Abstract

Terahertz (THz) polarization-maintaining waveguides, which have been considered fundamental elements in polarization-sensitive THz systems, are promising platforms in developing functional THz devices. Here, we propose a THz grating based on a subwavelength rectangular polymer waveguide, which filters two polarization states simultaneously. The proposed gratings are characterized and discussed using numerical simulations. We observe two transmission dips with over a 20.9 dB extinction ratio (ER) and around a 21.1 GHz full-width half-maximum (FWHM), where the reflective frequencies of the two polarization waves and the separation between them can be harnessed with appropriate structure designs. Furthermore, we demonstrate that the grating can operate as a polarization-maintaining narrow bandpass filter (ER>12.3 dB and FWHM<1.7 GHz) by introducing a π-phase shift. This work has the potential to open a new avenue for steering polarized THz radiation using the waveguide-based filters, which could be integrated in THz polarization-sensitive imaging, sensing, and wireless communication systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss air-core polarization maintaining terahertz fiber

Guobin Ren, Yandong Gong, Ping Shum, Xia Yu, JuanJuan Hu, Guanghui Wang, Michael Ong Ling Chuen, and Varghese Paulose
Opt. Express 16(18) 13593-13598 (2008)

Polarization-filtering and polarization-maintaining low-loss negative curvature fibers

Chengli Wei, Curtis R. Menyuk, and Jonathan Hu
Opt. Express 26(8) 9528-9540 (2018)

Polarizing color filter based on a subwavelength metal–dielectric grating

Yan Ye, Yun Zhou, Heng Zhang, and Linsen Chen
Appl. Opt. 50(10) 1356-1363 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. E. Linfield, “A source of fresh hope,” Nat. Photonics 1(5), 257–258 (2007).
    [Crossref]
  3. G. Chattopadhyay, T. Reck, C. Lee, and C. Jung-Kubiak, “Micromachined Packaging for Terahertz Systems,” Proc. IEEE 105(6), 1139–1150 (2017).
    [Crossref]
  4. Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial Terahertz Modulator,” Sci. Rep. 3(1), 3347 (2013).
    [Crossref]
  5. T. Okada and K. Tanaka, “Photo-designed terahertz devices,” Sci. Rep. 1(1), 121 (2011).
    [Crossref] [PubMed]
  6. T. Chen, Z. Han, J. Liu, and Z. Hong, “Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors,” Appl. Opt. 53(16), 3454–3458 (2014).
    [Crossref] [PubMed]
  7. S. Song, F. Sun, Q. Chen, and Y. Zhang, “Narrow-Linewidth and High-Transmission Terahertz Bandpass Filtering by Metallic Gratings,” IEEE Trans. Terahertz Sci. Technol. 5, 131–136 (2015).
  8. H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).
  9. B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
    [Crossref]
  10. Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
    [Crossref]
  11. S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
    [Crossref]
  12. H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, and B. T. Kuhlmey, “Flexible single-mode hollow-core terahertz fiber with metamaterial cladding,” Optica 3(9), 941–947 (2016).
    [Crossref]
  13. W. Lu, S. Lou, and A. Argyros, “Investigation of Flexible Low-Loss Hollow-Core Fibres With Tube-Lattice Cladding for Terahertz Radiation,” IEEE J. Sel. Top. Quantum Electron. 22(2), 214–220 (2016).
    [Crossref]
  14. H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
    [Crossref] [PubMed]
  15. M. Navarro-Cía, M. S. Vitiello, C. M. Bledt, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band,” Opt. Express 21(20), 23748–23755 (2013).
    [Crossref] [PubMed]
  16. A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D Photonic Crystal Waveguides,” IEEE Microw. Wirel. Compon. Lett. 18(7), 428–430 (2008).
    [Crossref]
  17. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [Crossref] [PubMed]
  18. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [Crossref] [PubMed]
  19. C. H. Lai, Z. S. Xu, and H. Y. Chen, “Highly Birefringent Terahertz Waveguide Formed With Dual-Subwavelength Polymer Wires,” ‎,” J. Lightwave Technol. 35(21), 4641–4649 (2017).
    [Crossref]
  20. J. T. Lu, C. H. Lai, T. F. Tseng, H. Chen, Y. F. Tsai, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz pipe-waveguide-based directional couplers,” Opt. Express 19(27), 26883–26890 (2011).
    [Crossref] [PubMed]
  21. X. Gao, L. Zhou, X. Y. Yu, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband surface plasmonic Y-splitter,” Opt. Express 23(18), 23270–23277 (2015).
    [Crossref] [PubMed]
  22. T. Ma, K. Nallapan, H. Guerboukha, and M. Skorobogatiy, “Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation,” Opt. Express 25(10), 11009–11026 (2017).
    [Crossref] [PubMed]
  23. A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett. 33(4), 348–350 (2008).
    [Crossref] [PubMed]
  24. N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
    [Crossref]
  25. J. Sultana, M. S. Islam, K. Ahmed, A. Dinovitser, B. W. H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt. 57(10), 2426–2433 (2018).
    [Crossref] [PubMed]
  26. K. Ito, T. Katagiri, and Y. Matsuura, “Analysis of transmission properties of terahertz hollow-core optical fiber by using time-domain spectroscopy and application for remote spectroscopy,” J. Opt. Soc. Am. B 34(1), 60–65 (2017).
    [Crossref]
  27. S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. Man Luk, “Characterization and modeling of Bragg gratings written in polymer fiber for use as filters in the THz region,” Opt. Express 20(9), 9564–9571 (2012).
    [Crossref] [PubMed]
  28. G. Yan, A. Markov, Y. Chinifooroshan, S. M. Tripathi, W. J. Bock, and M. Skorobogatiy, “Low-loss terahertz waveguide Bragg grating using a two-wire waveguide and a paper grating,” Opt. Lett. 38(16), 3089–3092 (2013).
    [Crossref] [PubMed]
  29. A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “TeraHertz Photonics for Wireless Communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
    [Crossref]
  30. A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens 2(9), 1359–1368 (2017).
    [Crossref] [PubMed]
  31. M. C. Giordano, L. Viti, O. Mitrofanov, and M. S. Vitiello, “Phase-sensitive terahertz imaging using room-temperature near-field nanodetectors,” Optica 5(5), 651–657 (2018).
    [Crossref]
  32. M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
    [Crossref]
  33. X. Li, J. Yu, K. Wang, W. Zhou, and J. Zhang, “Photonics-aided 2 × 2 MIMO wireless terahertz-wave signal transmission system with optical polarization multiplexing,” Opt. Express 25(26), 33236–33242 (2017).
    [Crossref]
  34. H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, and S. Jian, “Polarization-Maintaining Hollow-Core Photonic Bandgap Few-Mode Fiber in Terahertz Regime,” IEEE Photonics Technol. Lett. 30(2), 185–188 (2018).
    [Crossref]
  35. S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
    [Crossref]
  36. G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. Ong Ling Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16(18), 13593–13598 (2008).
    [Crossref] [PubMed]
  37. X. Tang, Z. Yu, X. Tu, J. Chen, A. Argyros, B. T. Kuhlmey, and Y. Shi, “Elliptical metallic hollow fiber inner-coated with non-uniform dielectric layer,” Opt. Express 23(17), 22587–22601 (2015).
    [Crossref] [PubMed]
  38. H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
    [Crossref] [PubMed]
  39. J. T. Lu, C. H. Lai, T. F. Tseng, H. Chen, Y. F. Tsai, I. J. Chen, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz polarization-sensitive rectangular pipe waveguides,” Opt. Express 19(22), 21532–21539 (2011).
    [Crossref] [PubMed]
  40. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
    [Crossref]
  41. M. Jiang, X. Q. Dinh, P. P. Shum, S. Molin, Z. F. Wu, and P. Nouchi, “Investigation of Axial Strain Effects on Microwave Signals from a PM-EDF Short Cavity DBR Laser for Sensing Applications,” IEEE Photonics J. 4(5), 1530–1535 (2012).
    [Crossref]
  42. W. Chen, Y. Song, K. Jung, M. Hu, C. Wang, and J. Kim, “Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser,” Opt. Express 24(2), 1347–1357 (2016).
    [Crossref] [PubMed]
  43. X. Zhang, Y. Liu, Z. Wang, J. Yu, and H. Zhang, “LP01-LP11a mode converters based on long-period fiber gratings in a two-mode polarization-maintaining photonic crystal fiber,” Opt. Express 26(6), 7013–7021 (2018).
    [Crossref] [PubMed]
  44. https://www.zeonex.com/ .
  45. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
    [Crossref]
  46. Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, H. Liu, and S. Jian, “Nanomechanical Plasmonic Filter Based on Grating-Assisted Gap Plasmon Waveguide,” IEEE Photonics Technol. Lett. 28(3), 331–334 (2016).
    [Crossref]
  47. https://www.comsol.com/ .
  48. https://www.lumerical.com/ .
  49. B. Gerislioglu, A. Ahmadivand, and N. Pala, “Single- and Multimode Beam Propagation Through an Optothermally Controllable Fano Clusters-Mediated Waveguide‎,” J. Lightwave Technol. 35(22), 4961–4966 (2017).
    [Crossref]
  50. C.-C. Chang, L. Huang, J. Nogan, and H.-T. Chen, “Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures,” APL Photon. 3(5), 051602 (2018).
    [Crossref]
  51. K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes,” J. Infrared Millim. Terahertz Waves 38(9), 1085–1097 (2017).
    [Crossref]
  52. C. Wu, S. Khanal, J. L. Reno, and S. Kumar, “Terahertz plasmonic laser radiating in an ultra-narrow beam,” Optica 3(7), 734–740 (2016).
    [Crossref]
  53. S. Das, K. M. Reza, and M. A. Habib, “Frequency Selective Surface Based Bandpass Filter for THz Communication System,” J. Infrared Millim. Terahertz Waves 33(11), 1163–1169 (2012).
    [Crossref]
  54. O. Xu, S. Lu, S. Feng, and S. Jian, “Proposal and analysis of two-cavity Fabry-Perot structures based on fiber Bragg gratings,” J. Opt. Soc. Am. A 26(3), 639–649 (2009).
    [Crossref] [PubMed]
  55. T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D Printed Hollow-Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors,” Adv. Opt. Mater. 4(12), 2085–2094 (2016).
    [Crossref]
  56. M. Weidenbach, D. Jahn, A. Rehn, S. F. Busch, F. Beltrán-Mejía, J. C. Balzer, and M. Koch, “3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz,” Opt. Express 24(25), 28968–28976 (2016).
    [Crossref] [PubMed]
  57. J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss THz waveguide based on Kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
    [Crossref] [PubMed]
  58. J. Castro, E. A. Rojas-Nastrucci, A. Ross, T. M. Weller, and J. Wang, “Fabrication, Modeling, and Application of Ceramic-Thermoplastic Composites for Fused Deposition Modeling of Microwave Components,” IEEE Trans. Microw. Theory Tech. 65(6), 2073–2084 (2017).
    [Crossref]

2018 (7)

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, and S. Jian, “Polarization-Maintaining Hollow-Core Photonic Bandgap Few-Mode Fiber in Terahertz Regime,” IEEE Photonics Technol. Lett. 30(2), 185–188 (2018).
[Crossref]

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

C.-C. Chang, L. Huang, J. Nogan, and H.-T. Chen, “Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures,” APL Photon. 3(5), 051602 (2018).
[Crossref]

X. Zhang, Y. Liu, Z. Wang, J. Yu, and H. Zhang, “LP01-LP11a mode converters based on long-period fiber gratings in a two-mode polarization-maintaining photonic crystal fiber,” Opt. Express 26(6), 7013–7021 (2018).
[Crossref] [PubMed]

J. Sultana, M. S. Islam, K. Ahmed, A. Dinovitser, B. W. H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt. 57(10), 2426–2433 (2018).
[Crossref] [PubMed]

M. C. Giordano, L. Viti, O. Mitrofanov, and M. S. Vitiello, “Phase-sensitive terahertz imaging using room-temperature near-field nanodetectors,” Optica 5(5), 651–657 (2018).
[Crossref]

2017 (9)

K. Ito, T. Katagiri, and Y. Matsuura, “Analysis of transmission properties of terahertz hollow-core optical fiber by using time-domain spectroscopy and application for remote spectroscopy,” J. Opt. Soc. Am. B 34(1), 60–65 (2017).
[Crossref]

T. Ma, K. Nallapan, H. Guerboukha, and M. Skorobogatiy, “Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation,” Opt. Express 25(10), 11009–11026 (2017).
[Crossref] [PubMed]

C. H. Lai, Z. S. Xu, and H. Y. Chen, “Highly Birefringent Terahertz Waveguide Formed With Dual-Subwavelength Polymer Wires,” ‎,” J. Lightwave Technol. 35(21), 4641–4649 (2017).
[Crossref]

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Single- and Multimode Beam Propagation Through an Optothermally Controllable Fano Clusters-Mediated Waveguide‎,” J. Lightwave Technol. 35(22), 4961–4966 (2017).
[Crossref]

X. Li, J. Yu, K. Wang, W. Zhou, and J. Zhang, “Photonics-aided 2 × 2 MIMO wireless terahertz-wave signal transmission system with optical polarization multiplexing,” Opt. Express 25(26), 33236–33242 (2017).
[Crossref]

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes,” J. Infrared Millim. Terahertz Waves 38(9), 1085–1097 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

J. Castro, E. A. Rojas-Nastrucci, A. Ross, T. M. Weller, and J. Wang, “Fabrication, Modeling, and Application of Ceramic-Thermoplastic Composites for Fused Deposition Modeling of Microwave Components,” IEEE Trans. Microw. Theory Tech. 65(6), 2073–2084 (2017).
[Crossref]

G. Chattopadhyay, T. Reck, C. Lee, and C. Jung-Kubiak, “Micromachined Packaging for Terahertz Systems,” Proc. IEEE 105(6), 1139–1150 (2017).
[Crossref]

2016 (10)

H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).

W. Lu, S. Lou, and A. Argyros, “Investigation of Flexible Low-Loss Hollow-Core Fibres With Tube-Lattice Cladding for Terahertz Radiation,” IEEE J. Sel. Top. Quantum Electron. 22(2), 214–220 (2016).
[Crossref]

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, H. Liu, and S. Jian, “Nanomechanical Plasmonic Filter Based on Grating-Assisted Gap Plasmon Waveguide,” IEEE Photonics Technol. Lett. 28(3), 331–334 (2016).
[Crossref]

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D Printed Hollow-Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors,” Adv. Opt. Mater. 4(12), 2085–2094 (2016).
[Crossref]

W. Chen, Y. Song, K. Jung, M. Hu, C. Wang, and J. Kim, “Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser,” Opt. Express 24(2), 1347–1357 (2016).
[Crossref] [PubMed]

C. Wu, S. Khanal, J. L. Reno, and S. Kumar, “Terahertz plasmonic laser radiating in an ultra-narrow beam,” Optica 3(7), 734–740 (2016).
[Crossref]

H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
[Crossref] [PubMed]

H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, and B. T. Kuhlmey, “Flexible single-mode hollow-core terahertz fiber with metamaterial cladding,” Optica 3(9), 941–947 (2016).
[Crossref]

J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss THz waveguide based on Kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
[Crossref] [PubMed]

M. Weidenbach, D. Jahn, A. Rehn, S. F. Busch, F. Beltrán-Mejía, J. C. Balzer, and M. Koch, “3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz,” Opt. Express 24(25), 28968–28976 (2016).
[Crossref] [PubMed]

2015 (7)

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “TeraHertz Photonics for Wireless Communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
[Crossref]

X. Tang, Z. Yu, X. Tu, J. Chen, A. Argyros, B. T. Kuhlmey, and Y. Shi, “Elliptical metallic hollow fiber inner-coated with non-uniform dielectric layer,” Opt. Express 23(17), 22587–22601 (2015).
[Crossref] [PubMed]

X. Gao, L. Zhou, X. Y. Yu, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband surface plasmonic Y-splitter,” Opt. Express 23(18), 23270–23277 (2015).
[Crossref] [PubMed]

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref] [PubMed]

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

S. Song, F. Sun, Q. Chen, and Y. Zhang, “Narrow-Linewidth and High-Transmission Terahertz Bandpass Filtering by Metallic Gratings,” IEEE Trans. Terahertz Sci. Technol. 5, 131–136 (2015).

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

2014 (1)

2013 (4)

2012 (3)

M. Jiang, X. Q. Dinh, P. P. Shum, S. Molin, Z. F. Wu, and P. Nouchi, “Investigation of Axial Strain Effects on Microwave Signals from a PM-EDF Short Cavity DBR Laser for Sensing Applications,” IEEE Photonics J. 4(5), 1530–1535 (2012).
[Crossref]

S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. Man Luk, “Characterization and modeling of Bragg gratings written in polymer fiber for use as filters in the THz region,” Opt. Express 20(9), 9564–9571 (2012).
[Crossref] [PubMed]

S. Das, K. M. Reza, and M. A. Habib, “Frequency Selective Surface Based Bandpass Filter for THz Communication System,” J. Infrared Millim. Terahertz Waves 33(11), 1163–1169 (2012).
[Crossref]

2011 (5)

2009 (2)

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

O. Xu, S. Lu, S. Feng, and S. Jian, “Proposal and analysis of two-cavity Fabry-Perot structures based on fiber Bragg gratings,” J. Opt. Soc. Am. A 26(3), 639–649 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

E. Linfield, “A source of fresh hope,” Nat. Photonics 1(5), 257–258 (2007).
[Crossref]

2006 (1)

2004 (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Abbott, D.

J. Sultana, M. S. Islam, K. Ahmed, A. Dinovitser, B. W. H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt. 57(10), 2426–2433 (2018).
[Crossref] [PubMed]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

Afshar V, S.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

Ahmadivand, A.

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Single- and Multimode Beam Propagation Through an Optothermally Controllable Fano Clusters-Mediated Waveguide‎,” J. Lightwave Technol. 35(22), 4961–4966 (2017).
[Crossref]

Ahmed, K.

Akalin, T.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial Terahertz Modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

Anthony, J.

Argyros, A.

Atakaramians, S.

H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, and B. T. Kuhlmey, “Flexible single-mode hollow-core terahertz fiber with metamaterial cladding,” Optica 3(9), 941–947 (2016).
[Crossref]

H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
[Crossref] [PubMed]

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

Balzer, J. C.

Bang, O.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref] [PubMed]

Bao, H.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref] [PubMed]

Beltrán-Mejía, F.

Bhansali, S.

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Bhaskaran, M.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Bingham, A. L.

A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D Photonic Crystal Waveguides,” IEEE Microw. Wirel. Compon. Lett. 18(7), 428–430 (2008).
[Crossref]

A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett. 33(4), 348–350 (2008).
[Crossref] [PubMed]

Bledt, C. M.

Bock, W. J.

Busch, S. F.

Byrne, M. B.

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[Crossref]

Cao, W. P.

Castro, J.

J. Castro, E. A. Rojas-Nastrucci, A. Ross, T. M. Weller, and J. Wang, “Fabrication, Modeling, and Application of Ceramic-Thermoplastic Composites for Fused Deposition Modeling of Microwave Components,” IEEE Trans. Microw. Theory Tech. 65(6), 2073–2084 (2017).
[Crossref]

Chan, H. P.

Chang, C.-C.

C.-C. Chang, L. Huang, J. Nogan, and H.-T. Chen, “Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures,” APL Photon. 3(5), 051602 (2018).
[Crossref]

Chang, H. C.

Chattopadhyay, G.

G. Chattopadhyay, T. Reck, C. Lee, and C. Jung-Kubiak, “Micromachined Packaging for Terahertz Systems,” Proc. IEEE 105(6), 1139–1150 (2017).
[Crossref]

Chen, H.

Chen, H. W.

Chen, H. Y.

Chen, H.-T.

C.-C. Chang, L. Huang, J. Nogan, and H.-T. Chen, “Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures,” APL Photon. 3(5), 051602 (2018).
[Crossref]

Chen, I. J.

Chen, J.

Chen, L. J.

Chen, P.

Chen, Q.

S. Song, F. Sun, Q. Chen, and Y. Zhang, “Narrow-Linewidth and High-Transmission Terahertz Bandpass Filtering by Metallic Gratings,” IEEE Trans. Terahertz Sci. Technol. 5, 131–136 (2015).

Chen, T.

Chen, W.

Cheng, Y. Z.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Chinifooroshan, Y.

Chow, Y. T.

Chung, P. S.

Cui, H. L.

H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).

Cui, T. J.

Cunningham, J. E.

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[Crossref]

Das, S.

S. Das, K. M. Reza, and M. A. Habib, “Frequency Selective Surface Based Bandpass Filter for THz Communication System,” J. Infrared Millim. Terahertz Waves 33(11), 1163–1169 (2012).
[Crossref]

Davies, A. G.

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[Crossref]

Deng, Y. S.

H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).

Diebold, S.

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes,” J. Infrared Millim. Terahertz Waves 38(9), 1085–1097 (2017).
[Crossref]

Dinh, X. Q.

M. Jiang, X. Q. Dinh, P. P. Shum, S. Molin, Z. F. Wu, and P. Nouchi, “Investigation of Axial Strain Effects on Microwave Signals from a PM-EDF Short Cavity DBR Laser for Sensing Applications,” IEEE Photonics J. 4(5), 1530–1535 (2012).
[Crossref]

Dinovitser, A.

Dong, Y.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, and S. Jian, “Polarization-Maintaining Hollow-Core Photonic Bandgap Few-Mode Fiber in Terahertz Regime,” IEEE Photonics Technol. Lett. 30(2), 185–188 (2018).
[Crossref]

Du, C. L.

H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).

Feng, S.

Fice, M. J.

Fischer, B. M.

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

Fujita, M.

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes,” J. Infrared Millim. Terahertz Waves 38(9), 1085–1097 (2017).
[Crossref]

Gao, X.

Gao, Y.

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, H. Liu, and S. Jian, “Nanomechanical Plasmonic Filter Based on Grating-Assisted Gap Plasmon Waveguide,” IEEE Photonics Technol. Lett. 28(3), 331–334 (2016).
[Crossref]

Gerislioglu, B.

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Single- and Multimode Beam Propagation Through an Optothermally Controllable Fano Clusters-Mediated Waveguide‎,” J. Lightwave Technol. 35(22), 4961–4966 (2017).
[Crossref]

Giordano, M. C.

Girard, M.

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D Printed Hollow-Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors,” Adv. Opt. Mater. 4(12), 2085–2094 (2016).
[Crossref]

Gong, C.

Gong, R. Z.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Gong, Y.

Grischkowsky, D.

Grischkowsky, D. R.

A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D Photonic Crystal Waveguides,” IEEE Microw. Wirel. Compon. Lett. 18(7), 428–430 (2008).
[Crossref]

Guerboukha, H.

T. Ma, K. Nallapan, H. Guerboukha, and M. Skorobogatiy, “Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation,” Opt. Express 25(10), 11009–11026 (2017).
[Crossref] [PubMed]

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D Printed Hollow-Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors,” Adv. Opt. Mater. 4(12), 2085–2094 (2016).
[Crossref]

Habib, M. A.

S. Das, K. M. Reza, and M. A. Habib, “Frequency Selective Surface Based Bandpass Filter for THz Communication System,” J. Infrared Millim. Terahertz Waves 33(11), 1163–1169 (2012).
[Crossref]

Han, Z.

Harrington, J. A.

Headland, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Hisatake, S.

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes,” J. Infrared Millim. Terahertz Waves 38(9), 1085–1097 (2017).
[Crossref]

Hong, Z.

Hu, J.

Hu, M.

Huang, L.

C.-C. Chang, L. Huang, J. Nogan, and H.-T. Chen, “Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures,” APL Photon. 3(5), 051602 (2018).
[Crossref]

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, H. Liu, and S. Jian, “Nanomechanical Plasmonic Filter Based on Grating-Assisted Gap Plasmon Waveguide,” IEEE Photonics Technol. Lett. 28(3), 331–334 (2016).
[Crossref]

Hwang, Y. J.

Islam, M. S.

Ito, K.

Jahn, D.

Jepsen, P. U.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref] [PubMed]

Jian, S.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, and S. Jian, “Polarization-Maintaining Hollow-Core Photonic Bandgap Few-Mode Fiber in Terahertz Regime,” IEEE Photonics Technol. Lett. 30(2), 185–188 (2018).
[Crossref]

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, H. Liu, and S. Jian, “Nanomechanical Plasmonic Filter Based on Grating-Assisted Gap Plasmon Waveguide,” IEEE Photonics Technol. Lett. 28(3), 331–334 (2016).
[Crossref]

H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
[Crossref] [PubMed]

O. Xu, S. Lu, S. Feng, and S. Jian, “Proposal and analysis of two-cavity Fabry-Perot structures based on fiber Bragg gratings,” J. Opt. Soc. Am. A 26(3), 639–649 (2009).
[Crossref] [PubMed]

Jiang, M.

M. Jiang, X. Q. Dinh, P. P. Shum, S. Molin, Z. F. Wu, and P. Nouchi, “Investigation of Axial Strain Effects on Microwave Signals from a PM-EDF Short Cavity DBR Laser for Sensing Applications,” IEEE Photonics J. 4(5), 1530–1535 (2012).
[Crossref]

Jung, K.

Jung-Kubiak, C.

G. Chattopadhyay, T. Reck, C. Lee, and C. Jung-Kubiak, “Micromachined Packaging for Terahertz Systems,” Proc. IEEE 105(6), 1139–1150 (2017).
[Crossref]

Kao, T. F.

Karl, N. J.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Katagiri, T.

Kaushik, A.

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Khanal, S.

Kim, J.

Koch, M.

Kuhlmey, B. T.

Kumar, S.

Lai, C. H.

Large, M. C. J.

Lee, C.

G. Chattopadhyay, T. Reck, C. Lee, and C. Jung-Kubiak, “Micromachined Packaging for Terahertz Systems,” Proc. IEEE 105(6), 1139–1150 (2017).
[Crossref]

Leonhardt, R.

Lewis, R. A.

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D Printed Hollow-Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors,” Adv. Opt. Mater. 4(12), 2085–2094 (2016).
[Crossref]

Li, H.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, and S. Jian, “Polarization-Maintaining Hollow-Core Photonic Bandgap Few-Mode Fiber in Terahertz Regime,” IEEE Photonics Technol. Lett. 30(2), 185–188 (2018).
[Crossref]

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, H. Liu, and S. Jian, “Nanomechanical Plasmonic Filter Based on Grating-Assisted Gap Plasmon Waveguide,” IEEE Photonics Technol. Lett. 28(3), 331–334 (2016).
[Crossref]

H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
[Crossref] [PubMed]

H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, and B. T. Kuhlmey, “Flexible single-mode hollow-core terahertz fiber with metamaterial cladding,” Optica 3(9), 941–947 (2016).
[Crossref]

Li, H. O.

Li, X.

Lin, L.

Linfield, E.

E. Linfield, “A source of fresh hope,” Nat. Photonics 1(5), 257–258 (2007).
[Crossref]

Linfield, E. H.

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[Crossref]

Liu, H.

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, H. Liu, and S. Jian, “Nanomechanical Plasmonic Filter Based on Grating-Assisted Gap Plasmon Waveguide,” IEEE Photonics Technol. Lett. 28(3), 331–334 (2016).
[Crossref]

Liu, J.

Liu, W.

Liu, Y.

Lou, S.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

W. Lu, S. Lou, and A. Argyros, “Investigation of Flexible Low-Loss Hollow-Core Fibres With Tube-Lattice Cladding for Terahertz Radiation,” IEEE J. Sel. Top. Quantum Electron. 22(2), 214–220 (2016).
[Crossref]

Lu, J. T.

Lu, J. Y.

Lu, S.

Lu, W.

W. Lu, S. Lou, and A. Argyros, “Investigation of Flexible Low-Loss Hollow-Core Fibres With Tube-Lattice Cladding for Terahertz Radiation,” IEEE J. Sel. Top. Quantum Electron. 22(2), 214–220 (2016).
[Crossref]

Lwin, R.

Ma, H. F.

Ma, T.

T. Ma, K. Nallapan, H. Guerboukha, and M. Skorobogatiy, “Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation,” Opt. Express 25(10), 11009–11026 (2017).
[Crossref] [PubMed]

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D Printed Hollow-Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors,” Adv. Opt. Mater. 4(12), 2085–2094 (2016).
[Crossref]

Man Luk, K.

Manickam, P.

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Mao, H. Y.

H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).

Markov, A.

Matsuura, Y.

McKinney, R. W.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Melzer, J. E.

Mendis, R.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Mitrofanov, O.

Mittleman, D. M.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Molin, S.

M. Jiang, X. Q. Dinh, P. P. Shum, S. Molin, Z. F. Wu, and P. Nouchi, “Investigation of Axial Strain Effects on Microwave Signals from a PM-EDF Short Cavity DBR Laser for Sensing Applications,” IEEE Photonics J. 4(5), 1530–1535 (2012).
[Crossref]

Monnai, Y.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Monro, T. M.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

Nagatsuma, T.

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes,” J. Infrared Millim. Terahertz Waves 38(9), 1085–1097 (2017).
[Crossref]

Nair, M.

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Nallapan, K.

Navarro-Cía, M.

Ng, B. W. H.

Nie, Y.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Nielsen, K.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref] [PubMed]

Nogan, J.

C.-C. Chang, L. Huang, J. Nogan, and H.-T. Chen, “Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures,” APL Photon. 3(5), 051602 (2018).
[Crossref]

Nouchi, P.

M. Jiang, X. Q. Dinh, P. P. Shum, S. Molin, Z. F. Wu, and P. Nouchi, “Investigation of Axial Strain Effects on Microwave Signals from a PM-EDF Short Cavity DBR Laser for Sensing Applications,” IEEE Photonics J. 4(5), 1530–1535 (2012).
[Crossref]

Okada, T.

T. Okada and K. Tanaka, “Photo-designed terahertz devices,” Sci. Rep. 1(1), 121 (2011).
[Crossref] [PubMed]

Okamoto, K.

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes,” J. Infrared Millim. Terahertz Waves 38(9), 1085–1097 (2017).
[Crossref]

Ong Ling Chuen, M.

Pala, N.

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Single- and Multimode Beam Propagation Through an Optothermally Controllable Fano Clusters-Mediated Waveguide‎,” J. Lightwave Technol. 35(22), 4961–4966 (2017).
[Crossref]

Paulose, V.

Rao, X. H.

H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).

Reck, T.

G. Chattopadhyay, T. Reck, C. Lee, and C. Jung-Kubiak, “Micromachined Packaging for Terahertz Systems,” Proc. IEEE 105(6), 1139–1150 (2017).
[Crossref]

Reekie, L.

Rehn, A.

Ren, G.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, and S. Jian, “Polarization-Maintaining Hollow-Core Photonic Bandgap Few-Mode Fiber in Terahertz Regime,” IEEE Photonics Technol. Lett. 30(2), 185–188 (2018).
[Crossref]

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, H. Liu, and S. Jian, “Nanomechanical Plasmonic Filter Based on Grating-Assisted Gap Plasmon Waveguide,” IEEE Photonics Technol. Lett. 28(3), 331–334 (2016).
[Crossref]

H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
[Crossref] [PubMed]

G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. Ong Ling Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16(18), 13593–13598 (2008).
[Crossref] [PubMed]

Renaud, C. C.

Reno, J. L.

Reza, K. M.

S. Das, K. M. Reza, and M. A. Habib, “Frequency Selective Surface Based Bandpass Filter for THz Communication System,” J. Infrared Millim. Terahertz Waves 33(11), 1163–1169 (2012).
[Crossref]

Rojas-Nastrucci, E. A.

J. Castro, E. A. Rojas-Nastrucci, A. Ross, T. M. Weller, and J. Wang, “Fabrication, Modeling, and Application of Ceramic-Thermoplastic Composites for Fused Deposition Modeling of Microwave Components,” IEEE Trans. Microw. Theory Tech. 65(6), 2073–2084 (2017).
[Crossref]

Ross, A.

J. Castro, E. A. Rojas-Nastrucci, A. Ross, T. M. Weller, and J. Wang, “Fabrication, Modeling, and Application of Ceramic-Thermoplastic Composites for Fused Deposition Modeling of Microwave Components,” IEEE Trans. Microw. Theory Tech. 65(6), 2073–2084 (2017).
[Crossref]

Seeds, A. J.

Shams, H.

Shaukat, M. U.

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[Crossref]

Shen, J.

H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).

Shi, Y.

Shum, P.

Shum, P. P.

M. Jiang, X. Q. Dinh, P. P. Shum, S. Molin, Z. F. Wu, and P. Nouchi, “Investigation of Axial Strain Effects on Microwave Signals from a PM-EDF Short Cavity DBR Laser for Sensing Applications,” IEEE Photonics J. 4(5), 1530–1535 (2012).
[Crossref]

Skorobogatiy, M.

Song, S.

S. Song, F. Sun, Q. Chen, and Y. Zhang, “Narrow-Linewidth and High-Transmission Terahertz Bandpass Filtering by Metallic Gratings,” IEEE Trans. Terahertz Sci. Technol. 5, 131–136 (2015).

Song, Y.

Squires, A. D.

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D Printed Hollow-Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors,” Adv. Opt. Mater. 4(12), 2085–2094 (2016).
[Crossref]

Sriram, S.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Sultana, J.

Sun, C. K.

Sun, F.

S. Song, F. Sun, Q. Chen, and Y. Zhang, “Narrow-Linewidth and High-Transmission Terahertz Bandpass Filtering by Metallic Gratings,” IEEE Trans. Terahertz Sci. Technol. 5, 131–136 (2015).

Sun, L.

Sun, W.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial Terahertz Modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

Tanaka, K.

T. Okada and K. Tanaka, “Photo-designed terahertz devices,” Sci. Rep. 1(1), 121 (2011).
[Crossref] [PubMed]

Tang, X.

Tian, H.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tripathi, S. M.

Tsai, Y. F.

Tseng, T. F.

Tsuruda, K.

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes,” J. Infrared Millim. Terahertz Waves 38(9), 1085–1097 (2017).
[Crossref]

Tu, X.

Upadhyay, A.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Viti, L.

Vitiello, M. S.

Wang, C.

Wang, G.

Wang, J.

J. Castro, E. A. Rojas-Nastrucci, A. Ross, T. M. Weller, and J. Wang, “Fabrication, Modeling, and Application of Ceramic-Thermoplastic Composites for Fused Deposition Modeling of Microwave Components,” IEEE Trans. Microw. Theory Tech. 65(6), 2073–2084 (2017).
[Crossref]

Wang, K.

Wang, S. J.

H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).

Wang, X.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial Terahertz Modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

Wang, Z.

Wei, D. S.

H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).

Weidenbach, M.

Weller, T. M.

J. Castro, E. A. Rojas-Nastrucci, A. Ross, T. M. Weller, and J. Wang, “Fabrication, Modeling, and Application of Ceramic-Thermoplastic Composites for Fused Deposition Modeling of Microwave Components,” IEEE Trans. Microw. Theory Tech. 65(6), 2073–2084 (2017).
[Crossref]

Withayachumnankul, W.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Wu, C.

Wu, Z. F.

M. Jiang, X. Q. Dinh, P. P. Shum, S. Molin, Z. F. Wu, and P. Nouchi, “Investigation of Axial Strain Effects on Microwave Signals from a PM-EDF Short Cavity DBR Laser for Sensing Applications,” IEEE Photonics J. 4(5), 1530–1535 (2012).
[Crossref]

Xia, L. P.

H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).

Xiao, H.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, and S. Jian, “Polarization-Maintaining Hollow-Core Photonic Bandgap Few-Mode Fiber in Terahertz Regime,” IEEE Photonics Technol. Lett. 30(2), 185–188 (2018).
[Crossref]

Xiao, S.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, and S. Jian, “Polarization-Maintaining Hollow-Core Photonic Bandgap Few-Mode Fiber in Terahertz Regime,” IEEE Photonics Technol. Lett. 30(2), 185–188 (2018).
[Crossref]

Xie, Z.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial Terahertz Modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

Xu, H. M.

H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).

Xu, O.

Xu, Z. S.

Yan, G.

Yan, S.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Yang, J.

Ye, J.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial Terahertz Modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

Yu, J.

Yu, X.

Yu, X. Y.

Yu, Z.

Zhang, H.

Zhang, J.

Zhang, W.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Zhang, X.

Zhang, Y.

S. Song, F. Sun, Q. Chen, and Y. Zhang, “Narrow-Linewidth and High-Transmission Terahertz Bandpass Filtering by Metallic Gratings,” IEEE Trans. Terahertz Sci. Technol. 5, 131–136 (2015).

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial Terahertz Modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

Zhao, J.

Zhao, T.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Zhou, L.

Zhou, S. F.

Zhou, W.

Zhu, B.

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, H. Liu, and S. Jian, “Nanomechanical Plasmonic Filter Based on Grating-Assisted Gap Plasmon Waveguide,” IEEE Photonics Technol. Lett. 28(3), 331–334 (2016).
[Crossref]

ACS Sens (1)

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D Printed Hollow-Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors,” Adv. Opt. Mater. 4(12), 2085–2094 (2016).
[Crossref]

Adv. Opt. Photonics (1)

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

APL Photon. (1)

C.-C. Chang, L. Huang, J. Nogan, and H.-T. Chen, “Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures,” APL Photon. 3(5), 051602 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Lu, S. Lou, and A. Argyros, “Investigation of Flexible Low-Loss Hollow-Core Fibres With Tube-Lattice Cladding for Terahertz Radiation,” IEEE J. Sel. Top. Quantum Electron. 22(2), 214–220 (2016).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D Photonic Crystal Waveguides,” IEEE Microw. Wirel. Compon. Lett. 18(7), 428–430 (2008).
[Crossref]

IEEE Photonics J. (2)

H. Y. Mao, L. P. Xia, X. H. Rao, H. L. Cui, S. J. Wang, Y. S. Deng, D. S. Wei, J. Shen, H. M. Xu, and C. L. Du, “A Terahertz Polarizer Based on Multilayer Metal Grating Filled in Polyimide Film,” IEEE Photonics J. 8, 1–6 (2016).

M. Jiang, X. Q. Dinh, P. P. Shum, S. Molin, Z. F. Wu, and P. Nouchi, “Investigation of Axial Strain Effects on Microwave Signals from a PM-EDF Short Cavity DBR Laser for Sensing Applications,” IEEE Photonics J. 4(5), 1530–1535 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, H. Liu, and S. Jian, “Nanomechanical Plasmonic Filter Based on Grating-Assisted Gap Plasmon Waveguide,” IEEE Photonics Technol. Lett. 28(3), 331–334 (2016).
[Crossref]

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, and S. Jian, “Polarization-Maintaining Hollow-Core Photonic Bandgap Few-Mode Fiber in Terahertz Regime,” IEEE Photonics Technol. Lett. 30(2), 185–188 (2018).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. Castro, E. A. Rojas-Nastrucci, A. Ross, T. M. Weller, and J. Wang, “Fabrication, Modeling, and Application of Ceramic-Thermoplastic Composites for Fused Deposition Modeling of Microwave Components,” IEEE Trans. Microw. Theory Tech. 65(6), 2073–2084 (2017).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

S. Song, F. Sun, Q. Chen, and Y. Zhang, “Narrow-Linewidth and High-Transmission Terahertz Bandpass Filtering by Metallic Gratings,” IEEE Trans. Terahertz Sci. Technol. 5, 131–136 (2015).

J. Infrared Millim. Terahertz Waves (2)

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes,” J. Infrared Millim. Terahertz Waves 38(9), 1085–1097 (2017).
[Crossref]

S. Das, K. M. Reza, and M. A. Habib, “Frequency Selective Surface Based Bandpass Filter for THz Communication System,” J. Infrared Millim. Terahertz Waves 33(11), 1163–1169 (2012).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nat. Photonics (3)

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

E. Linfield, “A source of fresh hope,” Nat. Photonics 1(5), 257–258 (2007).
[Crossref]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

Opt. Express (13)

J. T. Lu, C. H. Lai, T. F. Tseng, H. Chen, Y. F. Tsai, I. J. Chen, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz polarization-sensitive rectangular pipe waveguides,” Opt. Express 19(22), 21532–21539 (2011).
[Crossref] [PubMed]

W. Chen, Y. Song, K. Jung, M. Hu, C. Wang, and J. Kim, “Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser,” Opt. Express 24(2), 1347–1357 (2016).
[Crossref] [PubMed]

X. Zhang, Y. Liu, Z. Wang, J. Yu, and H. Zhang, “LP01-LP11a mode converters based on long-period fiber gratings in a two-mode polarization-maintaining photonic crystal fiber,” Opt. Express 26(6), 7013–7021 (2018).
[Crossref] [PubMed]

M. Weidenbach, D. Jahn, A. Rehn, S. F. Busch, F. Beltrán-Mejía, J. C. Balzer, and M. Koch, “3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz,” Opt. Express 24(25), 28968–28976 (2016).
[Crossref] [PubMed]

J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss THz waveguide based on Kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
[Crossref] [PubMed]

M. Navarro-Cía, M. S. Vitiello, C. M. Bledt, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band,” Opt. Express 21(20), 23748–23755 (2013).
[Crossref] [PubMed]

S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. Man Luk, “Characterization and modeling of Bragg gratings written in polymer fiber for use as filters in the THz region,” Opt. Express 20(9), 9564–9571 (2012).
[Crossref] [PubMed]

G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. Ong Ling Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16(18), 13593–13598 (2008).
[Crossref] [PubMed]

X. Tang, Z. Yu, X. Tu, J. Chen, A. Argyros, B. T. Kuhlmey, and Y. Shi, “Elliptical metallic hollow fiber inner-coated with non-uniform dielectric layer,” Opt. Express 23(17), 22587–22601 (2015).
[Crossref] [PubMed]

X. Li, J. Yu, K. Wang, W. Zhou, and J. Zhang, “Photonics-aided 2 × 2 MIMO wireless terahertz-wave signal transmission system with optical polarization multiplexing,” Opt. Express 25(26), 33236–33242 (2017).
[Crossref]

J. T. Lu, C. H. Lai, T. F. Tseng, H. Chen, Y. F. Tsai, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz pipe-waveguide-based directional couplers,” Opt. Express 19(27), 26883–26890 (2011).
[Crossref] [PubMed]

X. Gao, L. Zhou, X. Y. Yu, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband surface plasmonic Y-splitter,” Opt. Express 23(18), 23270–23277 (2015).
[Crossref] [PubMed]

T. Ma, K. Nallapan, H. Guerboukha, and M. Skorobogatiy, “Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation,” Opt. Express 25(10), 11009–11026 (2017).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Optica (3)

Phys. Rev. B (1)

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

Proc. IEEE (1)

G. Chattopadhyay, T. Reck, C. Lee, and C. Jung-Kubiak, “Micromachined Packaging for Terahertz Systems,” Proc. IEEE 105(6), 1139–1150 (2017).
[Crossref]

Sci. Rep. (3)

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial Terahertz Modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

T. Okada and K. Tanaka, “Photo-designed terahertz devices,” Sci. Rep. 1(1), 121 (2011).
[Crossref] [PubMed]

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref] [PubMed]

Other (3)

https://www.comsol.com/ .

https://www.lumerical.com/ .

https://www.zeonex.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the THz polarization-maintaining subwavelength grating. Insets: defined geometrical parameters of grating in y z and x y planes.
Fig. 2
Fig. 2 Modal (a) n e f f , (b) loss and (c) Δ n e f f of the subwavelength rectangular waveguides as a function of d x at 0.3 THz for r d values of 0.7 (green curves), 0.8 (red curves) and 0.9 (blue curves). (d) Normalized electric field distributions of rectangular waveguides ( r d = 0.8 ) with d x = 0.6   mm and (b) d x = 0.25   mm . The blue arrows represent the electric vectors.
Fig. 3
Fig. 3 Schematic mode launching from scenario (a): large waveguide and scenario (b): small waveguide. (c) Grating transmission spectra of scenario (a) (red curves) and scenario (b) (blue curves) waveguides. Solid and dashed curves represent x-pol. and y-pol. states, respectively. Grating parameters as d 1 x = 0.6   mm , d 2 x = 0.25   mm , r d = 0.8 , r g = 0.7 , Λ = 0.435   mm and N = 29 , leading to x-pol. stopband at around f B = 0.3 THz.
Fig. 4
Fig. 4 (a) Grating transmission spectra of x-pol. (solid curve) and y-pol. (dashed curve) states. Normalized power distributions of x-pol. (in y z view) at (b) 0.262 THz and (c) 0.304 THz, as well as y-pol. (in x z view) at (d) 0.334 THz and (e) 0.306 THz. The ER and FWHM of x(y)-pol. stopbands are 23.5(20.9) dB and 21.7(20.5) GHz, respectively. Normalized power distributions of (f) x-pol. (in y z view) and (g) y-pol. (in x z view) at 0.296 THz. Grating parameters are   d 1 x = 0.6   mm , d 2 x = 0.25   mm , r d = 0.8 , r g = 0.7 , Λ = 0.435   mm and N = 29 .
Fig. 5
Fig. 5 Grating transmission spectra with cross-sectional anisotropy r d values of 0.7 (green curves), 0.8 (red curves) and 0.9 (blue curves). Solid and dashed curves represent x-pol. and y-pol. states, respectively. Other grating parameters are d 1 x = 0.6   mm , d 2 x = 0.25   mm , r g = 0.7 and N = 29 .
Fig. 6
Fig. 6 Grating transmission spectra with r g values of 0.6 (pink solid curves), 0.7 (red solid curves), 0.8 (blue solid curves), 0.9 (green solid curves) and 1 (orange solid curves) for (a) x-pol. and (b) y-pol. states. Other grating parameters are d 1 x = 0.6   mm , d 2 x = 0.25   mm , r d = 0.8 and N = 29 .
Fig. 7
Fig. 7 Grating transmission spectra with d 2 x values of 0.25 mm (red curves), 0.3 mm (blue curves) and 0.35 mm (green curves). Solid and dashed curves represent x-pol. and y-pol. states, respectively. Other grating parameters are d 1 x = 0.6   mm , r d = 0.8 , r g = 0.7 , and N = 29 .
Fig. 8
Fig. 8 (a) Schematic of the π-shifted grating. (b) π-shifted grating transmission spectra for r d values of 0.7 (green curves), 0.8 (red curves) and 0.9 (blue curves). Solid and dashed curves represent x-pol. and y-pol. states, respectively. Grating parameters are   d 1 x = 0.6   mm , d 2 x = 0.25   mm , r g = 0.7 , Λ = 0.435   mm and N = 29 .
Fig. 9
Fig. 9 π-shifted grating transmission spectra of ideal (red curves) and imperfect (blue and green curves) gratings, where (a) and (b) show aligned and non-aligned cases, respectively. Ideal grating parameters are   d 1 x = 0.6   mm , d 2 x = 0.25   mm , r d = 0.8 , r g = 0.7 , Λ = 0.435   mm and N = 29 .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 f B ( n e f f 1 L 1 + n e f f 2 L 2 ) = m c .

Metrics