Abstract

We report on a new mechanism capable of inducing the insulator-metal transition (IMT) in VO2 via surface plasmon polaritons (SPP). Our theoretical model predicts that for a bilayer Au-VO2 sample an enhanced electromagnetic energy density at the Au-VO2 interface will occur at 1064nm laser wavelength when SPPs are excited in the Au layer. This effect can assist the IMT in the VO2 layer and at the same time, the SPP absorption can be used to detect it. Changes in the optical properties of the VO2 thin layer in such structure can be observed in the reflected light in Kretschmann configuration, via a shift in the nadir location due to light absorption at resonance. This optical mechanism occurs at 2mW threshold transition energies and fully saturates at 5mW.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon resonance modulation in nanopatterned Au gratings by the insulator-metal transition in vanadium dioxide films

M. Beebe, L. Wang, S. E. Madaras, J. M. Klopf, Z. Li, D. Brantley, M. Heimburger, R. A. Wincheski, S. Kittiwatanakul, J. Lu, S. A. Wolf, and R. A. Lukaszew
Opt. Express 23(10) 13222-13229 (2015)

Photoinduced surface plasmon switching at VO2/Au interface

Nardeep Kumar, Armando Rúa, Jennifer Aldama, Karla Echeverría, Félix E. Fernández, and Sergiy Lysenko
Opt. Express 26(11) 13773-13782 (2018)

Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew
Opt. Lett. 37(20) 4335-4337 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
    [Crossref]
  2. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
    [Crossref]
  3. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  4. S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
    [Crossref]
  5. L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20(8), 8700–8709 (2012).
    [Crossref] [PubMed]
  6. A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
    [Crossref]
  7. B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20(21), 23598–23609 (2012).
    [Crossref] [PubMed]
  8. M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
    [Crossref]
  9. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
    [Crossref] [PubMed]
  10. B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
    [Crossref]
  11. L. Bai, Q. Li, S. A. Corr, Y. Meng, C. Park, S. V. Sinogeikin, C. Ko, J. Wu, and G. Shen, “Pressure-induced phase transitions and metallization in VO2,” Phys. Rev. B 91(10), 104110 (2015).
    [Crossref]
  12. O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light: Science &Amp. Applications 5(10), e16173 (2016).
    [Crossref]
  13. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1st ed., Springer Tracts in Modern Physics (Springer-Verlag, 1988), p. 136.
  14. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
    [Crossref]
  15. M. Beebe, L. Wang, S. E. Madaras, J. M. Klopf, Z. Li, D. Brantley, M. Heimburger, R. A. Wincheski, S. Kittiwatanakul, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Surface plasmon resonance modulation in nanopatterned Au gratings by the insulator-metal transition in vanadium dioxide films,” Opt. Express 23(10), 13222–13229 (2015).
    [Crossref] [PubMed]
  16. K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
    [Crossref]
  17. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  18. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62(4), 502–510 (1972).
    [Crossref]
  19. H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
    [Crossref]
  20. L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
    [Crossref] [PubMed]
  21. D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
    [Crossref] [PubMed]

2016 (2)

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light: Science &Amp. Applications 5(10), e16173 (2016).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

2015 (2)

2014 (1)

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

2013 (2)

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

2012 (4)

2011 (1)

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

2008 (1)

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

2004 (1)

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[Crossref]

2001 (1)

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

2000 (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

1972 (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62(4), 502–510 (1972).
[Crossref]

1968 (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

1959 (1)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Aitchison, J. S.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

Aizpurua, J.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light: Science &Amp. Applications 5(10), e16173 (2016).
[Crossref]

Alain, D.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

Aubin, H.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Bai, L.

L. Bai, Q. Li, S. A. Corr, Y. Meng, C. Park, S. V. Sinogeikin, C. Ko, J. Wu, and G. Shen, “Pressure-induced phase transitions and metallization in VO2,” Phys. Rev. B 91(10), 104110 (2015).
[Crossref]

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Beebe, M.

Bergamini, L.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light: Science &Amp. Applications 5(10), e16173 (2016).
[Crossref]

Berglund, C. N.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Berreman, D. W.

Blanchard, R.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Boltasseva, A.

Brantley, D.

Capasso, F.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Cavalleri, A.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Chen, M.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[Crossref]

Chen, S.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[Crossref]

Chen, W.

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Claassen, J.

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Clavero, C.

Corr, S. A.

L. Bai, Q. Li, S. A. Corr, Y. Meng, C. Park, S. V. Sinogeikin, C. Ko, J. Wu, and G. Shen, “Pressure-induced phase transitions and metallization in VO2,” Phys. Rev. B 91(10), 104110 (2015).
[Crossref]

Cudazzo, P.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

de Groot, C. H.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light: Science &Amp. Applications 5(10), e16173 (2016).
[Crossref]

Diest, K.

Forget, P.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Gaskell, J. M.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light: Science &Amp. Applications 5(10), e16173 (2016).
[Crossref]

Gatti, M.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Genevet, P.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Ghosh, R.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Guler, U.

Haglund, R. F.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Heimburger, M.

Herzog, M.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joushaghani, A.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20(21), 23598–23609 (2012).
[Crossref] [PubMed]

Kats, M. A.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Ke, C.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[Crossref]

Kieffer, J. C.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Kildishev, A. V.

Kirkwood, D.

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Kittiwatanakul, S.

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Klopf, J. M.

Ko, C.

L. Bai, Q. Li, S. A. Corr, Y. Meng, C. Park, S. V. Sinogeikin, C. Ko, J. Wu, and G. Shen, “Pressure-induced phase transitions and metallization in VO2,” Phys. Rev. B 91(10), 104110 (2015).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Kruger, B. A.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20(21), 23598–23609 (2012).
[Crossref] [PubMed]

Li, Q.

L. Bai, Q. Li, S. A. Corr, Y. Meng, C. Park, S. V. Sinogeikin, C. Ko, J. Wu, and G. Shen, “Pressure-induced phase transitions and metallization in VO2,” Phys. Rev. B 91(10), 104110 (2015).
[Crossref]

Li, X.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[Crossref]

Li, Z.

Liu, Y.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Lopez, R.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Lu, J.

Lukaszew, R. A.

Ma, H.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[Crossref]

Madaras, S. E.

Marvel, R. E.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

McGahan, C. L.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Meng, Y.

L. Bai, Q. Li, S. A. Corr, Y. Meng, C. Park, S. V. Sinogeikin, C. Ko, J. Wu, and G. Shen, “Pressure-induced phase transitions and metallization in VO2,” Phys. Rev. B 91(10), 104110 (2015).
[Crossref]

Morin, F. J.

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Muskens, O. L.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light: Science &Amp. Applications 5(10), e16173 (2016).
[Crossref]

Novikova, I.

Paradis, S.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

Park, C.

L. Bai, Q. Li, S. A. Corr, Y. Meng, C. Park, S. V. Sinogeikin, C. Ko, J. Wu, and G. Shen, “Pressure-induced phase transitions and metallization in VO2,” Phys. Rev. B 91(10), 104110 (2015).
[Crossref]

Pei, Y.

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Pergament, A.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Poon, J. K. S.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20(21), 23598–23609 (2012).
[Crossref] [PubMed]

Radue, E.

Ráksi, F.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Ramanathan, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Reddy, H.

Rubio, A.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Shalaev, V. M.

Sheel, D. W.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light: Science &Amp. Applications 5(10), e16173 (2016).
[Crossref]

Shen, G.

L. Bai, Q. Li, S. A. Corr, Y. Meng, C. Park, S. V. Sinogeikin, C. Ko, J. Wu, and G. Shen, “Pressure-induced phase transitions and metallization in VO2,” Phys. Rev. B 91(10), 104110 (2015).
[Crossref]

Siders, C. W.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Sinogeikin, S. V.

L. Bai, Q. Li, S. A. Corr, Y. Meng, C. Park, S. V. Sinogeikin, C. Ko, J. Wu, and G. Shen, “Pressure-induced phase transitions and metallization in VO2,” Phys. Rev. B 91(10), 104110 (2015).
[Crossref]

Squier, J. A.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Stähler, J.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Stefanovich, D.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Stefanovich, G.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Sweatlock, L. A.

Tao, X.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[Crossref]

Tóth, C.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Wang, H.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[Crossref]

Wang, L.

Wang, Y.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light: Science &Amp. Applications 5(10), e16173 (2016).
[Crossref]

Wegkamp, D.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

West, K. G.

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Wincheski, R. A.

Wolf, M.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Wolf, S. A.

Wu, B.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Wu, J.

L. Bai, Q. Li, S. A. Corr, Y. Meng, C. Park, S. V. Sinogeikin, C. Ko, J. Wu, and G. Shen, “Pressure-induced phase transitions and metallization in VO2,” Phys. Rev. B 91(10), 104110 (2015).
[Crossref]

Xian, L.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Yi, X.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[Crossref]

Yu, J.

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Zabala, N.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light: Science &Amp. Applications 5(10), e16173 (2016).
[Crossref]

Zhang, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Zimmers, A.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Appl. Phys. Lett. (1)

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

Infrared Phys. Technol. (1)

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Condens. Matter (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

J. Vac. Sci. Technol. A (1)

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Light: Science &Amp. Applications (1)

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light: Science &Amp. Applications 5(10), e16173 (2016).
[Crossref]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

L. Bai, Q. Li, S. A. Corr, Y. Meng, C. Park, S. V. Sinogeikin, C. Ko, J. Wu, and G. Shen, “Pressure-induced phase transitions and metallization in VO2,” Phys. Rev. B 91(10), 104110 (2015).
[Crossref]

Phys. Rev. Lett. (3)

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1st ed., Springer Tracts in Modern Physics (Springer-Verlag, 1988), p. 136.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Diagram of the path of the laser light through the glass prism and VO2 sample. Θ represents the incident angle of laser light in the diagram. The diagram is showing the case for internal reflection which is also the case for the generation of SP. The SP are represented by the + and - signs and the black arrows represent the SP electric field. The glass substrate and glass prism are not to scale.
Fig. 2
Fig. 2 Diagram of the experimental setup. The lock-in-amplifier is set up do a differential measurement from the sample signal and the pick off.
Fig. 3
Fig. 3 (a) The reflection of the P polarized light (Rpp) from two different simulations methods; the (dotted) FDTD method the (solid) 4 × 4 optical matrix method. The blue lines are for case when the VO2 is in the insulating state and the red lines are for case of metallic VO2. (b) close-up view of the nadir region of the SPR curve showing the nadir shift produced by the SPP-induced IMT in the VO2.
Fig. 4
Fig. 4 SPR data for two power levels. The vertical axis is normalized Rpp. The horizontal axis is the incident angle in degrees. The blue curve is for 10µW power level scan. The red curve is for a 5.4mW scan. The dashed box highlights the region where the IMT differences are detectable between the two power levels.
Fig. 5
Fig. 5 This graph shows the SPR response curve of two different laser power scans on the sample. The blue diamonds show the data points for the 90µW power scan with uncertainty. The red squares show the data points for the 5.5mW power scan with uncertainty. The dashed blue line is the corresponding weighted polynomial for the 90µW scan. The dashed red line is the corresponding weighted polynomial for the 5.5mW scan. The dotted vertical blue and red lines are visual guides for the respective nadir locations for the polynomial fit.
Fig. 6
Fig. 6 Shows the SPR nadir locations versus the laser light power level. The dashed lines represent the simulation values for 100% insulating VO2, 50% metallic/50% insulating VO2, and 100% metallic VO2. The red line is a visual guide for the transition behavior. The insert displays the SPR nadir locations for the bare 31nm-thick film of Au. For small scans in the vicinity of the resonant points, the data was fitted with a polynomial function. The weighted polynomial was a 3rd order polynomial and the minimum of the polynomial determined the nadir location for that power level scan. The uncertainty in amplitude of the fit at the nadir location was used to determine the uncertainty in the angular location.
Fig. 7
Fig. 7 FDTD simulations for |Hy|2 field in the sample for the case of Insulating VO2 state (blue line) and metallic VO2 (red line). |Hy|2 is the density of the relative electromagnetic energy in the sample and shows the field enhancement caused by surface plasmons at the resonant point.

Metrics