification of electrical signals using chirped optical pulses,” Electron. Lett. 34(4), 399–400 (1998).
[Crossref]

Boyraz, O.

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282(24), 4672–4675 (2009).
[Crossref]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch a/d converter employing phase diversity,” IEEE Trans. Microw.Theory 53(4), 1404–1408 (2005).
[Crossref]

Capewell, D.

Chan, A. C. S.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

Chan, G. C. F.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

Chan, J.

Chen, C. L.

A. Mahjoubfar, C. L. Chen, and B. Jalali, “Design of warped stretch transform,” Sci. Rep. 5(1), 17148 (2015).
[Crossref] [PubMed]

Chen, H.

Chen, M.

Chou, J.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Coppinger, F.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Time magnification of electrical signals using chirped optical pulses,” Electron. Lett. 34(4), 399–400 (1998).
[Crossref]

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretche danalogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

Deng, Y.

Y. Deng, M. Li, N. Huang, J. Azaña, and N. Zhu, “Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser,” Chin. Sci. Bull. 59(22), 2693–2701 (2014).
[Crossref]

Fard, A. M.

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

Fuster, J.

J. Fuster, D. Novak, A. Nirmalathas, and J. Marti, “Singlesideband modulation in photonic time-stretch analogue-todigital conversion,” Electron. Lett. 37(1), 67–68 (2001).
[Crossref]

Galt, S.

Goda, K.

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Gupta, S.

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

Han, Y.

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch a/d converter employing phase diversity,” IEEE Trans. Microw.Theory 53(4), 1404–1408 (2005).
[Crossref]

Ho, K. K. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

Huang, N.

Y. Deng, M. Li, N. Huang, J. Azaña, and N. Zhu, “Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser,” Chin. Sci. Bull. 59(22), 2693–2701 (2014).
[Crossref]

Jalali, B.

B. Jalali and A. Mahjoubfar, “Tailoring wideband signals with a photonic hardware accelerator,” Proc. IEEE 103(7), 1071–1086 (2015).
[Crossref]

A. Mahjoubfar, C. L. Chen, and B. Jalali, “Design of warped stretch transform,” Sci. Rep. 5(1), 17148 (2015).
[Crossref] [PubMed]

B. Jalali, J. Chan, and M. H. Asghari, “Time-bandwidth engineering,” Optica 1(1), 23–31 (2014).
[Crossref]

M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compressiona),” Appl. Phys. Lett. 104(11), 111101 (2014).
[Crossref]

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

M. H. Asghari and B. Jalali, “Anamorphic transformation and its application to time-bandwidth compression,” Appl. Opt. 52(27), 6735–6743 (2013).
[Crossref] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch a/d converter employing phase diversity,” IEEE Trans. Microw.Theory 53(4), 1404–1408 (2005).
[Crossref]

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretche danalogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Time magnification of electrical signals using chirped optical pulses,” Electron. Lett. 34(4), 399–400 (1998).
[Crossref]

Kalyoncu, S. K.

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282(24), 4672–4675 (2009).
[Crossref]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Lam, E. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

Lau, A. K. S.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

Li, B.

Li, M.

Y. Deng, M. Li, N. Huang, J. Azaña, and N. Zhu, “Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser,” Chin. Sci. Bull. 59(22), 2693–2701 (2014).
[Crossref]

Mahjoubfar, A.

B. Jalali and A. Mahjoubfar, “Tailoring wideband signals with a photonic hardware accelerator,” Proc. IEEE 103(7), 1071–1086 (2015).
[Crossref]

A. Mahjoubfar, C. L. Chen, and B. Jalali, “Design of warped stretch transform,” Sci. Rep. 5(1), 17148 (2015).
[Crossref] [PubMed]

Marti, J.

J. Fuster, D. Novak, A. Nirmalathas, and J. Marti, “Singlesideband modulation in photonic time-stretch analogue-todigital conversion,” Electron. Lett. 37(1), 67–68 (2001).
[Crossref]

Ng, W.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (m=41) photonic analog-to-digital converter with 8 enob for an input signal bandwidth of 10 ghz,” IEEE Photon. Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

Nirmalathas, A.

J. Fuster, D. Novak, A. Nirmalathas, and J. Marti, “Singlesideband modulation in photonic time-stretch analogue-todigital conversion,” Electron. Lett. 37(1), 67–68 (2001).
[Crossref]

Novak, D.

J. Fuster, D. Novak, A. Nirmalathas, and J. Marti, “Singlesideband modulation in photonic time-stretch analogue-todigital conversion,” Electron. Lett. 37(1), 67–68 (2001).
[Crossref]

Park, Y.

Qian, F.

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282(24), 4672–4675 (2009).
[Crossref]

Qiu, Y.

Robles, J. D. F.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

Rockwood, T. D.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (m=41) photonic analog-to-digital converter with 8 enob for an input signal bandwidth of 10 ghz,” IEEE Photon. Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Sefler, G. A.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (m=41) photonic analog-to-digital converter with 8 enob for an input signal bandwidth of 10 ghz,” IEEE Photon. Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

Shum, H. C.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Song, Q.

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282(24), 4672–4675 (2009).
[Crossref]

Stigwall, J.

Tang, A. H. L.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

Tang, M. Y. H.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

Tien, E.

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282(24), 4672–4675 (2009).
[Crossref]

Tsia, K. K.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source,” Opt. Express 19(17), 15810–15816 (2011).
[Crossref] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Valley, G. C.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (m=41) photonic analog-to-digital converter with 8 enob for an input signal bandwidth of 10 ghz,” IEEE Photon. Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

Wei, X.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

Wong, K. K. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source,” Opt. Express 19(17), 15810–15816 (2011).
[Crossref] [PubMed]

Wong, T. T. W.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

Xie, S.

Xing, F.

Yang, S.

Zhang, C.

Zhu, N.

Y. Deng, M. Li, N. Huang, J. Azaña, and N. Zhu, “Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser,” Chin. Sci. Bull. 59(22), 2693–2701 (2014).
[Crossref]

Zhu, R.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compressiona),” Appl. Phys. Lett. 104(11), 111101 (2014).
[Crossref]

Chin. Sci. Bull. (1)

Y. Deng, M. Li, N. Huang, J. Azaña, and N. Zhu, “Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser,” Chin. Sci. Bull. 59(22), 2693–2701 (2014).
[Crossref]

Electron. Lett. (3)

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretche danalogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Time magnification of electrical signals using chirped optical pulses,” Electron. Lett. 34(4), 399–400 (1998).
[Crossref]

J. Fuster, D. Novak, A. Nirmalathas, and J. Marti, “Singlesideband modulation in photonic time-stretch analogue-todigital conversion,” Electron. Lett. 37(1), 67–68 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (1)

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (m=41) photonic analog-to-digital converter with 8 enob for an input signal bandwidth of 10 ghz,” IEEE Photon. Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

IEEE Trans. Microw.Theory (1)

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch a/d converter employing phase diversity,” IEEE Trans. Microw.Theory 53(4), 1404–1408 (2005).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

Nature (2)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282(24), 4672–4675 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Proc. IEEE (1)

B. Jalali and A. Mahjoubfar, “Tailoring wideband signals with a photonic hardware accelerator,” Proc. IEEE 103(7), 1071–1086 (2015).
[Crossref]

Sci. Rep. (2)

A. Mahjoubfar, C. L. Chen, and B. Jalali, “Design of warped stretch transform,” Sci. Rep. 5(1), 17148 (2015).
[Crossref] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4(1), 3656 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Comparison of conventional time stretch and AST. The TBP remains constant in conventional time stretch. While in AST, the TBP can be compressed since the bandwidth is reduced without a proportional expansion in temporal duration.
Fig. 2
Fig. 2 (a) The waveform of input RF signal. (b) The spectrum of input RF signal. (c) If a linear group delay is used to stretch the input signal, (e) the output signal is a linear scaled version of the input spectrum. (d) If a sub-linear group delay is used to stretch the input signal, the high-frequency parts of the input signal will be stretched less than baseband parts, resulting in a nonlinear frequency-to-time mapping (f). The short-time Fourier transform shows the temporal duration and bandwidth of signals after the linear dispersion (g) and nonlinear dispersion (h). The temporal duration and bandwidth are marked with green dash box (for linear dispersion) and blue dash box (for AST), with power density 20 dB less than the peak value.
Fig. 3
Fig. 3 (a) The waveform of input RF signal. (b) The spectrum of input RF signal. (c) If a linear group delay is used to stretch the input signal, (e) the output signal is a linear scaled version of the input spectrum. (d) If a super-linear group delay is used to stretch the input signal, the low-frequency parts of the input signal will be stretched less than peripheral parts, resulting in a nonlinear frequency-to-time mapping (f). The short-time Fourier transform shows the temporal duration and bandwidth of signals after the linear dispersion (g) and nonlinear dispersion (h). The temporal duration and bandwidth are marked with green dash box (for linear dispersion) and blue dash box (for AST), with power density 20 dB less than the peak value.
Fig. 4
Fig. 4 The comparison of a conventional photonic dispersive line (a) and a microwave dispersive line with ultra-high dispersion value (b). represents the convolution operation.
Fig. 5
Fig. 5 The experimental setup of the TBP compression system for microwave signals. DCF: dispersion compensating fiber.
Fig. 6
Fig. 6 The measured (red) and simulated (blue)spectra of the incoherent light after a WaveShaper: (a) Linear dispersion, (b) and (c) AST with C2 = 5 × 107rad/s, and C2 = 10 × 107rad/s respectively.
Fig. 7
Fig. 7 The corresponding group delay profiles of the linear and AST cases.
Fig. 8
Fig. 8 The waveform (a) and spectrum (b) of input RF signal.
Fig. 9
Fig. 9 (a)-(c) Measured output signal (blue line) in case of linear system and AST system with C2 = 5 × 107rad/s, and C2 = 10 × 107rad/s. Green lines are simulated output envelope based on the measured input signal. (e-g) show the STFT of the output envelopes. The region of the STFT with power density 20 dB less than the peak power density is contoured by a blue dash line. The bandwidth and time duration are marked by a green dash box. The time duration of the output envelope is defined as the temporal range up to the fifth notch.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I out (t)= I mw (t)S(ω)| ω=t/ D 0 .
S(t)=[1+cos( B 0 ω 2 2 )]| ω=t/ D 0 =1+cos( B 0 t 2 2 D 0 2 ).
D mw = D 0 2 B 0 .
ω(t)= B 0 t D 0 2 ,
ω(t)= C 1 tan( C 2 t),
S(t)=1+cos(It{ C 1 tan( C 2 t)})=1+cos[ C 1 C 2 lncos( C 2 t)],
S(ω)=1+cos[ C 1 C 2 lncos( C 2 D 0 ω)].
C 1 C 2 = B 0 D 0 2 = 1 D mw .

Metrics