Abstract

- This paper presents the optics design for a microscale Selective Laser Sintering (μ-SLS) system that aims to allow large areas of nanoparticles to be sintered simultaneously while still maintaining micrometer scale feature resolutions in order to improve the throughput of the microscale additive manufacturing process. The optics design is shown to be able to sinter a 2.3 mm by 1.3 mm area of metal nanoparticles that have been spread into a ~400 nm thick layer with a feature resolution of ~3 μm in a single shot. The optical resolution of this system is shown to be ~1.2 μm indicating that only about 2-3 pixels are needed to form a good sintered part. In addition, using the optical design presented in this paper, it is estimated that the μ-SLS system should be able to achieve a volumetric throughput of ~63 mm3/hr, making this process one of the highest throughput processes available today for the microscale additive manufacturing of three-dimensional metal structures.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large-area, high-resolution pattern replication by the use of a two-aspherical-mirror system

H. Kinoshita, K. Kurihara, T. Mizota, T. Haga, H. Takenaka, and Y. Torii
Appl. Opt. 32(34) 7079-7083 (1993)

Video-rate structured illumination microscopy for high-throughput imaging of large tissue areas

Tyler C. Schlichenmeyer, Mei Wang, Katherine N. Elfer, and J. Quincy Brown
Biomed. Opt. Express 5(2) 366-377 (2014)

Printing of metallic 3D micro-objects by laser induced forward transfer

Michael Zenou and Zvi Kotler
Opt. Express 24(2) 1431-1446 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Alting, F. Kimura, H. N. Hansen, and G. Bissacco, “Micro engineering,” CIRP Ann. Technol. 52(2), 635–657 (2003).
  2. M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” Int. J. Adv. Manuf. Technol. 67(5–8), 1721–1754 (2013).
  3. K. Best, R. McCleary, R. Hollman, and P. Holmes, "Advanced lithography and electroplating approach to form high-aspect ratio copper pillars," in International Symposium on Microelectronics (2015), (1), pp. 793–798.
  4. J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).
  5. J. P. Gambino, S. A. Adderly, and J. U. Knickerbocker, “An overview of through-silicon-via technology and manufacturing challenges,” Microelectron. Eng. 135, 73–106 (2015).
  6. A. Syed, K. Dhandapani, R. Moody, L. Nicholls, and M. Kelly, "Cu Pillar and μ-bump electromigration reliability and comparison with high pb, SnPb, and SnAg bumps," in Proceedings - Electronic Components and Technology Conference (2011), pp. 332–339.
  7. S. Lee, Y. X. Guo, and C. K. Ong, "Electromigration effect on Cu-pillar(Sn) bumps," Electron. Packag. Technol. Conf. 2005. EPTC 2005. Proc. 7th 1, 5 pp. (2005).
  8. W. W. Flack, H. A. Nguyen, E. Capsuto, and C. McEwen, "Characterization of a thick copper pillar bump process," in Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces (2008), pp. 208–213.
  9. J. H. Lau, “Recent Advances and New Trends in Flip Chip Technology,” J. Electron. Packag. 138(3), 30802 (2016).
  10. K. M. Takahashi, “Transport Phenomena That Control Electroplated Copper Filling of Submicron Vias and Trenches,” J. Electrochem. Soc. 146(12), 4499 (1999).
  11. S. Castaldi, D. Fritz, and R. Schaeffer, “Limits of copper plating in high aspect ratio microvias,” Circuit World 25(2), 35–40 (1999).
  12. Nanoscribe, "Next Generation of 3D Laser Lithography: Photonic ProfessionalGT - Faster Than Ever!," (2015).
  13. J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).
  14. J. A. Lewis, “Direct Ink Writing of 3D Functional Materials,” Adv. Funct. Mater. 16(17), 2193–2204 (2006).
  15. C. Spadaccini, J. Kuntz, E. Duoss, and I. Urbana-champaign, "Additive manufacturing techniques deliver three-dimensional microstructures with previously unobtainable material properties," Lawrence Livermore Natl. Lab. Sci. Technol. Rev. (March), 14–20 (2012).
  16. M. M. Sundaram, A. B. Kamaraj, and V. S. Kumar, “Mask-Less Electrochemical Additive Manufacturing : A Feasibility Study,” J. Manuf. Sci. Eng. 137, 21006 (2015).
  17. Optomec, "Aerosol Jet 300 Series systems for Development of Printed Electronics and Biologics," (2015).
  18. S. D. Allen, “Laser chemical vapor deposition: A technique for selective area deposition,” J. Appl. Phys. 52(11), 6501–6505 (1981).
  19. K. Edstro m, D. Brandell, T. Gustafsson, and L. Nyholm, "Electrodeposition as a Tool for 3D Microbattery Fabrication,” Interface Mag. 20(2), 41–46 (2011).
  20. L. Besra and M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD),” Prog. Mater. Sci. 52(1), 1–61 (2007).
  21. L. E. Ocola, C. Rue, and D. Maas, “High-resolution direct-write patterning using focused ion beams,” MRS Bull. 39(4), 336–341 (2014).
  22. E. e-M. Solutions, "Systems and Equipment for Metal Manufacturing," https://www.eos.info/systems_solutions/metal .
  23. L. M. Processing, "Selective laser sintering," https://www.3dsystems.com/on-demand-manufacturing/selective-laser-sintering .
  24. K. An, S. Hong, S. Han, H. Lee, J. Yeo, and S. H. Ko, “Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device,” ACS Appl. Mater. Interfaces 6(4), 2786–2790 (2014).
  25. Y. Son, T. W. Lim, J. Yeo, S. H. Ko, and D.-Y. Yang, "Fabrication of Nanoscale Conductors by Selective Femptosecond Laser Sintering of Metal Nanoparticles," in Proc. 10th IEEE Int. Conf. Nanotechnol. (2010), 390–393.
  26. S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fráchet, and D. Poulikakos, “Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles,” Appl. Phys. Lett. 90(14), 2719162 (2007).
  27. M. Zenou, O. Ermak, A. Saar, and Z. Kotler, "Laser sintering of copper nanoparticles," J. Appl. Phys. D 25501, 025501 (2013).
  28. Y. Son, Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, and K. H. Nam, "Nanoscale Electronics : Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles," Adv. Mater. 23(28), 3176-3181 (2011).
  29. Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).
  30. J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).
  31. J. Yeo, S. Hong, D. Lee, N. Hotz, M. Lee, C. P. Grigoropoulos, and S. H. Ko, “Next Generation Non-Vacuum, Maskless,” Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics 7(8), 1–9 (2012).
  32. N. K. Roy, D. Behera, O. G. Dibua, C. S. Foong, and M. A. Cullinan, A Novel Microscale Selective Laser Sintering (μ-SLS) Process for the Fabrication of 3D Electronic Parts, working Paper (2018).
  33. T. Instruments and I. Dlps "DLP6500FLQ 0 . 65 1080p MVSP Type A DMD," (2014).
  34. H. Lee, J. Kwon, W. S. Shin, H. R. Kim, J. Shin, H. Cho, S. Han, J. Yeo, and S. Hong, “Large-area compatible laser sintering schemes with a spatially extended focused beam,” Micromachines (Basel) 8(5), 153 (2017).
  35. I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).
  36. N. K. Roy, O. G. Dibua, W. Jou, F. He, J. Jeong, Y. Wang, and M. A. Cullinan, “A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers,” J. Micro Nano-Manufacturing 6(1), 10903 (2017).
  37. N. K. Roy and M. A. Cullinan, “Fast Trajectory Tracking of a Flexure-based, Multi-Axis Nanopositioner with 50 mm Travel,” IEEE/ASME Trans. Mechatron., in review.
  38. K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
  39. Y. Qin, "Overview of micro-manufacturing," in Micro-Manufacturing Engineering and Technology (2010), pp. 1–23.
  40. W. L. Jin, X. L. Phung, B. Kim, G. Lim, and D. W. Cho, “Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology,” J. Biomed. Mater. Res. B Appl. Biomater. 87(1), 1–9 (2008).

2017 (2)

H. Lee, J. Kwon, W. S. Shin, H. R. Kim, J. Shin, H. Cho, S. Han, J. Yeo, and S. Hong, “Large-area compatible laser sintering schemes with a spatially extended focused beam,” Micromachines (Basel) 8(5), 153 (2017).

N. K. Roy, O. G. Dibua, W. Jou, F. He, J. Jeong, Y. Wang, and M. A. Cullinan, “A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers,” J. Micro Nano-Manufacturing 6(1), 10903 (2017).

2016 (1)

J. H. Lau, “Recent Advances and New Trends in Flip Chip Technology,” J. Electron. Packag. 138(3), 30802 (2016).

2015 (3)

J. P. Gambino, S. A. Adderly, and J. U. Knickerbocker, “An overview of through-silicon-via technology and manufacturing challenges,” Microelectron. Eng. 135, 73–106 (2015).

M. M. Sundaram, A. B. Kamaraj, and V. S. Kumar, “Mask-Less Electrochemical Additive Manufacturing : A Feasibility Study,” J. Manuf. Sci. Eng. 137, 21006 (2015).

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).

2014 (3)

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

L. E. Ocola, C. Rue, and D. Maas, “High-resolution direct-write patterning using focused ion beams,” MRS Bull. 39(4), 336–341 (2014).

K. An, S. Hong, S. Han, H. Lee, J. Yeo, and S. H. Ko, “Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device,” ACS Appl. Mater. Interfaces 6(4), 2786–2790 (2014).

2013 (2)

M. Zenou, O. Ermak, A. Saar, and Z. Kotler, "Laser sintering of copper nanoparticles," J. Appl. Phys. D 25501, 025501 (2013).

M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” Int. J. Adv. Manuf. Technol. 67(5–8), 1721–1754 (2013).

2012 (2)

J. Yeo, S. Hong, D. Lee, N. Hotz, M. Lee, C. P. Grigoropoulos, and S. H. Ko, “Next Generation Non-Vacuum, Maskless,” Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics 7(8), 1–9 (2012).

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).

2011 (2)

Y. Son, Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, and K. H. Nam, "Nanoscale Electronics : Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles," Adv. Mater. 23(28), 3176-3181 (2011).

K. Edstro m, D. Brandell, T. Gustafsson, and L. Nyholm, "Electrodeposition as a Tool for 3D Microbattery Fabrication,” Interface Mag. 20(2), 41–46 (2011).

2008 (2)

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).

W. L. Jin, X. L. Phung, B. Kim, G. Lim, and D. W. Cho, “Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology,” J. Biomed. Mater. Res. B Appl. Biomater. 87(1), 1–9 (2008).

2007 (3)

L. Besra and M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD),” Prog. Mater. Sci. 52(1), 1–61 (2007).

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fráchet, and D. Poulikakos, “Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles,” Appl. Phys. Lett. 90(14), 2719162 (2007).

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

2006 (2)

J. A. Lewis, “Direct Ink Writing of 3D Functional Materials,” Adv. Funct. Mater. 16(17), 2193–2204 (2006).

J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).

2003 (1)

L. Alting, F. Kimura, H. N. Hansen, and G. Bissacco, “Micro engineering,” CIRP Ann. Technol. 52(2), 635–657 (2003).

1999 (2)

K. M. Takahashi, “Transport Phenomena That Control Electroplated Copper Filling of Submicron Vias and Trenches,” J. Electrochem. Soc. 146(12), 4499 (1999).

S. Castaldi, D. Fritz, and R. Schaeffer, “Limits of copper plating in high aspect ratio microvias,” Circuit World 25(2), 35–40 (1999).

1981 (1)

S. D. Allen, “Laser chemical vapor deposition: A technique for selective area deposition,” J. Appl. Phys. 52(11), 6501–6505 (1981).

Adair, K.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

Adderly, S. A.

J. P. Gambino, S. A. Adderly, and J. U. Knickerbocker, “An overview of through-silicon-via technology and manufacturing challenges,” Microelectron. Eng. 135, 73–106 (2015).

Allen, S. D.

S. D. Allen, “Laser chemical vapor deposition: A technique for selective area deposition,” J. Appl. Phys. 52(11), 6501–6505 (1981).

Alleyne, A. G.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

Alting, L.

L. Alting, F. Kimura, H. N. Hansen, and G. Bissacco, “Micro engineering,” CIRP Ann. Technol. 52(2), 635–657 (2003).

An, K.

K. An, S. Hong, S. Han, H. Lee, J. Yeo, and S. H. Ko, “Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device,” ACS Appl. Mater. Interfaces 6(4), 2786–2790 (2014).

Andry, P. S.

J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).

Barton, K.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

Besra, L.

L. Besra and M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD),” Prog. Mater. Sci. 52(1), 1–61 (2007).

Best, K.

K. Best, R. McCleary, R. Hollman, and P. Holmes, "Advanced lithography and electroplating approach to form high-aspect ratio copper pillars," in International Symposium on Microelectronics (2015), (1), pp. 793–798.

Bissacco, G.

L. Alting, F. Kimura, H. N. Hansen, and G. Bissacco, “Micro engineering,” CIRP Ann. Technol. 52(2), 635–657 (2003).

Brandell, D.

K. Edstro m, D. Brandell, T. Gustafsson, and L. Nyholm, "Electrodeposition as a Tool for 3D Microbattery Fabrication,” Interface Mag. 20(2), 41–46 (2011).

Buchwalter, L. P.

J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).

Capsuto, E.

W. W. Flack, H. A. Nguyen, E. Capsuto, and C. McEwen, "Characterization of a thick copper pillar bump process," in Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces (2008), pp. 208–213.

Castaldi, S.

S. Castaldi, D. Fritz, and R. Schaeffer, “Limits of copper plating in high aspect ratio microvias,” Circuit World 25(2), 35–40 (1999).

Cho, D. W.

W. L. Jin, X. L. Phung, B. Kim, G. Lim, and D. W. Cho, “Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology,” J. Biomed. Mater. Res. B Appl. Biomater. 87(1), 1–9 (2008).

Cho, H.

H. Lee, J. Kwon, W. S. Shin, H. R. Kim, J. Shin, H. Cho, S. Han, J. Yeo, and S. Hong, “Large-area compatible laser sintering schemes with a spatially extended focused beam,” Micromachines (Basel) 8(5), 153 (2017).

Choa, S. H.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Choi, J. H.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Cullinan, M. A.

N. K. Roy, O. G. Dibua, W. Jou, F. He, J. Jeong, Y. Wang, and M. A. Cullinan, “A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers,” J. Micro Nano-Manufacturing 6(1), 10903 (2017).

N. K. Roy and M. A. Cullinan, “Fast Trajectory Tracking of a Flexure-based, Multi-Axis Nanopositioner with 50 mm Travel,” IEEE/ASME Trans. Mechatron., in review.

Dibua, O. G.

N. K. Roy, O. G. Dibua, W. Jou, F. He, J. Jeong, Y. Wang, and M. A. Cullinan, “A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers,” J. Micro Nano-Manufacturing 6(1), 10903 (2017).

Edstro m, K.

K. Edstro m, D. Brandell, T. Gustafsson, and L. Nyholm, "Electrodeposition as a Tool for 3D Microbattery Fabrication,” Interface Mag. 20(2), 41–46 (2011).

Ermak, O.

M. Zenou, O. Ermak, A. Saar, and Z. Kotler, "Laser sintering of copper nanoparticles," J. Appl. Phys. D 25501, 025501 (2013).

Ferreira, P. M.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

Flack, W. W.

W. W. Flack, H. A. Nguyen, E. Capsuto, and C. McEwen, "Characterization of a thick copper pillar bump process," in Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces (2008), pp. 208–213.

Fráchet, J. M. J.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fráchet, and D. Poulikakos, “Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles,” Appl. Phys. Lett. 90(14), 2719162 (2007).

Fritz, D.

S. Castaldi, D. Fritz, and R. Schaeffer, “Limits of copper plating in high aspect ratio microvias,” Circuit World 25(2), 35–40 (1999).

Gambino, J. P.

J. P. Gambino, S. A. Adderly, and J. U. Knickerbocker, “An overview of through-silicon-via technology and manufacturing challenges,” Microelectron. Eng. 135, 73–106 (2015).

Gan, H.

J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).

Georgiadis, J. G.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

Geremia, R.

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).

Grigoropoulos, C. P.

J. Yeo, S. Hong, D. Lee, N. Hotz, M. Lee, C. P. Grigoropoulos, and S. H. Ko, “Next Generation Non-Vacuum, Maskless,” Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics 7(8), 1–9 (2012).

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fráchet, and D. Poulikakos, “Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles,” Appl. Phys. Lett. 90(14), 2719162 (2007).

Gustafsson, T.

K. Edstro m, D. Brandell, T. Gustafsson, and L. Nyholm, "Electrodeposition as a Tool for 3D Microbattery Fabrication,” Interface Mag. 20(2), 41–46 (2011).

Ha, C. W.

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).

Han, S.

H. Lee, J. Kwon, W. S. Shin, H. R. Kim, J. Shin, H. Cho, S. Han, J. Yeo, and S. Hong, “Large-area compatible laser sintering schemes with a spatially extended focused beam,” Micromachines (Basel) 8(5), 153 (2017).

K. An, S. Hong, S. Han, H. Lee, J. Yeo, and S. H. Ko, “Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device,” ACS Appl. Mater. Interfaces 6(4), 2786–2790 (2014).

Hansen, H. N.

L. Alting, F. Kimura, H. N. Hansen, and G. Bissacco, “Micro engineering,” CIRP Ann. Technol. 52(2), 635–657 (2003).

Hardy, M.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

He, F.

N. K. Roy, O. G. Dibua, W. Jou, F. He, J. Jeong, Y. Wang, and M. A. Cullinan, “A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers,” J. Micro Nano-Manufacturing 6(1), 10903 (2017).

Hollman, R.

K. Best, R. McCleary, R. Hollman, and P. Holmes, "Advanced lithography and electroplating approach to form high-aspect ratio copper pillars," in International Symposium on Microelectronics (2015), (1), pp. 793–798.

Holmes, P.

K. Best, R. McCleary, R. Hollman, and P. Holmes, "Advanced lithography and electroplating approach to form high-aspect ratio copper pillars," in International Symposium on Microelectronics (2015), (1), pp. 793–798.

Hong, S.

H. Lee, J. Kwon, W. S. Shin, H. R. Kim, J. Shin, H. Cho, S. Han, J. Yeo, and S. Hong, “Large-area compatible laser sintering schemes with a spatially extended focused beam,” Micromachines (Basel) 8(5), 153 (2017).

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

K. An, S. Hong, S. Han, H. Lee, J. Yeo, and S. H. Ko, “Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device,” ACS Appl. Mater. Interfaces 6(4), 2786–2790 (2014).

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).

J. Yeo, S. Hong, D. Lee, N. Hotz, M. Lee, C. P. Grigoropoulos, and S. H. Ko, “Next Generation Non-Vacuum, Maskless,” Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics 7(8), 1–9 (2012).

Y. Son, Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, and K. H. Nam, "Nanoscale Electronics : Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles," Adv. Mater. 23(28), 3176-3181 (2011).

Hong, W. H.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Horton, R. R.

J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).

Hotz, N.

J. Yeo, S. Hong, D. Lee, N. Hotz, M. Lee, C. P. Grigoropoulos, and S. H. Ko, “Next Generation Non-Vacuum, Maskless,” Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics 7(8), 1–9 (2012).

Jeong, J.

N. K. Roy, O. G. Dibua, W. Jou, F. He, J. Jeong, Y. Wang, and M. A. Cullinan, “A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers,” J. Micro Nano-Manufacturing 6(1), 10903 (2017).

Jin, W. L.

W. L. Jin, X. L. Phung, B. Kim, G. Lim, and D. W. Cho, “Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology,” J. Biomed. Mater. Res. B Appl. Biomater. 87(1), 1–9 (2008).

Jou, W.

N. K. Roy, O. G. Dibua, W. Jou, F. He, J. Jeong, Y. Wang, and M. A. Cullinan, “A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers,” J. Micro Nano-Manufacturing 6(1), 10903 (2017).

Kamaraj, A. B.

M. M. Sundaram, A. B. Kamaraj, and V. S. Kumar, “Mask-Less Electrochemical Additive Manufacturing : A Feasibility Study,” J. Manuf. Sci. Eng. 137, 21006 (2015).

Kang, H. W.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Kang, S. J.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

Karnakis, D.

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).

Kim, B.

W. L. Jin, X. L. Phung, B. Kim, G. Lim, and D. W. Cho, “Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology,” J. Biomed. Mater. Res. B Appl. Biomater. 87(1), 1–9 (2008).

Kim, D.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Kim, G.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Kim, H. R.

H. Lee, J. Kwon, W. S. Shin, H. R. Kim, J. Shin, H. Cho, S. Han, J. Yeo, and S. Hong, “Large-area compatible laser sintering schemes with a spatially extended focused beam,” Micromachines (Basel) 8(5), 153 (2017).

Kim, M. S.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Kim, R. H.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).

Kimura, F.

L. Alting, F. Kimura, H. N. Hansen, and G. Bissacco, “Micro engineering,” CIRP Ann. Technol. 52(2), 635–657 (2003).

Knickerbocker, J. U.

J. P. Gambino, S. A. Adderly, and J. U. Knickerbocker, “An overview of through-silicon-via technology and manufacturing challenges,” Microelectron. Eng. 135, 73–106 (2015).

J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).

Ko, J. M.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Ko, S. H.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

K. An, S. Hong, S. Han, H. Lee, J. Yeo, and S. H. Ko, “Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device,” ACS Appl. Mater. Interfaces 6(4), 2786–2790 (2014).

J. Yeo, S. Hong, D. Lee, N. Hotz, M. Lee, C. P. Grigoropoulos, and S. H. Ko, “Next Generation Non-Vacuum, Maskless,” Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics 7(8), 1–9 (2012).

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fráchet, and D. Poulikakos, “Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles,” Appl. Phys. Lett. 90(14), 2719162 (2007).

Y. Son, T. W. Lim, J. Yeo, S. H. Ko, and D.-Y. Yang, "Fabrication of Nanoscale Conductors by Selective Femptosecond Laser Sintering of Metal Nanoparticles," in Proc. 10th IEEE Int. Conf. Nanotechnol. (2010), 390–393.

Kotler, Z.

M. Zenou, O. Ermak, A. Saar, and Z. Kotler, "Laser sintering of copper nanoparticles," J. Appl. Phys. D 25501, 025501 (2013).

Kumar, V. S.

M. M. Sundaram, A. B. Kamaraj, and V. S. Kumar, “Mask-Less Electrochemical Additive Manufacturing : A Feasibility Study,” J. Manuf. Sci. Eng. 137, 21006 (2015).

Kwon, J.

H. Lee, J. Kwon, W. S. Shin, H. R. Kim, J. Shin, H. Cho, S. Han, J. Yeo, and S. Hong, “Large-area compatible laser sintering schemes with a spatially extended focused beam,” Micromachines (Basel) 8(5), 153 (2017).

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Lau, J. H.

J. H. Lau, “Recent Advances and New Trends in Flip Chip Technology,” J. Electron. Packag. 138(3), 30802 (2016).

Lee, C. Y.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

Lee, D.

J. Yeo, S. Hong, D. Lee, N. Hotz, M. Lee, C. P. Grigoropoulos, and S. H. Ko, “Next Generation Non-Vacuum, Maskless,” Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics 7(8), 1–9 (2012).

Lee, H.

H. Lee, J. Kwon, W. S. Shin, H. R. Kim, J. Shin, H. Cho, S. Han, J. Yeo, and S. Hong, “Large-area compatible laser sintering schemes with a spatially extended focused beam,” Micromachines (Basel) 8(5), 153 (2017).

K. An, S. Hong, S. Han, H. Lee, J. Yeo, and S. H. Ko, “Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device,” ACS Appl. Mater. Interfaces 6(4), 2786–2790 (2014).

Lee, H. B.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Lee, J.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).

Lee, K.-S.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).

Lee, M.

J. Yeo, S. Hong, D. Lee, N. Hotz, M. Lee, C. P. Grigoropoulos, and S. H. Ko, “Next Generation Non-Vacuum, Maskless,” Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics 7(8), 1–9 (2012).

Lee, S. H.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Lewis, J. A.

J. A. Lewis, “Direct Ink Writing of 3D Functional Materials,” Adv. Funct. Mater. 16(17), 2193–2204 (2006).

Lim, G.

W. L. Jin, X. L. Phung, B. Kim, G. Lim, and D. W. Cho, “Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology,” J. Biomed. Mater. Res. B Appl. Biomater. 87(1), 1–9 (2008).

Lim, T. W.

Y. Son, Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, and K. H. Nam, "Nanoscale Electronics : Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles," Adv. Mater. 23(28), 3176-3181 (2011).

Y. Son, T. W. Lim, J. Yeo, S. H. Ko, and D.-Y. Yang, "Fabrication of Nanoscale Conductors by Selective Femptosecond Laser Sintering of Metal Nanoparticles," in Proc. 10th IEEE Int. Conf. Nanotechnol. (2010), 390–393.

Liu, M.

L. Besra and M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD),” Prog. Mater. Sci. 52(1), 1–61 (2007).

Luscombe, C. K.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fráchet, and D. Poulikakos, “Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles,” Appl. Phys. Lett. 90(14), 2719162 (2007).

Maas, D.

L. E. Ocola, C. Rue, and D. Maas, “High-resolution direct-write patterning using focused ion beams,” MRS Bull. 39(4), 336–341 (2014).

McCleary, R.

K. Best, R. McCleary, R. Hollman, and P. Holmes, "Advanced lithography and electroplating approach to form high-aspect ratio copper pillars," in International Symposium on Microelectronics (2015), (1), pp. 793–798.

McEwen, C.

W. W. Flack, H. A. Nguyen, E. Capsuto, and C. McEwen, "Characterization of a thick copper pillar bump process," in Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces (2008), pp. 208–213.

Moon, H.

Y. Son, Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, and K. H. Nam, "Nanoscale Electronics : Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles," Adv. Mater. 23(28), 3176-3181 (2011).

Mukhopadhyay, D. K.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

Nam, K. H.

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).

Y. Son, Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, and K. H. Nam, "Nanoscale Electronics : Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles," Adv. Mater. 23(28), 3176-3181 (2011).

Nguyen, H. A.

W. W. Flack, H. A. Nguyen, E. Capsuto, and C. McEwen, "Characterization of a thick copper pillar bump process," in Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces (2008), pp. 208–213.

Nyholm, L.

K. Edstro m, D. Brandell, T. Gustafsson, and L. Nyholm, "Electrodeposition as a Tool for 3D Microbattery Fabrication,” Interface Mag. 20(2), 41–46 (2011).

Ocola, L. E.

L. E. Ocola, C. Rue, and D. Maas, “High-resolution direct-write patterning using focused ion beams,” MRS Bull. 39(4), 336–341 (2014).

Pan, H.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fráchet, and D. Poulikakos, “Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles,” Appl. Phys. Lett. 90(14), 2719162 (2007).

Park, J.-U.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

Park, S. H.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).

Patel, C. S.

J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).

Phung, X. L.

W. L. Jin, X. L. Phung, B. Kim, G. Lim, and D. W. Cho, “Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology,” J. Biomed. Mater. Res. B Appl. Biomater. 87(1), 1–9 (2008).

Polastre, R. J.

J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).

Poulikakos, D.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fráchet, and D. Poulikakos, “Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles,” Appl. Phys. Lett. 90(14), 2719162 (2007).

Rogers, J. A.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

Roy, N. K.

N. K. Roy, O. G. Dibua, W. Jou, F. He, J. Jeong, Y. Wang, and M. A. Cullinan, “A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers,” J. Micro Nano-Manufacturing 6(1), 10903 (2017).

N. K. Roy and M. A. Cullinan, “Fast Trajectory Tracking of a Flexure-based, Multi-Axis Nanopositioner with 50 mm Travel,” IEEE/ASME Trans. Mechatron., in review.

Rue, C.

L. E. Ocola, C. Rue, and D. Maas, “High-resolution direct-write patterning using focused ion beams,” MRS Bull. 39(4), 336–341 (2014).

Saar, A.

M. Zenou, O. Ermak, A. Saar, and Z. Kotler, "Laser sintering of copper nanoparticles," J. Appl. Phys. D 25501, 025501 (2013).

Schaeffer, R.

S. Castaldi, D. Fritz, and R. Schaeffer, “Limits of copper plating in high aspect ratio microvias,” Circuit World 25(2), 35–40 (1999).

Seitz, H.

M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” Int. J. Adv. Manuf. Technol. 67(5–8), 1721–1754 (2013).

Shin, J.

H. Lee, J. Kwon, W. S. Shin, H. R. Kim, J. Shin, H. Cho, S. Han, J. Yeo, and S. Hong, “Large-area compatible laser sintering schemes with a spatially extended focused beam,” Micromachines (Basel) 8(5), 153 (2017).

Shin, W. S.

H. Lee, J. Kwon, W. S. Shin, H. R. Kim, J. Shin, H. Cho, S. Han, J. Yeo, and S. Hong, “Large-area compatible laser sintering schemes with a spatially extended focused beam,” Micromachines (Basel) 8(5), 153 (2017).

Son, Y.

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).

Y. Son, Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, and K. H. Nam, "Nanoscale Electronics : Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles," Adv. Mater. 23(28), 3176-3181 (2011).

Y. Son, Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, and K. H. Nam, "Nanoscale Electronics : Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles," Adv. Mater. 23(28), 3176-3181 (2011).

Y. Son, T. W. Lim, J. Yeo, S. H. Ko, and D.-Y. Yang, "Fabrication of Nanoscale Conductors by Selective Femptosecond Laser Sintering of Metal Nanoparticles," in Proc. 10th IEEE Int. Conf. Nanotechnol. (2010), 390–393.

Sprogis, E. J.

J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).

Strano, M. S.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

Suh, Y. D.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Sundaram, M. M.

M. M. Sundaram, A. B. Kamaraj, and V. S. Kumar, “Mask-Less Electrochemical Additive Manufacturing : A Feasibility Study,” J. Manuf. Sci. Eng. 137, 21006 (2015).

Sung, H. J.

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Takahashi, K. M.

K. M. Takahashi, “Transport Phenomena That Control Electroplated Copper Filling of Submicron Vias and Trenches,” J. Electrochem. Soc. 146(12), 4499 (1999).

Theodorakos, I.

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).

Tsang, C. K.

J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).

Vaezi, M.

M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” Int. J. Adv. Manuf. Technol. 67(5–8), 1721–1754 (2013).

Wang, Y.

N. K. Roy, O. G. Dibua, W. Jou, F. He, J. Jeong, Y. Wang, and M. A. Cullinan, “A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers,” J. Micro Nano-Manufacturing 6(1), 10903 (2017).

Wright, S. L.

J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).

Yang, D. Y.

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).

Yang, D.-Y.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).

Y. Son, T. W. Lim, J. Yeo, S. H. Ko, and D.-Y. Yang, "Fabrication of Nanoscale Conductors by Selective Femptosecond Laser Sintering of Metal Nanoparticles," in Proc. 10th IEEE Int. Conf. Nanotechnol. (2010), 390–393.

Yang, S.

M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” Int. J. Adv. Manuf. Technol. 67(5–8), 1721–1754 (2013).

Yeo, J.

H. Lee, J. Kwon, W. S. Shin, H. R. Kim, J. Shin, H. Cho, S. Han, J. Yeo, and S. Hong, “Large-area compatible laser sintering schemes with a spatially extended focused beam,” Micromachines (Basel) 8(5), 153 (2017).

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

K. An, S. Hong, S. Han, H. Lee, J. Yeo, and S. H. Ko, “Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device,” ACS Appl. Mater. Interfaces 6(4), 2786–2790 (2014).

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).

J. Yeo, S. Hong, D. Lee, N. Hotz, M. Lee, C. P. Grigoropoulos, and S. H. Ko, “Next Generation Non-Vacuum, Maskless,” Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics 7(8), 1–9 (2012).

Y. Son, Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, and K. H. Nam, "Nanoscale Electronics : Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles," Adv. Mater. 23(28), 3176-3181 (2011).

Y. Son, T. W. Lim, J. Yeo, S. H. Ko, and D.-Y. Yang, "Fabrication of Nanoscale Conductors by Selective Femptosecond Laser Sintering of Metal Nanoparticles," in Proc. 10th IEEE Int. Conf. Nanotechnol. (2010), 390–393.

Zacharatos, F.

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).

Zenou, M.

M. Zenou, O. Ermak, A. Saar, and Z. Kotler, "Laser sintering of copper nanoparticles," J. Appl. Phys. D 25501, 025501 (2013).

Zergioti, I.

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).

ACS Appl. Mater. Interfaces (1)

K. An, S. Hong, S. Han, H. Lee, J. Yeo, and S. H. Ko, “Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device,” ACS Appl. Mater. Interfaces 6(4), 2786–2790 (2014).

Adv. Funct. Mater. (1)

J. A. Lewis, “Direct Ink Writing of 3D Functional Materials,” Adv. Funct. Mater. 16(17), 2193–2204 (2006).

Adv. Mater. (1)

Y. Son, Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, and K. H. Nam, "Nanoscale Electronics : Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles," Adv. Mater. 23(28), 3176-3181 (2011).

Appl. Phys. Lett. (1)

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fráchet, and D. Poulikakos, “Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles,” Appl. Phys. Lett. 90(14), 2719162 (2007).

Appl. Surf. Sci. (1)

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).

Circuit World (1)

S. Castaldi, D. Fritz, and R. Schaeffer, “Limits of copper plating in high aspect ratio microvias,” Circuit World 25(2), 35–40 (1999).

CIRP Ann. Technol. (1)

L. Alting, F. Kimura, H. N. Hansen, and G. Bissacco, “Micro engineering,” CIRP Ann. Technol. 52(2), 635–657 (2003).

IEEE J. Solid-State Circuits (1)

J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits 41(8), 1718–1725 (2006).

Int. J. Adv. Manuf. Technol. (1)

M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” Int. J. Adv. Manuf. Technol. 67(5–8), 1721–1754 (2013).

Interface Mag. (1)

K. Edstro m, D. Brandell, T. Gustafsson, and L. Nyholm, "Electrodeposition as a Tool for 3D Microbattery Fabrication,” Interface Mag. 20(2), 41–46 (2011).

J. Appl. Phys. (1)

S. D. Allen, “Laser chemical vapor deposition: A technique for selective area deposition,” J. Appl. Phys. 52(11), 6501–6505 (1981).

J. Appl. Phys. D (1)

M. Zenou, O. Ermak, A. Saar, and Z. Kotler, "Laser sintering of copper nanoparticles," J. Appl. Phys. D 25501, 025501 (2013).

J. Biomed. Mater. Res. B Appl. Biomater. (1)

W. L. Jin, X. L. Phung, B. Kim, G. Lim, and D. W. Cho, “Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology,” J. Biomed. Mater. Res. B Appl. Biomater. 87(1), 1–9 (2008).

J. Electrochem. Soc. (1)

K. M. Takahashi, “Transport Phenomena That Control Electroplated Copper Filling of Submicron Vias and Trenches,” J. Electrochem. Soc. 146(12), 4499 (1999).

J. Electron. Packag. (1)

J. H. Lau, “Recent Advances and New Trends in Flip Chip Technology,” J. Electron. Packag. 138(3), 30802 (2016).

J. Manuf. Sci. Eng. (1)

M. M. Sundaram, A. B. Kamaraj, and V. S. Kumar, “Mask-Less Electrochemical Additive Manufacturing : A Feasibility Study,” J. Manuf. Sci. Eng. 137, 21006 (2015).

J. Micro Nano-Manufacturing (1)

N. K. Roy, O. G. Dibua, W. Jou, F. He, J. Jeong, Y. Wang, and M. A. Cullinan, “A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers,” J. Micro Nano-Manufacturing 6(1), 10903 (2017).

J. Power Sources (1)

J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. D. Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,” J. Power Sources 246, 562–568 (2014).

Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics (1)

J. Yeo, S. Hong, D. Lee, N. Hotz, M. Lee, C. P. Grigoropoulos, and S. H. Ko, “Next Generation Non-Vacuum, Maskless,” Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics 7(8), 1–9 (2012).

Microelectron. Eng. (1)

J. P. Gambino, S. A. Adderly, and J. U. Knickerbocker, “An overview of through-silicon-via technology and manufacturing challenges,” Microelectron. Eng. 135, 73–106 (2015).

Micromachines (Basel) (1)

H. Lee, J. Kwon, W. S. Shin, H. R. Kim, J. Shin, H. Cho, S. Han, J. Yeo, and S. Hong, “Large-area compatible laser sintering schemes with a spatially extended focused beam,” Micromachines (Basel) 8(5), 153 (2017).

MRS Bull. (1)

L. E. Ocola, C. Rue, and D. Maas, “High-resolution direct-write patterning using focused ion beams,” MRS Bull. 39(4), 336–341 (2014).

Nat. Mater. (1)

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, "High-resolution electrohydrodynamic jet printing," Nat. Mater. 6(10), 782–789 (2007).

Prog. Mater. Sci. (1)

L. Besra and M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD),” Prog. Mater. Sci. 52(1), 1–61 (2007).

Prog. Polym. Sci. (1)

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).

Thermochim. Acta (1)

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).

Other (14)

N. K. Roy and M. A. Cullinan, “Fast Trajectory Tracking of a Flexure-based, Multi-Axis Nanopositioner with 50 mm Travel,” IEEE/ASME Trans. Mechatron., in review.

N. K. Roy, D. Behera, O. G. Dibua, C. S. Foong, and M. A. Cullinan, A Novel Microscale Selective Laser Sintering (μ-SLS) Process for the Fabrication of 3D Electronic Parts, working Paper (2018).

T. Instruments and I. Dlps "DLP6500FLQ 0 . 65 1080p MVSP Type A DMD," (2014).

E. e-M. Solutions, "Systems and Equipment for Metal Manufacturing," https://www.eos.info/systems_solutions/metal .

L. M. Processing, "Selective laser sintering," https://www.3dsystems.com/on-demand-manufacturing/selective-laser-sintering .

Y. Son, T. W. Lim, J. Yeo, S. H. Ko, and D.-Y. Yang, "Fabrication of Nanoscale Conductors by Selective Femptosecond Laser Sintering of Metal Nanoparticles," in Proc. 10th IEEE Int. Conf. Nanotechnol. (2010), 390–393.

Optomec, "Aerosol Jet 300 Series systems for Development of Printed Electronics and Biologics," (2015).

Nanoscribe, "Next Generation of 3D Laser Lithography: Photonic ProfessionalGT - Faster Than Ever!," (2015).

C. Spadaccini, J. Kuntz, E. Duoss, and I. Urbana-champaign, "Additive manufacturing techniques deliver three-dimensional microstructures with previously unobtainable material properties," Lawrence Livermore Natl. Lab. Sci. Technol. Rev. (March), 14–20 (2012).

A. Syed, K. Dhandapani, R. Moody, L. Nicholls, and M. Kelly, "Cu Pillar and μ-bump electromigration reliability and comparison with high pb, SnPb, and SnAg bumps," in Proceedings - Electronic Components and Technology Conference (2011), pp. 332–339.

S. Lee, Y. X. Guo, and C. K. Ong, "Electromigration effect on Cu-pillar(Sn) bumps," Electron. Packag. Technol. Conf. 2005. EPTC 2005. Proc. 7th 1, 5 pp. (2005).

W. W. Flack, H. A. Nguyen, E. Capsuto, and C. McEwen, "Characterization of a thick copper pillar bump process," in Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces (2008), pp. 208–213.

K. Best, R. McCleary, R. Hollman, and P. Holmes, "Advanced lithography and electroplating approach to form high-aspect ratio copper pillars," in International Symposium on Microelectronics (2015), (1), pp. 793–798.

Y. Qin, "Overview of micro-manufacturing," in Micro-Manufacturing Engineering and Technology (2010), pp. 1–23.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic showing the optics design for μ-SLS system.
Fig. 2
Fig. 2 Cartoon of the proposed imaging optics.
Fig. 3
Fig. 3 Experimental setup for sintering with DMD using the optical design presented.
Fig. 4
Fig. 4 Figure showing reduction in pattern sizes at the sample plane when compared to the input image at the DMD plane (a) pattern is an array of vertical lines with 10 μm line width, 200 μm spacing and 80 μm boundary (b) a Texas Longhorn logo with an end to end size of 7.61 mm.
Fig. 5
Fig. 5 A collage of different images of sintered patterns- (a) an SEM image showing a single 10 μm sintered line on an unwashed sample (b) an SEM image of a 3μm wide sintered line (c) Optical microscope image of a sintered Texas Longhorn logo (d) Optical microscope image of a washed and sintered sample with an array of 40 μm diameter spots with 80 μm pitch (e) 3D rendering of surface topography of the spots mentioned in part d (f) Surface topography of an array of 10 μm diameter sintered spots with 40 μm pitch.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

D 1  2 y 1 +2 d 1 tan( θ 1 )
&  d 1 60 mm (DMD box dimenison constraint)
d diffraction = 2.44λ f 2 D 2 1μm or smaller
Magnification, m = f 2 f 1 1μm 7μm
Demagnification along the length= Length of the DMD chip Length of the image = 14.59 2.34 =6.23
Demagnification along the width= Width of the DMD chip Width of the image = 8.21 1.23 =6.22
Let the mass of the spin coated Ag ink layer,  m Total  be 1g; Density of bulk silver,  ρ 1  = 10.5 g/c m 3 Density of fluid  ( assuming the density of fluid in the ink is same as the primary solvent ), ρ 2   = 1.12 g c m 3  (density of diethylene glycol) Density of spin coated layer, ρ T =30% of 10.5 g/c m 3 =3.15 g/c m 3    Mass of Ag nanoparticles in the layer,  m 1 =Let it be x g Volume of Ag nanoparticles in the layer,  V 1 = x 10.5  c m 3 Mass of fluid left in the layer,  m 2 =( 1x ) g Volume of fluid in the layer,  V 2 = 1x 1.12  c m 3 Total volume of the spin coated layer,  V Total = Total mass,  m Total ( Density of spin coated layer ) = 1g 3.15 g c m 3 =0.3175 c m 3
Also, Total volume of the spin coated layer,  V Total =Volume of Ag nanoparticle+Volume of the fluid= V 1 + V 2 =( x 10.5 + 1x 1.12   )c m 3
Equating ( 7 )and ( 8 ) x=0.7213
Volume fraction of Ag= V 1 V Total = x 10.5 0.3175 =0.2163 ( assuming spin coated layer density to be 30% of the density of bulk Ag density ) =0.2723 (assuming spin coated layer density to be 35% of the density of bulk Ag density )
previously obtained sintering time of 100 ms = = 50 X 50 2.3 X 1.3   = 821*100 ms= 82.1s

Metrics