Abstract

In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It’s found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Conversion efficiency of broad-band rectennas for solar energy harvesting applications

Edgar Briones, Javier Alda, and Francisco Javier González
Opt. Express 21(S3) A412-A418 (2013)

Optimized tapered dipole nanoantenna as efficient energy harvester

Youssef M. El-Toukhy, Mohamed Hussein, Mohamed Farhat O. Hameed, A. M. Heikal, M. M. Abd-Elrazzak, and S. S. A. Obayya
Opt. Express 24(14) A1107-A1122 (2016)

Design and analysis of a square spiral nano-rectenna for infrared energy harvest and conversion

Kai Wang, Haifeng Hu, Shan Lu, Lingju Guo, Tao Zhang, Yunzhong Han, Aosong Zhou, and Tao He
Opt. Mater. Express 6(12) 3977-3991 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
    [Crossref]
  3. R. L. Bailey, “A proposed new concept for a solar-energy converter,” J. Eng. Power 94(2), 73–77 (1972).
    [Crossref]
  4. B. Berland, L. Simpson, G. Nuebel, T. Collins, and B. Lanning, “Optical rectenna for direct conversion of sunlight to electricity,” in Proceedings of the National Center for Photovoltaics Program Review Meeting (NREL, 2001), pp. 323–324.
  5. R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
    [Crossref]
  6. M. Sarehraz, “Novel rectenna for collection of infrared and visible radiation,” (University of South Florida, 2005).
  7. G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
    [Crossref]
  8. Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
    [Crossref]
  9. Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, A. M. Heikal, M. M. Abd-Elrazzak, and S. S. A. Obayya, “Optimized tapered dipole nanoantenna as efficient energy harvester,” Opt. Express 24(14), A1107–A1122 (2016).
    [Crossref] [PubMed]
  10. R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Efficiency of antenna solar collection,” in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 2682–2685.
  11. V. Pachecopeña, M. Beruete, A. I. Fernández-domínguez, Y. Luo, and M. Navarro-Cía, “Description of bow-tie nanoantennas excited by localized emitters using conformal transformation,” ACS Photonics 3(7), 1223–1232 (2016).
    [Crossref]
  12. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
    [Crossref] [PubMed]
  13. K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 104101 (2015).
    [Crossref]
  14. E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
    [Crossref]
  15. G. Moddel and S. Grover, Rectenna Solar Cells (Springer, 2013).
  16. M. A. Elmansouri, “Joint time/frequency analysis and design of spiral antennas and arrays for ultra-wideband applications” (University of Colorado at Boulder, 2013).
  17. M. Bozzetti, G. De Candia, M. Gallo, O. Losito, L. Mescia, and F. Prudenzano, “Analysis and design of a solar rectenna,” in Proceeding of IEEE International Symposium on Industrial Electronics (IEEE, 2010), pp. 2001–2004.
    [Crossref]
  18. R. M. Osgood, B. R. Kimball, and J. Carlson, “Nanoantenna-coupled MIM nanodiodes for efficient vis/nir energy conversion,” Proc. SPIE 6652, 665203 (2007).
    [Crossref]
  19. D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
    [Crossref]
  20. M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
    [Crossref]
  21. A. M. A. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, “Infra-red spiral nano-antennas,” in Proceeding of Loughborough Antennas and Propagation Conference (IEEE, 2012), pp.1–4.
  22. E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(S3Suppl 3), A412–A418 (2013).
    [Crossref] [PubMed]
  23. K. Wang, H. Hu, S. Lu, L. Guo, T. Zhang, Y. Han, A. Zhou, and T. He, “Design and analysis of a square spiral nano-rectenna for infrared energy harvest and conversion,” Opt. Mater. Express 6(12), 3977–3991 (2016).
    [Crossref]
  24. M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
    [Crossref]
  25. J. A. Bean, B. Tiwari, G. Szakmány, G. H. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
    [Crossref]
  26. J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
    [Crossref]
  27. M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification,” Sci. Rep. 4(1), 4270 (2014).
    [Crossref] [PubMed]
  28. A. Mayer, M. S. Chung, B. L. Weiss, N. M. Miskovsky, and P. H. Cutler, “Classical and quantum responsivities of geometrically asymmetric metal-vacuum-metal junctions used for the rectification of infrared and optical radiations,” J. Vac. Sci. Technol. B 29(4), 041802 (2011).
    [Crossref]
  29. D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
    [Crossref] [PubMed]
  30. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  31. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (John Wiley & Sons, 2012).
  32. E. A. Soliman, O. S. Mai, and G. A. E. Vandenbosch, “Plasmonic grid array of gold nanorods for point-to-point optical communications,” J. Lightwave Technol. 32(24), 4898–4904 (2014).
    [Crossref]
  33. H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
    [Crossref]
  34. C. S. T. Studio Suite, 2015, https://www.cst.com .
  35. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  36. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
    [Crossref] [PubMed]
  37. F. P. G. De Arquer, V. Volski, N. Verellen, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect,” IEEE Trans. Antenn. Propag. 59(9), 3144–3153 (2011).
    [Crossref]
  38. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  39. A. Locatelli, C. De Angelis, D. Modotto, S. Boscolo, F. Sacchetto, M. Midrio, A. D. Capobianco, F. M. Pigozzo, and C. G. Someda, “Modeling of enhanced field confinement and scattering by optical wire antennas,” Opt. Express 17(19), 16792–16800 (2009).
    [Crossref] [PubMed]
  40. J. L. Stokes, Y. Yu, Z. H. Yuan, J. R. Pugh, M. Lopez-Garcia, N. Ahmad, and M. J. Cryan, “Analysis and design of a cross dipole nanoantenna for fluorescence-sensing applications,” J. Opt. Soc. Am. B 31(2), 302–310 (2014).
    [Crossref]
  41. W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A. L. Baudrion, and P. Royer, “Understanding near/far-field engineering of optical dimer antennas through geometry modification,” Opt. Express 17(23), 21228–21239 (2009).
    [Crossref] [PubMed]
  42. E. R. Brown, A. W. M. Lee, B. S. Navi, and J. E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region,” Microw. Opt. Technol. Lett. 48(3), 524–529 (2006).
    [Crossref]
  43. ASTM Standard G173–03 (2012), Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, https://www.astm.org/Standards/G173.htm .

2016 (3)

2015 (3)

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 104101 (2015).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

2014 (4)

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification,” Sci. Rep. 4(1), 4270 (2014).
[Crossref] [PubMed]

E. A. Soliman, O. S. Mai, and G. A. E. Vandenbosch, “Plasmonic grid array of gold nanorods for point-to-point optical communications,” J. Lightwave Technol. 32(24), 4898–4904 (2014).
[Crossref]

J. L. Stokes, Y. Yu, Z. H. Yuan, J. R. Pugh, M. Lopez-Garcia, N. Ahmad, and M. J. Cryan, “Analysis and design of a cross dipole nanoantenna for fluorescence-sensing applications,” J. Opt. Soc. Am. B 31(2), 302–310 (2014).
[Crossref]

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
[Crossref]

2013 (2)

E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(S3Suppl 3), A412–A418 (2013).
[Crossref] [PubMed]

Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[Crossref]

2012 (2)

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[Crossref]

2011 (3)

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[Crossref]

A. Mayer, M. S. Chung, B. L. Weiss, N. M. Miskovsky, and P. H. Cutler, “Classical and quantum responsivities of geometrically asymmetric metal-vacuum-metal junctions used for the rectification of infrared and optical radiations,” J. Vac. Sci. Technol. B 29(4), 041802 (2011).
[Crossref]

F. P. G. De Arquer, V. Volski, N. Verellen, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect,” IEEE Trans. Antenn. Propag. 59(9), 3144–3153 (2011).
[Crossref]

2010 (4)

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[Crossref]

J. A. Bean, B. Tiwari, G. Szakmány, G. H. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[Crossref]

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[Crossref]

2009 (2)

2008 (3)

2007 (2)

R. M. Osgood, B. R. Kimball, and J. Carlson, “Nanoantenna-coupled MIM nanodiodes for efficient vis/nir energy conversion,” Proc. SPIE 6652, 665203 (2007).
[Crossref]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

2006 (1)

E. R. Brown, A. W. M. Lee, B. S. Navi, and J. E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region,” Microw. Opt. Technol. Lett. 48(3), 524–529 (2006).
[Crossref]

2005 (1)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

2002 (1)

R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
[Crossref]

1972 (1)

R. L. Bailey, “A proposed new concept for a solar-energy converter,” J. Eng. Power 94(2), 73–77 (1972).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Abdel-Rahman, M.

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification,” Sci. Rep. 4(1), 4270 (2014).
[Crossref] [PubMed]

Abd-Elrazzak, M. M.

Ahmad, N.

Alda, J.

Alford, N. M.

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

Bachelot, R.

Bailey, R. L.

R. L. Bailey, “A proposed new concept for a solar-energy converter,” J. Eng. Power 94(2), 73–77 (1972).
[Crossref]

Baudrion, A. L.

Bean, J. A.

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[Crossref]

J. A. Bean, B. Tiwari, G. Szakmány, G. H. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[Crossref]

Bernstein, G. H.

J. A. Bean, B. Tiwari, G. Szakmány, G. H. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[Crossref]

Beruete, M.

V. Pachecopeña, M. Beruete, A. I. Fernández-domínguez, Y. Luo, and M. Navarro-Cía, “Description of bow-tie nanoantennas excited by localized emitters using conformal transformation,” ACS Photonics 3(7), 1223–1232 (2016).
[Crossref]

Bjarnason, J. E.

E. R. Brown, A. W. M. Lee, B. S. Navi, and J. E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region,” Microw. Opt. Technol. Lett. 48(3), 524–529 (2006).
[Crossref]

Boreman, G. D.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[Crossref]

Boscolo, S.

Bozzetti, M.

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[Crossref]

M. Bozzetti, G. De Candia, M. Gallo, O. Losito, L. Mescia, and F. Prudenzano, “Analysis and design of a solar rectenna,” in Proceeding of IEEE International Symposium on Industrial Electronics (IEEE, 2010), pp. 2001–2004.
[Crossref]

Breeze, J. D.

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
[Crossref]

Briones, E.

Brown, E. R.

E. R. Brown, A. W. M. Lee, B. S. Navi, and J. E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region,” Microw. Opt. Technol. Lett. 48(3), 524–529 (2006).
[Crossref]

Capobianco, A. D.

Carlson, J.

R. M. Osgood, B. R. Kimball, and J. Carlson, “Nanoantenna-coupled MIM nanodiodes for efficient vis/nir energy conversion,” Proc. SPIE 6652, 665203 (2007).
[Crossref]

Centeno, A.

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
[Crossref]

Choi, K.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[Crossref]

Chryssis, A. N.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[Crossref]

Chung, M. S.

A. Mayer, M. S. Chung, B. L. Weiss, N. M. Miskovsky, and P. H. Cutler, “Classical and quantum responsivities of geometrically asymmetric metal-vacuum-metal junctions used for the rectification of infrared and optical radiations,” J. Vac. Sci. Technol. B 29(4), 041802 (2011).
[Crossref]

Corkish, R.

R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
[Crossref]

R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Efficiency of antenna solar collection,” in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 2682–2685.

Cryan, M. J.

Cuevas, J. C.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Cutler, P. H.

A. Mayer, M. S. Chung, B. L. Weiss, N. M. Miskovsky, and P. H. Cutler, “Classical and quantum responsivities of geometrically asymmetric metal-vacuum-metal junctions used for the rectification of infrared and optical radiations,” J. Vac. Sci. Technol. B 29(4), 041802 (2011).
[Crossref]

D’Archangel, J.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Dagenais, M.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[Crossref]

De Angelis, C.

De Arquer, F. P. G.

F. P. G. De Arquer, V. Volski, N. Verellen, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect,” IEEE Trans. Antenn. Propag. 59(9), 3144–3153 (2011).
[Crossref]

De Candia, G.

M. Bozzetti, G. De Candia, M. Gallo, O. Losito, L. Mescia, and F. Prudenzano, “Analysis and design of a solar rectenna,” in Proceeding of IEEE International Symposium on Industrial Electronics (IEEE, 2010), pp. 2001–2004.
[Crossref]

Ding, W.

Donchev, E.

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
[Crossref]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

El-Toukhy, Y. M.

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

Espiau de Lamaestre, R.

Fay, P.

J. A. Bean, B. Tiwari, G. Szakmány, G. H. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[Crossref]

Fernández-domínguez, A. I.

V. Pachecopeña, M. Beruete, A. I. Fernández-domínguez, Y. Luo, and M. Navarro-Cía, “Description of bow-tie nanoantennas excited by localized emitters using conformal transformation,” ACS Photonics 3(7), 1223–1232 (2016).
[Crossref]

Fischer, H.

Fu, L.

Gadalla, M. N.

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification,” Sci. Rep. 4(1), 4270 (2014).
[Crossref] [PubMed]

Gallo, M.

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[Crossref]

M. Bozzetti, G. De Candia, M. Gallo, O. Losito, L. Mescia, and F. Prudenzano, “Analysis and design of a solar rectenna,” in Proceeding of IEEE International Symposium on Industrial Electronics (IEEE, 2010), pp. 2001–2004.
[Crossref]

Gammon, P. M.

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
[Crossref]

Giessen, H.

González, F. J.

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
[Crossref]

R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Efficiency of antenna solar collection,” in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 2682–2685.

Guo, H.

Guo, L.

K. Wang, H. Hu, S. Lu, L. Guo, T. Zhang, Y. Han, A. Zhou, and T. He, “Design and analysis of a square spiral nano-rectenna for infrared energy harvest and conversion,” Opt. Mater. Express 6(12), 3977–3991 (2016).
[Crossref]

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 104101 (2015).
[Crossref]

Hameed, M. F. O.

Han, Y.

He, T.

K. Wang, H. Hu, S. Lu, L. Guo, T. Zhang, Y. Han, A. Zhou, and T. He, “Design and analysis of a square spiral nano-rectenna for infrared energy harvest and conversion,” Opt. Mater. Express 6(12), 3977–3991 (2016).
[Crossref]

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 104101 (2015).
[Crossref]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Heikal, A. M.

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Hu, H.

K. Wang, H. Hu, S. Lu, L. Guo, T. Zhang, Y. Han, A. Zhou, and T. He, “Design and analysis of a square spiral nano-rectenna for infrared energy harvest and conversion,” Opt. Mater. Express 6(12), 3977–3991 (2016).
[Crossref]

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 104101 (2015).
[Crossref]

Humphrey, T.

R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
[Crossref]

R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Efficiency of antenna solar collection,” in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 2682–2685.

Hüser, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Hussein, M.

Kimball, B. R.

R. M. Osgood, B. R. Kimball, and J. Carlson, “Nanoantenna-coupled MIM nanodiodes for efficient vis/nir energy conversion,” Proc. SPIE 6652, 665203 (2007).
[Crossref]

Kotter, D. K.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[Crossref]

Lee, A. W. M.

E. R. Brown, A. W. M. Lee, B. S. Navi, and J. E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region,” Microw. Opt. Technol. Lett. 48(3), 524–529 (2006).
[Crossref]

Liu, N.

Locatelli, A.

Lopez-Garcia, M.

Losito, O.

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[Crossref]

M. Bozzetti, G. De Candia, M. Gallo, O. Losito, L. Mescia, and F. Prudenzano, “Analysis and design of a solar rectenna,” in Proceeding of IEEE International Symposium on Industrial Electronics (IEEE, 2010), pp. 2001–2004.
[Crossref]

Lu, S.

K. Wang, H. Hu, S. Lu, L. Guo, T. Zhang, Y. Han, A. Zhou, and T. He, “Design and analysis of a square spiral nano-rectenna for infrared energy harvest and conversion,” Opt. Mater. Express 6(12), 3977–3991 (2016).
[Crossref]

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 104101 (2015).
[Crossref]

Luo, Y.

V. Pachecopeña, M. Beruete, A. I. Fernández-domínguez, Y. Luo, and M. Navarro-Cía, “Description of bow-tie nanoantennas excited by localized emitters using conformal transformation,” ACS Photonics 3(7), 1223–1232 (2016).
[Crossref]

Ma, Z.

Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[Crossref]

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

Macias, D.

Mai, O. S.

E. A. Soliman, O. S. Mai, and G. A. E. Vandenbosch, “Plasmonic grid array of gold nanorods for point-to-point optical communications,” J. Lightwave Technol. 32(24), 4898–4904 (2014).
[Crossref]

Martin, O. J. F.

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Mayer, A.

A. Mayer, M. S. Chung, B. L. Weiss, N. M. Miskovsky, and P. H. Cutler, “Classical and quantum responsivities of geometrically asymmetric metal-vacuum-metal junctions used for the rectification of infrared and optical radiations,” J. Vac. Sci. Technol. B 29(4), 041802 (2011).
[Crossref]

Mescia, L.

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[Crossref]

M. Bozzetti, G. De Candia, M. Gallo, O. Losito, L. Mescia, and F. Prudenzano, “Analysis and design of a solar rectenna,” in Proceeding of IEEE International Symposium on Industrial Electronics (IEEE, 2010), pp. 2001–2004.
[Crossref]

Meyrath, T. P.

Midrio, M.

Miskovsky, N. M.

A. Mayer, M. S. Chung, B. L. Weiss, N. M. Miskovsky, and P. H. Cutler, “Classical and quantum responsivities of geometrically asymmetric metal-vacuum-metal junctions used for the rectification of infrared and optical radiations,” J. Vac. Sci. Technol. B 29(4), 041802 (2011).
[Crossref]

Modotto, D.

Moshchalkov, V. V.

F. P. G. De Arquer, V. Volski, N. Verellen, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect,” IEEE Trans. Antenn. Propag. 59(9), 3144–3153 (2011).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Natelson, D.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Navarro-Cía, M.

V. Pachecopeña, M. Beruete, A. I. Fernández-domínguez, Y. Luo, and M. Navarro-Cía, “Description of bow-tie nanoantennas excited by localized emitters using conformal transformation,” ACS Photonics 3(7), 1223–1232 (2016).
[Crossref]

Navi, B. S.

E. R. Brown, A. W. M. Lee, B. S. Navi, and J. E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region,” Microw. Opt. Technol. Lett. 48(3), 524–529 (2006).
[Crossref]

Novack, S. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[Crossref]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Obayya, S. S. A.

Osgood, R. M.

R. M. Osgood, B. R. Kimball, and J. Carlson, “Nanoantenna-coupled MIM nanodiodes for efficient vis/nir energy conversion,” Proc. SPIE 6652, 665203 (2007).
[Crossref]

Pachecopeña, V.

V. Pachecopeña, M. Beruete, A. I. Fernández-domínguez, Y. Luo, and M. Navarro-Cía, “Description of bow-tie nanoantennas excited by localized emitters using conformal transformation,” ACS Photonics 3(7), 1223–1232 (2016).
[Crossref]

Pang, J. S.

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
[Crossref]

Pauly, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Peckerar, M. C.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[Crossref]

Petrov, P. K.

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
[Crossref]

Pigozzo, F. M.

Pinhero, P. J.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[Crossref]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Porod, W.

J. A. Bean, B. Tiwari, G. Szakmány, G. H. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[Crossref]

Prudenzano, F.

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[Crossref]

M. Bozzetti, G. De Candia, M. Gallo, O. Losito, L. Mescia, and F. Prudenzano, “Analysis and design of a solar rectenna,” in Proceeding of IEEE International Symposium on Industrial Electronics (IEEE, 2010), pp. 2001–2004.
[Crossref]

Pugh, J. R.

Puzzer, T.

R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
[Crossref]

R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Efficiency of antenna solar collection,” in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 2682–2685.

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Raschke, M. B.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Riley, D. J.

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
[Crossref]

Royer, P.

Ryan, M. P.

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
[Crossref]

Sabaawi, A. M. A.

A. M. A. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, “Infra-red spiral nano-antennas,” in Proceeding of Loughborough Antennas and Propagation Conference (IEEE, 2012), pp.1–4.

Sacchetto, F.

Schweizer, H.

Shamim, A.

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification,” Sci. Rep. 4(1), 4270 (2014).
[Crossref] [PubMed]

Sharif, B. S.

A. M. A. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, “Infra-red spiral nano-antennas,” in Proceeding of Loughborough Antennas and Propagation Conference (IEEE, 2012), pp.1–4.

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Slafer, W. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[Crossref]

Soliman, E. A.

E. A. Soliman, O. S. Mai, and G. A. E. Vandenbosch, “Plasmonic grid array of gold nanorods for point-to-point optical communications,” J. Lightwave Technol. 32(24), 4898–4904 (2014).
[Crossref]

Someda, C. G.

Stokes, J. L.

Sundheimer, M. L.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Szakmány, G.

J. A. Bean, B. Tiwari, G. Szakmány, G. H. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[Crossref]

Tiwari, B.

J. A. Bean, B. Tiwari, G. Szakmány, G. H. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[Crossref]

Tsimenidis, C. C.

A. M. A. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, “Infra-red spiral nano-antennas,” in Proceeding of Loughborough Antennas and Propagation Conference (IEEE, 2012), pp.1–4.

Tucker, E.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Vandenbosch, G. A. E.

E. A. Soliman, O. S. Mai, and G. A. E. Vandenbosch, “Plasmonic grid array of gold nanorods for point-to-point optical communications,” J. Lightwave Technol. 32(24), 4898–4904 (2014).
[Crossref]

Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[Crossref]

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

F. P. G. De Arquer, V. Volski, N. Verellen, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect,” IEEE Trans. Antenn. Propag. 59(9), 3144–3153 (2011).
[Crossref]

Verellen, N.

F. P. G. De Arquer, V. Volski, N. Verellen, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect,” IEEE Trans. Antenn. Propag. 59(9), 3144–3153 (2011).
[Crossref]

Volski, V.

F. P. G. De Arquer, V. Volski, N. Verellen, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect,” IEEE Trans. Antenn. Propag. 59(9), 3144–3153 (2011).
[Crossref]

Wang, K.

K. Wang, H. Hu, S. Lu, L. Guo, T. Zhang, Y. Han, A. Zhou, and T. He, “Design and analysis of a square spiral nano-rectenna for infrared energy harvest and conversion,” Opt. Mater. Express 6(12), 3977–3991 (2016).
[Crossref]

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 104101 (2015).
[Crossref]

Ward, D. R.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Weeks, A.

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[Crossref]

Weiss, B. L.

A. Mayer, M. S. Chung, B. L. Weiss, N. M. Miskovsky, and P. H. Cutler, “Classical and quantum responsivities of geometrically asymmetric metal-vacuum-metal junctions used for the rectification of infrared and optical radiations,” J. Vac. Sci. Technol. B 29(4), 041802 (2011).
[Crossref]

Xie, F.

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
[Crossref]

Yang, H. U.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Yesilkoy, F.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[Crossref]

Yu, Y.

Yuan, Z. H.

Zentgraf, T.

Zhang, T.

Zhou, A.

ACS Photonics (1)

V. Pachecopeña, M. Beruete, A. I. Fernández-domínguez, Y. Luo, and M. Navarro-Cía, “Description of bow-tie nanoantennas excited by localized emitters using conformal transformation,” ACS Photonics 3(7), 1223–1232 (2016).
[Crossref]

Energy (1)

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[Crossref]

Front. Phys. (1)

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 104101 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

F. P. G. De Arquer, V. Volski, N. Verellen, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect,” IEEE Trans. Antenn. Propag. 59(9), 3144–3153 (2011).
[Crossref]

Infrared Phys. Technol. (1)

J. A. Bean, B. Tiwari, G. Szakmány, G. H. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[Crossref]

J. Appl. Phys. (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

J. Eng. Power (1)

R. L. Bailey, “A proposed new concept for a solar-energy converter,” J. Eng. Power 94(2), 73–77 (1972).
[Crossref]

J. Lightwave Technol. (1)

E. A. Soliman, O. S. Mai, and G. A. E. Vandenbosch, “Plasmonic grid array of gold nanorods for point-to-point optical communications,” J. Lightwave Technol. 32(24), 4898–4904 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Sol. Energy Eng. (1)

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[Crossref]

J. Vac. Sci. Technol. B (1)

A. Mayer, M. S. Chung, B. L. Weiss, N. M. Miskovsky, and P. H. Cutler, “Classical and quantum responsivities of geometrically asymmetric metal-vacuum-metal junctions used for the rectification of infrared and optical radiations,” J. Vac. Sci. Technol. B 29(4), 041802 (2011).
[Crossref]

Microw. Opt. Technol. Lett. (1)

E. R. Brown, A. W. M. Lee, B. S. Navi, and J. E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region,” Microw. Opt. Technol. Lett. 48(3), 524–529 (2006).
[Crossref]

MRS Energy Sustain. (1)

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie, P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M. Alford, “The rectenna device: From theory to practice (a review),” MRS Energy Sustain. 1, 1–34 (2014).
[Crossref]

Nano Energy (1)

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

Nat. Nanotechnol. (1)

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Mater. Express (1)

Phys. Rev. B (1)

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Phys. Rev. Lett. (2)

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Proc. SPIE (2)

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[Crossref]

R. M. Osgood, B. R. Kimball, and J. Carlson, “Nanoantenna-coupled MIM nanodiodes for efficient vis/nir energy conversion,” Proc. SPIE 6652, 665203 (2007).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Sci. Rep. (1)

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification,” Sci. Rep. 4(1), 4270 (2014).
[Crossref] [PubMed]

Science (1)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Sol. Energy (2)

Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[Crossref]

R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
[Crossref]

Other (10)

M. Sarehraz, “Novel rectenna for collection of infrared and visible radiation,” (University of South Florida, 2005).

B. Berland, L. Simpson, G. Nuebel, T. Collins, and B. Lanning, “Optical rectenna for direct conversion of sunlight to electricity,” in Proceedings of the National Center for Photovoltaics Program Review Meeting (NREL, 2001), pp. 323–324.

R. Corkish, M. A. Green, T. Puzzer, and T. Humphrey, “Efficiency of antenna solar collection,” in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 2682–2685.

G. Moddel and S. Grover, Rectenna Solar Cells (Springer, 2013).

M. A. Elmansouri, “Joint time/frequency analysis and design of spiral antennas and arrays for ultra-wideband applications” (University of Colorado at Boulder, 2013).

M. Bozzetti, G. De Candia, M. Gallo, O. Losito, L. Mescia, and F. Prudenzano, “Analysis and design of a solar rectenna,” in Proceeding of IEEE International Symposium on Industrial Electronics (IEEE, 2010), pp. 2001–2004.
[Crossref]

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (John Wiley & Sons, 2012).

C. S. T. Studio Suite, 2015, https://www.cst.com .

A. M. A. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, “Infra-red spiral nano-antennas,” in Proceeding of Loughborough Antennas and Propagation Conference (IEEE, 2012), pp.1–4.

ASTM Standard G173–03 (2012), Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, https://www.astm.org/Standards/G173.htm .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Equivalent circuit of a nanoantenna coupled to a MIM rectifier diode.
Fig. 2
Fig. 2 (a) Nanospiral antenna, (b) nanodipole antenna.
Fig. 3
Fig. 3 Field enhancement in the nanospiral gap at different minimum mesh sizes for wavelength 500 nm, 1000 nm and 2000 nm.
Fig. 4
Fig. 4 Wavelength dependent relative intensity at the gap center of a gold dipole (L = 230 nm, g = 10 nm) using GTT method in [35] and FIT method with a minimum size of 0.75 nm.
Fig. 5
Fig. 5 Resistance (a) and reactance (b) of the nanospiral and the nanodipole.
Fig. 6
Fig. 6 Radiation efficiency for the nanospiral and the nanodipole.
Fig. 7
Fig. 7 Directivity at positive z-axis for the nanospiral and the nanodipole.
Fig. 8
Fig. 8 Three-dimensional radiation patterns for (a) the nanospiral at wavelength 600 nm, (b) the nanodipole at wavelength 600 nm, (c) the nanospiral at wavelength 2000 nm and (d) the nanodipole at wavelength 2000 nm.
Fig. 9
Fig. 9 Polarization efficiency with incident circularly-polarized plane wave for the nanospiral and the nanodipole.
Fig. 10
Fig. 10 E-field enhancement in x-y plane for the nanospiral and the nanodipole illuminated by a circularly-polarized plane wave of 1V/m at wavelength of (a) 600 nm, (b) 2000 nm.
Fig. 11
Fig. 11 Wavelength dependent E-field enhancement at the center of the antenna gap for the nanospiral and the nanodipole illuminated by a circularly-polarized plane wave of 1V/m.
Fig. 12
Fig. 12 Total harvesting efficiency of the nanospiral and the nanodipole with different rectifier resistance and a constant capacitance of 5 × 10−17 F.
Fig. 13
Fig. 13 Receiving spectrum under solar irradiance AM1.5 for the nanospiral and the nanodipole, when coupled to a rectifier with resistance of 200 Ω and capacitance of 5 × 10−17 F.

Tables (3)

Tables Icon

Table 1 Definitions of Related Efficiencies in the Solar Rectenna

Tables Icon

Table 2 Dimensions for the Nanospiral and Nanodipole

Tables Icon

Table 3 Total Harvesting Efficiency and Received Power

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P rec = 1 2 | V open | 2 R rec | Z ant + Z rec | 2
| V open |=2 R ant A eff η pol Z 0 | E in |
A eff = λ 2 D η rad 4π
A eff max = λ 2 D 4π
P rec = η pol η rad η mat A eff max S in
η mat = 4 R ant R rec | Z ant + Z rec | 2
S in = | E in | 2 2 Z 0
P dc = η diode P rec
η total = P dc total P in total = λ 1 λ 2 η pol ( λ ) η rad ( λ ) η mat ( λ ) η diode ( λ ) A eff max ( λ ) I in ( λ )dλ λ 1 λ 2 A eff max ( λ ) I in ( λ )dλ = λ 1 λ 2 A eff max ( λ ) I rec ( λ ) η diode ( λ )dλ λ 1 λ 2 A eff max ( λ ) I in ( λ )dλ

Metrics