Abstract

Silicon nanowire (SiNW) has been widely used for light-trapping in photovoltaics, optical sensors, and other optoelectronic devices. However, we found that 58.4% of the light trapped by a SiNW with a diameter of 60 nm and a length of 1 μm will be wasted: 64.5% of the trapped light will be absorbed within itself, and 90.5% of carriers excited by this part of light will recombine before being transported to the silicon substrate. In this work, it is shown that oxidation of SiNW can transport much more light into the silicon substrate. At first, our simulation results demonstrate that oxidation can dramatically reduce the percentage of absorbed light. In an oxidized SiNW (O-SiNW) with a total and silicon core diameter of 60 nm and 30 nm, respectively, the percentage is about 44.5%. Next, a low carrier recombination ratio, about 27.3%, can be obtained in O-SiNW due to the passivation effect of the oxide layer. As a result, oxidation of SiNW can reduce the proportion of wasted light from 58.4% to 12.1%. More importantly, oxidation almost doesn’t sacrifice the light-trapping ability: experimental measurements demonstrate that the average reflectance of an O-SiNW array is only slightly higher than that of a SiNW array, 3.9% vs. 3.0%. Such O-SiNW is promising to be used for low-loss light-trapping in specially designed photovoltaic devices.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells

Ya-Ju Lee, Yung-Chi Yao, and Chia-Hao Yang
Opt. Express 21(S1) A7-A14 (2013)

Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method

Wei-Li Wang, Xian-Shao Zou, Bin Zhang, Jun Dong, Qiao-Li Niu, Yi-An Yin, and Yong Zhang
Opt. Lett. 39(11) 3219-3222 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
  2. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
  3. Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
  4. H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
  5. F. M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, and G. Cuniberti, “Schottky barrier-based silicon nanowire pH sensor with live sensitivity control,” Nano Res. 7, 263–271 (2014).
  6. S. Chen, A. van den Berg, and E. T. Carlen, “Sensitivity and detection limit analysis of silicon nanowire bio (chemical) sensors,” Sens. Actuators B Chem. 209, 486–489 (2015).
  7. L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
  8. P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).
  9. H. Park and K. B. Crozier, “Elliptical silicon nanowire photodetectors for polarization-resolved imaging,” Opt. Express 23(6), 7209–7216 (2015).
  10. R. H. Coridan, K. A. Arpin, B. S. Brunschwig, P. V. Braun, and N. S. Lewis, “Photoelectrochemical Behavior of Hierarchically Structured Si/WO3 Core-Shell Tandem Photoanodes,” Nano Lett. 14(5), 2310–2317 (2014).
  11. H. Han, Z. Huang, and W. Lee, “Metal-assisted chemical etching of silicon and nanotechnology applications,” Nano Today 9, 271–304 (2014).
  12. M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
  13. K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8, 75–97 (2013).
  14. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
  15. P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. F. I. Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7, 306–310 (2013).
  16. E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
  17. Y. Li, M. Li, R. Li, P. Fu, T. Wang, Y. Luo, J. M. Mbengue, and M. Trevor, “Exact comprehensive equations for the photon management properties of silicon nanowire,” Sci. Rep. 6, 24847 (2016).
  18. Y. Li, L. Yue, Y. Luo, W. Liu, and M. Li, “Light harvesting of silicon nanostructure for solar cells application,” Opt. Express 24(14), A1075–A1082 (2016).
  19. Y.-J. Lee, Y.-C. Yao, and C.-H. Yang, “Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells,” Opt. Express 21(Suppl 1), A7–A14 (2013).
  20. A. Smyrnakis, P. Dimitrakis, P. Normand, and E. Gogolides, “Fabrication of axial p-n junction silicon nanopillar devices and application in photovoltaics,” Microelectron. Eng. 174, 74–79 (2017).
  21. S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009).
  22. D. Kanematsu, S. Yata, A. Terakawa, M. Tanaka, and M. Konagai, “Photovoltaic properties of axial-junction silicon nanowire solar cells with integrated arrays,” Jpn. J. Appl. Phys. 54, 08KA09 (2015).
  23. T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, “Single and tandem axial p-i-n nanowire photovoltaic devices,” Nano Lett. 8(10), 3456–3460 (2008).
  24. Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106, 091908 (2015).
  25. J. D. Christesen, X. Zhang, C. W. Pinion, T. A. Celano, C. J. Flynn, and J. F. Cahoon, “Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions,” Nano Lett. 12(11), 6024–6029 (2012).
  26. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).
  27. J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58, 1361–1387 (2013).
  28. A. B. Sieval, C. L. Huisman, A. Schönecker, F. M. Schuurmans, A. S. van der Heide, A. Goossens, W. C. Sinke, H. Zuilhof, and E. J. Sudhölter, “Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations,” J. Phys. Chem. B 107, 6846–6852 (2003).
  29. J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
  30. Y. Li, Y. Luo, W. Liu, M. Cui, J. Kumar, B. Jiang, L. Chu, and M. Li, “Specific distribution of the light captured by silver nanowire,” Opt. Express 25(8), 9225–9231 (2017).
  31. B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.3,” arXiv:1305.6497 (2013).
  32. J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
  33. Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).
  34. M. Y. Bashouti, K. Sardashti, S. W. Schmitt, M. Pietsch, J. Ristein, H. Haick, and S. H. Christiansen, “Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology,” Prog. Surf. Sci. 88, 39–60 (2013).
  35. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3, 149–152 (2003).
  36. S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).
  37. Y. Li, P. Fu, R. Li, M. Li, Y. Luo, and D. Song, “Ultrathin flexible planar crystalline-silicon/polymer hybrid solar cell with 5.68% efficiency by effective passivation,” Appl. Surf. Sci. 366, 494–498 (2016).
  38. P. Werner, C. C. Büttner, L. Schubert, G. Gerth, N. D. Zakarov, and U. Gösele, “Gold-enhanced oxidation of silicon nanowires,” Int. J. Mater. Res. 98, 1066–1070 (2007).
  39. V. A. Sivakov, R. Scholz, F. Syrowatka, F. Falk, U. Gösele, and S. H. Christiansen, “Silicon nanowire oxidation: the influence of sidewall structure and gold distribution,” Nanotechnology 20(40), 405607 (2009).
  40. J. Kioseoglou, P. Komninou, and M. Zervos, “Thermal oxidation and facet‐formation mechanisms of Si nanowires,” Phys. Status Solidi 8, 307–311 (2014).
  41. S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett. 94, 063113 (2009).
  42. U. Khalilov, G. Pourtois, A. v. Duin, and E. Neyts, “Self-limiting oxidation in small-diameter Si nanowires,” Chem. Mater. 24, 2141–2147 (2012).
  43. M. Karyaoui, A. Bardaoui, M. B. Rabha, J. Harmand, and M. Amlouk, “Effect of rapid oxidation on optical and electrical properties of silicon nanowires obtained by chemical etching,” Eur. Phys. J. Appl. Phys. 58, 20103 (2012).
  44. T. Xie, V. Schmidt, E. Pippel, S. Senz, and U. Gösele, “Gold-Enhanced Low-Temperature Oxidation of Silicon Nanowires,” Small 4(1), 64–68 (2008).
  45. C. Büttner, N. Zakharov, E. Pippel, U. Gösele, and P. Werner, “Gold-enhanced oxidation of MBE-grown silicon nanowires,” Semicond. Sci. Technol. 23, 075040 (2008).
  46. S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).
  47. S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
  48. H. F. Li, R. Jia, C. Chen, Z. Xing, W. C. Ding, Y. L. Meng, D. Q. Wu, X. Y. Liu, and T. C. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98, 3574904 (2011).
  49. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).

2017 (2)

A. Smyrnakis, P. Dimitrakis, P. Normand, and E. Gogolides, “Fabrication of axial p-n junction silicon nanopillar devices and application in photovoltaics,” Microelectron. Eng. 174, 74–79 (2017).

Y. Li, Y. Luo, W. Liu, M. Cui, J. Kumar, B. Jiang, L. Chu, and M. Li, “Specific distribution of the light captured by silver nanowire,” Opt. Express 25(8), 9225–9231 (2017).

2016 (3)

Y. Li, M. Li, R. Li, P. Fu, T. Wang, Y. Luo, J. M. Mbengue, and M. Trevor, “Exact comprehensive equations for the photon management properties of silicon nanowire,” Sci. Rep. 6, 24847 (2016).

Y. Li, L. Yue, Y. Luo, W. Liu, and M. Li, “Light harvesting of silicon nanostructure for solar cells application,” Opt. Express 24(14), A1075–A1082 (2016).

Y. Li, P. Fu, R. Li, M. Li, Y. Luo, and D. Song, “Ultrathin flexible planar crystalline-silicon/polymer hybrid solar cell with 5.68% efficiency by effective passivation,” Appl. Surf. Sci. 366, 494–498 (2016).

2015 (5)

S. Chen, A. van den Berg, and E. T. Carlen, “Sensitivity and detection limit analysis of silicon nanowire bio (chemical) sensors,” Sens. Actuators B Chem. 209, 486–489 (2015).

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).

H. Park and K. B. Crozier, “Elliptical silicon nanowire photodetectors for polarization-resolved imaging,” Opt. Express 23(6), 7209–7216 (2015).

D. Kanematsu, S. Yata, A. Terakawa, M. Tanaka, and M. Konagai, “Photovoltaic properties of axial-junction silicon nanowire solar cells with integrated arrays,” Jpn. J. Appl. Phys. 54, 08KA09 (2015).

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106, 091908 (2015).

2014 (5)

R. H. Coridan, K. A. Arpin, B. S. Brunschwig, P. V. Braun, and N. S. Lewis, “Photoelectrochemical Behavior of Hierarchically Structured Si/WO3 Core-Shell Tandem Photoanodes,” Nano Lett. 14(5), 2310–2317 (2014).

H. Han, Z. Huang, and W. Lee, “Metal-assisted chemical etching of silicon and nanotechnology applications,” Nano Today 9, 271–304 (2014).

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).

F. M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, and G. Cuniberti, “Schottky barrier-based silicon nanowire pH sensor with live sensitivity control,” Nano Res. 7, 263–271 (2014).

J. Kioseoglou, P. Komninou, and M. Zervos, “Thermal oxidation and facet‐formation mechanisms of Si nanowires,” Phys. Status Solidi 8, 307–311 (2014).

2013 (8)

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8, 75–97 (2013).

Y.-J. Lee, Y.-C. Yao, and C.-H. Yang, “Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells,” Opt. Express 21(Suppl 1), A7–A14 (2013).

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. F. I. Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7, 306–310 (2013).

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58, 1361–1387 (2013).

M. Y. Bashouti, K. Sardashti, S. W. Schmitt, M. Pietsch, J. Ristein, H. Haick, and S. H. Christiansen, “Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology,” Prog. Surf. Sci. 88, 39–60 (2013).

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).

2012 (5)

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).

J. D. Christesen, X. Zhang, C. W. Pinion, T. A. Celano, C. J. Flynn, and J. F. Cahoon, “Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions,” Nano Lett. 12(11), 6024–6029 (2012).

U. Khalilov, G. Pourtois, A. v. Duin, and E. Neyts, “Self-limiting oxidation in small-diameter Si nanowires,” Chem. Mater. 24, 2141–2147 (2012).

M. Karyaoui, A. Bardaoui, M. B. Rabha, J. Harmand, and M. Amlouk, “Effect of rapid oxidation on optical and electrical properties of silicon nanowires obtained by chemical etching,” Eur. Phys. J. Appl. Phys. 58, 20103 (2012).

2011 (2)

H. F. Li, R. Jia, C. Chen, Z. Xing, W. C. Ding, Y. L. Meng, D. Q. Wu, X. Y. Liu, and T. C. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98, 3574904 (2011).

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).

2010 (4)

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).

2009 (3)

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009).

V. A. Sivakov, R. Scholz, F. Syrowatka, F. Falk, U. Gösele, and S. H. Christiansen, “Silicon nanowire oxidation: the influence of sidewall structure and gold distribution,” Nanotechnology 20(40), 405607 (2009).

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett. 94, 063113 (2009).

2008 (6)

T. Xie, V. Schmidt, E. Pippel, S. Senz, and U. Gösele, “Gold-Enhanced Low-Temperature Oxidation of Silicon Nanowires,” Small 4(1), 64–68 (2008).

C. Büttner, N. Zakharov, E. Pippel, U. Gösele, and P. Werner, “Gold-enhanced oxidation of MBE-grown silicon nanowires,” Semicond. Sci. Technol. 23, 075040 (2008).

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).

T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, “Single and tandem axial p-i-n nanowire photovoltaic devices,” Nano Lett. 8(10), 3456–3460 (2008).

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

2007 (3)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).

M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).

P. Werner, C. C. Büttner, L. Schubert, G. Gerth, N. D. Zakarov, and U. Gösele, “Gold-enhanced oxidation of silicon nanowires,” Int. J. Mater. Res. 98, 1066–1070 (2007).

2003 (2)

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3, 149–152 (2003).

A. B. Sieval, C. L. Huisman, A. Schönecker, F. M. Schuurmans, A. S. van der Heide, A. Goossens, W. C. Sinke, H. Zuilhof, and E. J. Sudhölter, “Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations,” J. Phys. Chem. B 107, 6846–6852 (2003).

Aagesen, M.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. F. I. Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7, 306–310 (2013).

Afshinmanesh, F.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).

Ahmad, H.

M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).

Allen, J. E.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

Amlouk, M.

M. Karyaoui, A. Bardaoui, M. B. Rabha, J. Harmand, and M. Amlouk, “Effect of rapid oxidation on optical and electrical properties of silicon nanowires obtained by chemical etching,” Eur. Phys. J. Appl. Phys. 58, 20103 (2012).

Arpin, K. A.

R. H. Coridan, K. A. Arpin, B. S. Brunschwig, P. V. Braun, and N. S. Lewis, “Photoelectrochemical Behavior of Hierarchically Structured Si/WO3 Core-Shell Tandem Photoanodes,” Nano Lett. 14(5), 2310–2317 (2014).

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).

Bai, F.

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).

Baraban, L.

F. M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, and G. Cuniberti, “Schottky barrier-based silicon nanowire pH sensor with live sensitivity control,” Nano Res. 7, 263–271 (2014).

Bardaoui, A.

M. Karyaoui, A. Bardaoui, M. B. Rabha, J. Harmand, and M. Amlouk, “Effect of rapid oxidation on optical and electrical properties of silicon nanowires obtained by chemical etching,” Eur. Phys. J. Appl. Phys. 58, 20103 (2012).

Bashouti, M. Y.

M. Y. Bashouti, K. Sardashti, S. W. Schmitt, M. Pietsch, J. Ristein, H. Haick, and S. H. Christiansen, “Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology,” Prog. Surf. Sci. 88, 39–60 (2013).

Bleloch, A. L.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).

Branz, H. M.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).

Braun, P. V.

R. H. Coridan, K. A. Arpin, B. S. Brunschwig, P. V. Braun, and N. S. Lewis, “Photoelectrochemical Behavior of Hierarchically Structured Si/WO3 Core-Shell Tandem Photoanodes,” Nano Lett. 14(5), 2310–2317 (2014).

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).

Brongersma, M. L.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).

Brunschwig, B. S.

R. H. Coridan, K. A. Arpin, B. S. Brunschwig, P. V. Braun, and N. S. Lewis, “Photoelectrochemical Behavior of Hierarchically Structured Si/WO3 Core-Shell Tandem Photoanodes,” Nano Lett. 14(5), 2310–2317 (2014).

Büttner, C.

C. Büttner, N. Zakharov, E. Pippel, U. Gösele, and P. Werner, “Gold-enhanced oxidation of MBE-grown silicon nanowires,” Semicond. Sci. Technol. 23, 075040 (2008).

Büttner, C. C.

P. Werner, C. C. Büttner, L. Schubert, G. Gerth, N. D. Zakarov, and U. Gösele, “Gold-enhanced oxidation of silicon nanowires,” Int. J. Mater. Res. 98, 1066–1070 (2007).

Cahoon, J. F.

J. D. Christesen, X. Zhang, C. W. Pinion, T. A. Celano, C. J. Flynn, and J. F. Cahoon, “Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions,” Nano Lett. 12(11), 6024–6029 (2012).

Cao, L.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).

Carlen, E. T.

S. Chen, A. van den Berg, and E. T. Carlen, “Sensitivity and detection limit analysis of silicon nanowire bio (chemical) sensors,” Sens. Actuators B Chem. 209, 486–489 (2015).

Celano, T. A.

J. D. Christesen, X. Zhang, C. W. Pinion, T. A. Celano, C. J. Flynn, and J. F. Cahoon, “Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions,” Nano Lett. 12(11), 6024–6029 (2012).

Chen, C.

H. F. Li, R. Jia, C. Chen, Z. Xing, W. C. Ding, Y. L. Meng, D. Q. Wu, X. Y. Liu, and T. C. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98, 3574904 (2011).

Chen, S.

S. Chen, A. van den Berg, and E. T. Carlen, “Sensitivity and detection limit analysis of silicon nanowire bio (chemical) sensors,” Sens. Actuators B Chem. 209, 486–489 (2015).

Chettiar, U. K.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).

Christesen, J. D.

J. D. Christesen, X. Zhang, C. W. Pinion, T. A. Celano, C. J. Flynn, and J. F. Cahoon, “Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions,” Nano Lett. 12(11), 6024–6029 (2012).

Christiansen, S. H.

M. Y. Bashouti, K. Sardashti, S. W. Schmitt, M. Pietsch, J. Ristein, H. Haick, and S. H. Christiansen, “Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology,” Prog. Surf. Sci. 88, 39–60 (2013).

V. A. Sivakov, R. Scholz, F. Syrowatka, F. Falk, U. Gösele, and S. H. Christiansen, “Silicon nanowire oxidation: the influence of sidewall structure and gold distribution,” Nanotechnology 20(40), 405607 (2009).

Chu, L.

Y. Li, Y. Luo, W. Liu, M. Cui, J. Kumar, B. Jiang, L. Chu, and M. Li, “Specific distribution of the light captured by silver nanowire,” Opt. Express 25(8), 9225–9231 (2017).

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106, 091908 (2015).

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).

Clemens, B.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).

Coridan, R. H.

R. H. Coridan, K. A. Arpin, B. S. Brunschwig, P. V. Braun, and N. S. Lewis, “Photoelectrochemical Behavior of Hierarchically Structured Si/WO3 Core-Shell Tandem Photoanodes,” Nano Lett. 14(5), 2310–2317 (2014).

Crozier, K. B.

H. Park and K. B. Crozier, “Elliptical silicon nanowire photodetectors for polarization-resolved imaging,” Opt. Express 23(6), 7209–7216 (2015).

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).

Cui, M.

Cui, Y.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3, 149–152 (2003).

Cuniberti, G.

F. M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, and G. Cuniberti, “Schottky barrier-based silicon nanowire pH sensor with live sensitivity control,” Nano Res. 7, 263–271 (2014).

Dan, Y.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).

Davydov, A. V.

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett. 94, 063113 (2009).

Delsol, R.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009).

Demichel, O.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. F. I. Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7, 306–310 (2013).

Dimitrakis, P.

A. Smyrnakis, P. Dimitrakis, P. Normand, and E. Gogolides, “Fabrication of axial p-n junction silicon nanopillar devices and application in photovoltaics,” Microelectron. Eng. 174, 74–79 (2017).

Ding, W. C.

H. F. Li, R. Jia, C. Chen, Z. Xing, W. C. Ding, Y. L. Meng, D. Q. Wu, X. Y. Liu, and T. C. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98, 3574904 (2011).

Dross, F.

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58, 1361–1387 (2013).

Duane, P. K.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).

Duin, A. v.

U. Khalilov, G. Pourtois, A. v. Duin, and E. Neyts, “Self-limiting oxidation in small-diameter Si nanowires,” Chem. Mater. 24, 2141–2147 (2012).

Engheta, N.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).

Falk, F.

V. A. Sivakov, R. Scholz, F. Syrowatka, F. Falk, U. Gösele, and S. H. Christiansen, “Silicon nanowire oxidation: the influence of sidewall structure and gold distribution,” Nanotechnology 20(40), 405607 (2009).

Fan, P.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).

Faucherand, P.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009).

Feng, J.

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).

Filler, M. A.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).

Flynn, C. J.

J. D. Christesen, X. Zhang, C. W. Pinion, T. A. Celano, C. J. Flynn, and J. F. Cahoon, “Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions,” Nano Lett. 12(11), 6024–6029 (2012).

Fu, P.

Y. Li, M. Li, R. Li, P. Fu, T. Wang, Y. Luo, J. M. Mbengue, and M. Trevor, “Exact comprehensive equations for the photon management properties of silicon nanowire,” Sci. Rep. 6, 24847 (2016).

Y. Li, P. Fu, R. Li, M. Li, Y. Luo, and D. Song, “Ultrathin flexible planar crystalline-silicon/polymer hybrid solar cell with 5.68% efficiency by effective passivation,” Appl. Surf. Sci. 366, 494–498 (2016).

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106, 091908 (2015).

Garnett, E.

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).

Garnett, E. C.

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).

Gass, M. H.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

Gerth, G.

P. Werner, C. C. Büttner, L. Schubert, G. Gerth, N. D. Zakarov, and U. Gösele, “Gold-enhanced oxidation of silicon nanowires,” Int. J. Mater. Res. 98, 1066–1070 (2007).

Gilbert, M.

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58, 1361–1387 (2013).

Gogolides, E.

A. Smyrnakis, P. Dimitrakis, P. Normand, and E. Gogolides, “Fabrication of axial p-n junction silicon nanopillar devices and application in photovoltaics,” Microelectron. Eng. 174, 74–79 (2017).

Goossens, A.

A. B. Sieval, C. L. Huisman, A. Schönecker, F. M. Schuurmans, A. S. van der Heide, A. Goossens, W. C. Sinke, H. Zuilhof, and E. J. Sudhölter, “Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations,” J. Phys. Chem. B 107, 6846–6852 (2003).

Gösele, U.

V. A. Sivakov, R. Scholz, F. Syrowatka, F. Falk, U. Gösele, and S. H. Christiansen, “Silicon nanowire oxidation: the influence of sidewall structure and gold distribution,” Nanotechnology 20(40), 405607 (2009).

C. Büttner, N. Zakharov, E. Pippel, U. Gösele, and P. Werner, “Gold-enhanced oxidation of MBE-grown silicon nanowires,” Semicond. Sci. Technol. 23, 075040 (2008).

T. Xie, V. Schmidt, E. Pippel, S. Senz, and U. Gösele, “Gold-Enhanced Low-Temperature Oxidation of Silicon Nanowires,” Small 4(1), 64–68 (2008).

P. Werner, C. C. Büttner, L. Schubert, G. Gerth, N. D. Zakarov, and U. Gösele, “Gold-enhanced oxidation of silicon nanowires,” Int. J. Mater. Res. 98, 1066–1070 (2007).

Haick, H.

M. Y. Bashouti, K. Sardashti, S. W. Schmitt, M. Pietsch, J. Ristein, H. Haick, and S. H. Christiansen, “Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology,” Prog. Surf. Sci. 88, 39–60 (2013).

Han, H.

H. Han, Z. Huang, and W. Lee, “Metal-assisted chemical etching of silicon and nanotechnology applications,” Nano Today 9, 271–304 (2014).

Harmand, J.

M. Karyaoui, A. Bardaoui, M. B. Rabha, J. Harmand, and M. Amlouk, “Effect of rapid oxidation on optical and electrical properties of silicon nanowires obtained by chemical etching,” Eur. Phys. J. Appl. Phys. 58, 20103 (2012).

Heath, J. R.

M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).

Heiss, M.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. F. I. Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7, 306–310 (2013).

Hemesath, E. R.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

Hirota, M.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).

Holm, J. V.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. F. I. Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7, 306–310 (2013).

Hu, J.

T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, “Single and tandem axial p-i-n nanowire photovoltaic devices,” Nano Lett. 8(10), 3456–3460 (2008).

Hu, Y.

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8, 75–97 (2013).

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).

Huang, Z.

H. Han, Z. Huang, and W. Lee, “Metal-assisted chemical etching of silicon and nanotechnology applications,” Nano Today 9, 271–304 (2014).

Huisman, C. L.

A. B. Sieval, C. L. Huisman, A. Schönecker, F. M. Schuurmans, A. S. van der Heide, A. Goossens, W. C. Sinke, H. Zuilhof, and E. J. Sudhölter, “Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations,” J. Phys. Chem. B 107, 6846–6852 (2003).

Jaussaud, C.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009).

Javey, A.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).

Jeong, S.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).

Jia, R.

H. F. Li, R. Jia, C. Chen, Z. Xing, W. C. Ding, Y. L. Meng, D. Q. Wu, X. Y. Liu, and T. C. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98, 3574904 (2011).

Jiang, B.

Y. Li, Y. Luo, W. Liu, M. Cui, J. Kumar, B. Jiang, L. Chu, and M. Li, “Specific distribution of the light captured by silver nanowire,” Opt. Express 25(8), 9225–9231 (2017).

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).

Jørgensen, H. I.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. F. I. Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7, 306–310 (2013).

Kanematsu, D.

D. Kanematsu, S. Yata, A. Terakawa, M. Tanaka, and M. Konagai, “Photovoltaic properties of axial-junction silicon nanowire solar cells with integrated arrays,” Jpn. J. Appl. Phys. 54, 08KA09 (2015).

Karyaoui, M.

M. Karyaoui, A. Bardaoui, M. B. Rabha, J. Harmand, and M. Amlouk, “Effect of rapid oxidation on optical and electrical properties of silicon nanowires obtained by chemical etching,” Eur. Phys. J. Appl. Phys. 58, 20103 (2012).

Kato, S.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).

Kayes, B. M.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).

Kempa, T. J.

T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, “Single and tandem axial p-i-n nanowire photovoltaic devices,” Nano Lett. 8(10), 3456–3460 (2008).

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).

Khalilov, U.

U. Khalilov, G. Pourtois, A. v. Duin, and E. Neyts, “Self-limiting oxidation in small-diameter Si nanowires,” Chem. Mater. 24, 2141–2147 (2012).

Kim, D. R.

T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, “Single and tandem axial p-i-n nanowire photovoltaic devices,” Nano Lett. 8(10), 3456–3460 (2008).

Kioseoglou, J.

J. Kioseoglou, P. Komninou, and M. Zervos, “Thermal oxidation and facet‐formation mechanisms of Si nanowires,” Phys. Status Solidi 8, 307–311 (2014).

Komninou, P.

J. Kioseoglou, P. Komninou, and M. Zervos, “Thermal oxidation and facet‐formation mechanisms of Si nanowires,” Phys. Status Solidi 8, 307–311 (2014).

Konagai, M.

D. Kanematsu, S. Yata, A. Terakawa, M. Tanaka, and M. Konagai, “Photovoltaic properties of axial-junction silicon nanowire solar cells with integrated arrays,” Jpn. J. Appl. Phys. 54, 08KA09 (2015).

Krogstrup, P.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. F. I. Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7, 306–310 (2013).

Krylyuk, S.

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett. 94, 063113 (2009).

Kumar, J.

Kurokawa, Y.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).

Kurstjens, R.

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58, 1361–1387 (2013).

Lauhon, L. J.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

Lee, S.-T.

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8, 75–97 (2013).

Lee, W.

H. Han, Z. Huang, and W. Lee, “Metal-assisted chemical etching of silicon and nanotechnology applications,” Nano Today 9, 271–304 (2014).

Lee, Y.-J.

Lensch-Falk, J. L.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

Levin, I.

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett. 94, 063113 (2009).

Levis, M.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009).

Lewis, N. S.

R. H. Coridan, K. A. Arpin, B. S. Brunschwig, P. V. Braun, and N. S. Lewis, “Photoelectrochemical Behavior of Hierarchically Structured Si/WO3 Core-Shell Tandem Photoanodes,” Nano Lett. 14(5), 2310–2317 (2014).

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).

Li, H. F.

H. F. Li, R. Jia, C. Chen, Z. Xing, W. C. Ding, Y. L. Meng, D. Q. Wu, X. Y. Liu, and T. C. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98, 3574904 (2011).

Li, L.

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8, 75–97 (2013).

Li, M.

Y. Li, Y. Luo, W. Liu, M. Cui, J. Kumar, B. Jiang, L. Chu, and M. Li, “Specific distribution of the light captured by silver nanowire,” Opt. Express 25(8), 9225–9231 (2017).

Y. Li, L. Yue, Y. Luo, W. Liu, and M. Li, “Light harvesting of silicon nanostructure for solar cells application,” Opt. Express 24(14), A1075–A1082 (2016).

Y. Li, P. Fu, R. Li, M. Li, Y. Luo, and D. Song, “Ultrathin flexible planar crystalline-silicon/polymer hybrid solar cell with 5.68% efficiency by effective passivation,” Appl. Surf. Sci. 366, 494–498 (2016).

Y. Li, M. Li, R. Li, P. Fu, T. Wang, Y. Luo, J. M. Mbengue, and M. Trevor, “Exact comprehensive equations for the photon management properties of silicon nanowire,” Sci. Rep. 6, 24847 (2016).

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106, 091908 (2015).

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).

Li, R.

Y. Li, M. Li, R. Li, P. Fu, T. Wang, Y. Luo, J. M. Mbengue, and M. Trevor, “Exact comprehensive equations for the photon management properties of silicon nanowire,” Sci. Rep. 6, 24847 (2016).

Y. Li, P. Fu, R. Li, M. Li, Y. Luo, and D. Song, “Ultrathin flexible planar crystalline-silicon/polymer hybrid solar cell with 5.68% efficiency by effective passivation,” Appl. Surf. Sci. 366, 494–498 (2016).

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106, 091908 (2015).

Li, Y.

Y. Li, Y. Luo, W. Liu, M. Cui, J. Kumar, B. Jiang, L. Chu, and M. Li, “Specific distribution of the light captured by silver nanowire,” Opt. Express 25(8), 9225–9231 (2017).

Y. Li, L. Yue, Y. Luo, W. Liu, and M. Li, “Light harvesting of silicon nanostructure for solar cells application,” Opt. Express 24(14), A1075–A1082 (2016).

Y. Li, P. Fu, R. Li, M. Li, Y. Luo, and D. Song, “Ultrathin flexible planar crystalline-silicon/polymer hybrid solar cell with 5.68% efficiency by effective passivation,” Appl. Surf. Sci. 366, 494–498 (2016).

Y. Li, M. Li, R. Li, P. Fu, T. Wang, Y. Luo, J. M. Mbengue, and M. Trevor, “Exact comprehensive equations for the photon management properties of silicon nanowire,” Sci. Rep. 6, 24847 (2016).

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106, 091908 (2015).

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).

Li, Z.

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).

Li, Z. Y.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

Lieber, C. M.

T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, “Single and tandem axial p-i-n nanowire photovoltaic devices,” Nano Lett. 8(10), 3456–3460 (2008).

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3, 149–152 (2003).

Lin, L.

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).

Liu, H.

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).

Liu, W.

Liu, X. Y.

H. F. Li, R. Jia, C. Chen, Z. Xing, W. C. Ding, Y. L. Meng, D. Q. Wu, X. Y. Liu, and T. C. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98, 3574904 (2011).

Luo, Y.

Y. Li, Y. Luo, W. Liu, M. Cui, J. Kumar, B. Jiang, L. Chu, and M. Li, “Specific distribution of the light captured by silver nanowire,” Opt. Express 25(8), 9225–9231 (2017).

Y. Li, L. Yue, Y. Luo, W. Liu, and M. Li, “Light harvesting of silicon nanostructure for solar cells application,” Opt. Express 24(14), A1075–A1082 (2016).

Y. Li, P. Fu, R. Li, M. Li, Y. Luo, and D. Song, “Ultrathin flexible planar crystalline-silicon/polymer hybrid solar cell with 5.68% efficiency by effective passivation,” Appl. Surf. Sci. 366, 494–498 (2016).

Y. Li, M. Li, R. Li, P. Fu, T. Wang, Y. Luo, J. M. Mbengue, and M. Trevor, “Exact comprehensive equations for the photon management properties of silicon nanowire,” Sci. Rep. 6, 24847 (2016).

Mann, J. K.

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58, 1361–1387 (2013).

Mbengue, J. M.

Y. Li, M. Li, R. Li, P. Fu, T. Wang, Y. Luo, J. M. Mbengue, and M. Trevor, “Exact comprehensive equations for the photon management properties of silicon nanowire,” Sci. Rep. 6, 24847 (2016).

McAlpine, M. C.

M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).

McGehee, M. D.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).

Meng, Y. L.

H. F. Li, R. Jia, C. Chen, Z. Xing, W. C. Ding, Y. L. Meng, D. Q. Wu, X. Y. Liu, and T. C. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98, 3574904 (2011).

Meza, J. H.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).

Mikolajick, T.

F. M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, and G. Cuniberti, “Schottky barrier-based silicon nanowire pH sensor with live sensitivity control,” Nano Res. 7, 263–271 (2014).

Miyajima, S.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).

Morral, A. F. I.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. F. I. Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7, 306–310 (2013).

Motayed, A.

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett. 94, 063113 (2009).

Neyts, E.

U. Khalilov, G. Pourtois, A. v. Duin, and E. Neyts, “Self-limiting oxidation in small-diameter Si nanowires,” Chem. Mater. 24, 2141–2147 (2012).

Niwa, Y.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).

Noël, S.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009).

Normand, P.

A. Smyrnakis, P. Dimitrakis, P. Normand, and E. Gogolides, “Fabrication of axial p-n junction silicon nanopillar devices and application in photovoltaics,” Microelectron. Eng. 174, 74–79 (2017).

Nygard, J.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. F. I. Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7, 306–310 (2013).

Oh, J.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).

Ohta, Y.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).

Opitz, J.

F. M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, and G. Cuniberti, “Schottky barrier-based silicon nanowire pH sensor with live sensitivity control,” Nano Res. 7, 263–271 (2014).

Palmer, R. E.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

Park, H.

H. Park and K. B. Crozier, “Elliptical silicon nanowire photodetectors for polarization-resolved imaging,” Opt. Express 23(6), 7209–7216 (2015).

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).

Park, J.-S.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).

Peng, K.-Q.

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8, 75–97 (2013).

Perea, D. E.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

Perraud, S.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009).

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).

Pietsch, M.

M. Y. Bashouti, K. Sardashti, S. W. Schmitt, M. Pietsch, J. Ristein, H. Haick, and S. H. Christiansen, “Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology,” Prog. Surf. Sci. 88, 39–60 (2013).

Pinion, C. W.

J. D. Christesen, X. Zhang, C. W. Pinion, T. A. Celano, C. J. Flynn, and J. F. Cahoon, “Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions,” Nano Lett. 12(11), 6024–6029 (2012).

Pippel, E.

C. Büttner, N. Zakharov, E. Pippel, U. Gösele, and P. Werner, “Gold-enhanced oxidation of MBE-grown silicon nanowires,” Semicond. Sci. Technol. 23, 075040 (2008).

T. Xie, V. Schmidt, E. Pippel, S. Senz, and U. Gösele, “Gold-Enhanced Low-Temperature Oxidation of Silicon Nanowires,” Small 4(1), 64–68 (2008).

Poncet, S.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009).

Poortmans, J.

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58, 1361–1387 (2013).

Pourtois, G.

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58, 1361–1387 (2013).

U. Khalilov, G. Pourtois, A. v. Duin, and E. Neyts, “Self-limiting oxidation in small-diameter Si nanowires,” Chem. Mater. 24, 2141–2147 (2012).

Pregl, S.

F. M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, and G. Cuniberti, “Schottky barrier-based silicon nanowire pH sensor with live sensitivity control,” Nano Res. 7, 263–271 (2014).

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).

Rabha, M. B.

M. Karyaoui, A. Bardaoui, M. B. Rabha, J. Harmand, and M. Amlouk, “Effect of rapid oxidation on optical and electrical properties of silicon nanowires obtained by chemical etching,” Eur. Phys. J. Appl. Phys. 58, 20103 (2012).

Ristein, J.

M. Y. Bashouti, K. Sardashti, S. W. Schmitt, M. Pietsch, J. Ristein, H. Haick, and S. H. Christiansen, “Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology,” Prog. Surf. Sci. 88, 39–60 (2013).

Römhildt, L.

F. M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, and G. Cuniberti, “Schottky barrier-based silicon nanowire pH sensor with live sensitivity control,” Nano Res. 7, 263–271 (2014).

Rouvière, E.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009).

Sardashti, K.

M. Y. Bashouti, K. Sardashti, S. W. Schmitt, M. Pietsch, J. Ristein, H. Haick, and S. H. Christiansen, “Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology,” Prog. Surf. Sci. 88, 39–60 (2013).

Schmidt, V.

T. Xie, V. Schmidt, E. Pippel, S. Senz, and U. Gösele, “Gold-Enhanced Low-Temperature Oxidation of Silicon Nanowires,” Small 4(1), 64–68 (2008).

Schmitt, S. W.

M. Y. Bashouti, K. Sardashti, S. W. Schmitt, M. Pietsch, J. Ristein, H. Haick, and S. H. Christiansen, “Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology,” Prog. Surf. Sci. 88, 39–60 (2013).

Scholz, R.

V. A. Sivakov, R. Scholz, F. Syrowatka, F. Falk, U. Gösele, and S. H. Christiansen, “Silicon nanowire oxidation: the influence of sidewall structure and gold distribution,” Nanotechnology 20(40), 405607 (2009).

Schönecker, A.

A. B. Sieval, C. L. Huisman, A. Schönecker, F. M. Schuurmans, A. S. van der Heide, A. Goossens, W. C. Sinke, H. Zuilhof, and E. J. Sudhölter, “Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations,” J. Phys. Chem. B 107, 6846–6852 (2003).

Schubert, L.

P. Werner, C. C. Büttner, L. Schubert, G. Gerth, N. D. Zakarov, and U. Gösele, “Gold-enhanced oxidation of silicon nanowires,” Int. J. Mater. Res. 98, 1066–1070 (2007).

Schuurmans, F. M.

A. B. Sieval, C. L. Huisman, A. Schönecker, F. M. Schuurmans, A. S. van der Heide, A. Goossens, W. C. Sinke, H. Zuilhof, and E. J. Sudhölter, “Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations,” J. Phys. Chem. B 107, 6846–6852 (2003).

Senz, S.

T. Xie, V. Schmidt, E. Pippel, S. Senz, and U. Gösele, “Gold-Enhanced Low-Temperature Oxidation of Silicon Nanowires,” Small 4(1), 64–68 (2008).

Seo, K.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).

Sieval, A. B.

A. B. Sieval, C. L. Huisman, A. Schönecker, F. M. Schuurmans, A. S. van der Heide, A. Goossens, W. C. Sinke, H. Zuilhof, and E. J. Sudhölter, “Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations,” J. Phys. Chem. B 107, 6846–6852 (2003).

Sinke, W. C.

A. B. Sieval, C. L. Huisman, A. Schönecker, F. M. Schuurmans, A. S. van der Heide, A. Goossens, W. C. Sinke, H. Zuilhof, and E. J. Sudhölter, “Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations,” J. Phys. Chem. B 107, 6846–6852 (2003).

Sivakov, V. A.

V. A. Sivakov, R. Scholz, F. Syrowatka, F. Falk, U. Gösele, and S. H. Christiansen, “Silicon nanowire oxidation: the influence of sidewall structure and gold distribution,” Nanotechnology 20(40), 405607 (2009).

Smyrnakis, A.

A. Smyrnakis, P. Dimitrakis, P. Normand, and E. Gogolides, “Fabrication of axial p-n junction silicon nanopillar devices and application in photovoltaics,” Microelectron. Eng. 174, 74–79 (2017).

Song, D.

Y. Li, P. Fu, R. Li, M. Li, Y. Luo, and D. Song, “Ultrathin flexible planar crystalline-silicon/polymer hybrid solar cell with 5.68% efficiency by effective passivation,” Appl. Surf. Sci. 366, 494–498 (2016).

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106, 091908 (2015).

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).

Su, S.

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).

Sudhölter, E. J.

A. B. Sieval, C. L. Huisman, A. Schönecker, F. M. Schuurmans, A. S. van der Heide, A. Goossens, W. C. Sinke, H. Zuilhof, and E. J. Sudhölter, “Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations,” J. Phys. Chem. B 107, 6846–6852 (2003).

Syrowatka, F.

V. A. Sivakov, R. Scholz, F. Syrowatka, F. Falk, U. Gösele, and S. H. Christiansen, “Silicon nanowire oxidation: the influence of sidewall structure and gold distribution,” Nanotechnology 20(40), 405607 (2009).

Takei, K.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).

Tanaka, M.

D. Kanematsu, S. Yata, A. Terakawa, M. Tanaka, and M. Konagai, “Photovoltaic properties of axial-junction silicon nanowire solar cells with integrated arrays,” Jpn. J. Appl. Phys. 54, 08KA09 (2015).

Terakawa, A.

D. Kanematsu, S. Yata, A. Terakawa, M. Tanaka, and M. Konagai, “Photovoltaic properties of axial-junction silicon nanowire solar cells with integrated arrays,” Jpn. J. Appl. Phys. 54, 08KA09 (2015).

Thony, P.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009).

Tian, B.

T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, “Single and tandem axial p-i-n nanowire photovoltaic devices,” Nano Lett. 8(10), 3456–3460 (2008).

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).

Trevor, M.

Y. Li, M. Li, R. Li, P. Fu, T. Wang, Y. Luo, J. M. Mbengue, and M. Trevor, “Exact comprehensive equations for the photon management properties of silicon nanowire,” Sci. Rep. 6, 24847 (2016).

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).

van den Berg, A.

S. Chen, A. van den Berg, and E. T. Carlen, “Sensitivity and detection limit analysis of silicon nanowire bio (chemical) sensors,” Sens. Actuators B Chem. 209, 486–489 (2015).

van der Heide, A. S.

A. B. Sieval, C. L. Huisman, A. Schönecker, F. M. Schuurmans, A. S. van der Heide, A. Goossens, W. C. Sinke, H. Zuilhof, and E. J. Sudhölter, “Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations,” J. Phys. Chem. B 107, 6846–6852 (2003).

Vaudin, M. D.

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett. 94, 063113 (2009).

Wang, D.

M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3, 149–152 (2003).

Wang, P.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

Wang, T.

Y. Li, M. Li, R. Li, P. Fu, T. Wang, Y. Luo, J. M. Mbengue, and M. Trevor, “Exact comprehensive equations for the photon management properties of silicon nanowire,” Sci. Rep. 6, 24847 (2016).

Wang, W. U.

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3, 149–152 (2003).

Wang, X.

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8, 75–97 (2013).

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).

Watanabe, Y.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).

Weber, W.

F. M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, and G. Cuniberti, “Schottky barrier-based silicon nanowire pH sensor with live sensitivity control,” Nano Res. 7, 263–271 (2014).

Werner, P.

C. Büttner, N. Zakharov, E. Pippel, U. Gösele, and P. Werner, “Gold-enhanced oxidation of MBE-grown silicon nanowires,” Semicond. Sci. Technol. 23, 075040 (2008).

P. Werner, C. C. Büttner, L. Schubert, G. Gerth, N. D. Zakarov, and U. Gösele, “Gold-enhanced oxidation of silicon nanowires,” Int. J. Mater. Res. 98, 1066–1070 (2007).

Wober, M.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).

Wu, D. Q.

H. F. Li, R. Jia, C. Chen, Z. Xing, W. C. Ding, Y. L. Meng, D. Q. Wu, X. Y. Liu, and T. C. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98, 3574904 (2011).

Xie, T.

T. Xie, V. Schmidt, E. Pippel, S. Senz, and U. Gösele, “Gold-Enhanced Low-Temperature Oxidation of Silicon Nanowires,” Small 4(1), 64–68 (2008).

Xing, Z.

H. F. Li, R. Jia, C. Chen, Z. Xing, W. C. Ding, Y. L. Meng, D. Q. Wu, X. Y. Liu, and T. C. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98, 3574904 (2011).

Yamada, A.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).

Yang, C.-H.

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).

Yao, Y.-C.

Yata, S.

D. Kanematsu, S. Yata, A. Terakawa, M. Tanaka, and M. Konagai, “Photovoltaic properties of axial-junction silicon nanowire solar cells with integrated arrays,” Jpn. J. Appl. Phys. 54, 08KA09 (2015).

Ye, T. C.

H. F. Li, R. Jia, C. Chen, Z. Xing, W. C. Ding, Y. L. Meng, D. Q. Wu, X. Y. Liu, and T. C. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98, 3574904 (2011).

Yin, F.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).

Yu, Y. J.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).

Yuan, H.-C.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).

Yue, L.

Zakarov, N. D.

P. Werner, C. C. Büttner, L. Schubert, G. Gerth, N. D. Zakarov, and U. Gösele, “Gold-enhanced oxidation of silicon nanowires,” Int. J. Mater. Res. 98, 1066–1070 (2007).

Zakharov, N.

C. Büttner, N. Zakharov, E. Pippel, U. Gösele, and P. Werner, “Gold-enhanced oxidation of MBE-grown silicon nanowires,” Semicond. Sci. Technol. 23, 075040 (2008).

Zervos, M.

J. Kioseoglou, P. Komninou, and M. Zervos, “Thermal oxidation and facet‐formation mechanisms of Si nanowires,” Phys. Status Solidi 8, 307–311 (2014).

Zhang, X.

J. D. Christesen, X. Zhang, C. W. Pinion, T. A. Celano, C. J. Flynn, and J. F. Cahoon, “Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions,” Nano Lett. 12(11), 6024–6029 (2012).

Zhang, Z.

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).

Zheng, X.

T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, “Single and tandem axial p-i-n nanowire photovoltaic devices,” Nano Lett. 8(10), 3456–3460 (2008).

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).

Zhong, Z.

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3, 149–152 (2003).

Zörgiebel, F. M.

F. M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, and G. Cuniberti, “Schottky barrier-based silicon nanowire pH sensor with live sensitivity control,” Nano Res. 7, 263–271 (2014).

Zuilhof, H.

A. B. Sieval, C. L. Huisman, A. Schönecker, F. M. Schuurmans, A. S. van der Heide, A. Goossens, W. C. Sinke, H. Zuilhof, and E. J. Sudhölter, “Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations,” J. Phys. Chem. B 107, 6846–6852 (2003).

Appl. Phys. Lett. (3)

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106, 091908 (2015).

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett. 94, 063113 (2009).

H. F. Li, R. Jia, C. Chen, Z. Xing, W. C. Ding, Y. L. Meng, D. Q. Wu, X. Y. Liu, and T. C. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98, 3574904 (2011).

Appl. Surf. Sci. (1)

Y. Li, P. Fu, R. Li, M. Li, Y. Luo, and D. Song, “Ultrathin flexible planar crystalline-silicon/polymer hybrid solar cell with 5.68% efficiency by effective passivation,” Appl. Surf. Sci. 366, 494–498 (2016).

Chem. Mater. (1)

U. Khalilov, G. Pourtois, A. v. Duin, and E. Neyts, “Self-limiting oxidation in small-diameter Si nanowires,” Chem. Mater. 24, 2141–2147 (2012).

Eur. Phys. J. Appl. Phys. (1)

M. Karyaoui, A. Bardaoui, M. B. Rabha, J. Harmand, and M. Amlouk, “Effect of rapid oxidation on optical and electrical properties of silicon nanowires obtained by chemical etching,” Eur. Phys. J. Appl. Phys. 58, 20103 (2012).

Int. J. Mater. Res. (1)

P. Werner, C. C. Büttner, L. Schubert, G. Gerth, N. D. Zakarov, and U. Gösele, “Gold-enhanced oxidation of silicon nanowires,” Int. J. Mater. Res. 98, 1066–1070 (2007).

J. Am. Chem. Soc. (1)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).

J. Phys. Chem. B (1)

A. B. Sieval, C. L. Huisman, A. Schönecker, F. M. Schuurmans, A. S. van der Heide, A. Goossens, W. C. Sinke, H. Zuilhof, and E. J. Sudhölter, “Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations,” J. Phys. Chem. B 107, 6846–6852 (2003).

Jpn. J. Appl. Phys. (1)

D. Kanematsu, S. Yata, A. Terakawa, M. Tanaka, and M. Konagai, “Photovoltaic properties of axial-junction silicon nanowire solar cells with integrated arrays,” Jpn. J. Appl. Phys. 54, 08KA09 (2015).

Microelectron. Eng. (1)

A. Smyrnakis, P. Dimitrakis, P. Normand, and E. Gogolides, “Fabrication of axial p-n junction silicon nanopillar devices and application in photovoltaics,” Microelectron. Eng. 174, 74–79 (2017).

Nano Energy (1)

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).

Nano Lett. (10)

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).

R. H. Coridan, K. A. Arpin, B. S. Brunschwig, P. V. Braun, and N. S. Lewis, “Photoelectrochemical Behavior of Hierarchically Structured Si/WO3 Core-Shell Tandem Photoanodes,” Nano Lett. 14(5), 2310–2317 (2014).

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).

T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, “Single and tandem axial p-i-n nanowire photovoltaic devices,” Nano Lett. 8(10), 3456–3460 (2008).

J. D. Christesen, X. Zhang, C. W. Pinion, T. A. Celano, C. J. Flynn, and J. F. Cahoon, “Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions,” Nano Lett. 12(11), 6024–6029 (2012).

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3, 149–152 (2003).

Nano Res. (1)

F. M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, and G. Cuniberti, “Schottky barrier-based silicon nanowire pH sensor with live sensitivity control,” Nano Res. 7, 263–271 (2014).

Nano Today (2)

H. Han, Z. Huang, and W. Lee, “Metal-assisted chemical etching of silicon and nanotechnology applications,” Nano Today 9, 271–304 (2014).

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8, 75–97 (2013).

Nanoscale Res. Lett. (2)

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).

Nanotechnology (1)

V. A. Sivakov, R. Scholz, F. Syrowatka, F. Falk, U. Gösele, and S. H. Christiansen, “Silicon nanowire oxidation: the influence of sidewall structure and gold distribution,” Nanotechnology 20(40), 405607 (2009).

Nat. Commun. (1)

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).

Nat. Mater. (2)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).

M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).

Nat. Nanotechnol. (2)

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).

Nat. Photonics (2)

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. F. I. Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7, 306–310 (2013).

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).

Nature (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).

Opt. Express (4)

Phys. Status Solidi (1)

J. Kioseoglou, P. Komninou, and M. Zervos, “Thermal oxidation and facet‐formation mechanisms of Si nanowires,” Phys. Status Solidi 8, 307–311 (2014).

Prog. Mater. Sci. (1)

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58, 1361–1387 (2013).

Prog. Surf. Sci. (1)

M. Y. Bashouti, K. Sardashti, S. W. Schmitt, M. Pietsch, J. Ristein, H. Haick, and S. H. Christiansen, “Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology,” Prog. Surf. Sci. 88, 39–60 (2013).

Sci. Rep. (1)

Y. Li, M. Li, R. Li, P. Fu, T. Wang, Y. Luo, J. M. Mbengue, and M. Trevor, “Exact comprehensive equations for the photon management properties of silicon nanowire,” Sci. Rep. 6, 24847 (2016).

Semicond. Sci. Technol. (1)

C. Büttner, N. Zakharov, E. Pippel, U. Gösele, and P. Werner, “Gold-enhanced oxidation of MBE-grown silicon nanowires,” Semicond. Sci. Technol. 23, 075040 (2008).

Sens. Actuators B Chem. (1)

S. Chen, A. van den Berg, and E. T. Carlen, “Sensitivity and detection limit analysis of silicon nanowire bio (chemical) sensors,” Sens. Actuators B Chem. 209, 486–489 (2015).

Small (1)

T. Xie, V. Schmidt, E. Pippel, S. Senz, and U. Gösele, “Gold-Enhanced Low-Temperature Oxidation of Silicon Nanowires,” Small 4(1), 64–68 (2008).

Sol. Energy Mater. Sol. Cells (1)

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009).

Other (1)

B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.3,” arXiv:1305.6497 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A schematic diagram of the light concentration effect of an O-SiNW; and (b) the extinction and absorption efficiency curves for a single SiNW with a diameter of 60 nm and a length of 1 μm.
Fig. 2
Fig. 2 Optical resonances of O-SiNWs with a constant length, 1 μm, a constant total diameter, 60 nm, but various silicon core diameters from 10 to 60 nm. (a) Extinction efficiency curves. (b) AM1.5-weighted ratios of the absorbed sunlight (red triangles), and average extinction efficiencies in waveband 0.3-0.6 µm (blue circles).
Fig. 3
Fig. 3 Morphological features of O-SiNWs. (a-d) SEM images of SiNWs oxidized for 0, 5, 10, and 30 mins, respectively; (e-h) corresponding TEM images; (i) scanning line in the element energy-spectrum analyses for two adjacent SiNWs in the sample oxidized for 10 mins; (j) the EDX element spectrum; and (k) the EDX line profiles.
Fig. 4
Fig. 4 Light-trapping performance of O-SiNW arrays. (a) Reflectance spectrum curves of SiNW arrays oxidized by 0, 5, 10 and 30 mins; (b) AM1.5-weighted average reflectance of O-SiNW arrays.
Fig. 5
Fig. 5 Schematic illustrations of solar cells using an O-SiNW array to trap sunlight: (a) all-back-contact structure; (b) selective-textured solar cell structure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J s c q { ( 1 27.3 % ) Q a b s Q e x t F ( λ ) d λ + ( 1 3.9 % ) 1 - Q a b s Q e x t F ( λ ) d λ } I Q E
J s c q { ( 1 90.5 % ) Q a b s Q e x t F ( λ ) d λ + ( 1 3.0 % ) 1 - Q a b s Q e x t F ( λ ) d λ } I Q E .

Metrics