Abstract

Fourier transform spectrometers (FTS) based on piston-scanning MEMS mirrors have clear advantages of small size and low cost. However, the performance of this type of MEMS FTS is seriously limited by the difficulty of precisely controlling the tilt angle of the MEMS mirror plate during its piston scanning. This paper reports an integrated tilt angle sensing method, which is achieved via a mixed signal integrated optoelectronic position sensor (iOE-PS) that is bonded directly on the back of an electrothermally-actuated MEMS mirror. The iOE-PS integrates a laser diode, a band-gap reference, a quadrant photo-detector (QPDs), and the QPDs' readout circuits all on a single chip. The iOE-PS has been fabricated in a 180 nm CMOS process. Experimental results show that the iOE-PS has a linear response when the MEMS mirror plate moves vertically between 1.31 mm to 1.50 mm over the iOE-PS chip; the tilt angle can be measured up to at least 5° with a resolution of 0.0067°. The iOE-PS can greatly reduce the size and complexity of MEMS mirrors-enabled systems with integrated closed-loop control capability.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical coherence tomography endoscopic probe based on a tilted MEMS mirror

Can Duan, Quentin Tanguy, Antonio Pozzi, and Huikai Xie
Biomed. Opt. Express 7(9) 3345-3354 (2016)

Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror

Fengtian Han, Wei Wang, Xiaoyang Zhang, and Huikai Xie
Opt. Express 24(20) 22650-22660 (2016)

Fourier transform infrared spectrometer based on an electrothermal MEMS mirror

Donglin Wang, Hongqiong Liu, Jicheng Zhang, Qiao Chen, Wei Wang, Xiaoyang Zhang, and Huikai Xie
Appl. Opt. 57(21) 5956-5961 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Pieri and A. Cilea, “A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors,” Micromachines (Basel) 9(1), 2 (2018).
  2. M. Seifikar, A. Amann, and F. H. Peters, “Frequency and stability analysis of two mutually delaycoupled semiconductor lasers in photonic integrated circuits,” in CLEO 2017, Optical Society of America (2017), paper JW2A.133.
  3. B. Khorramdel, A. Torkkeli, and M. Mäntysalo, “Electrical Contacts in SOI MEMS Using Aerosol Jet Printing,” IEEE J. Electron. Dev. Soc. 6, 34–40 (2018).
    [Crossref]
  4. E. L. Botvinick, F. Li, S. Cha, D. A. Gough, Y. Fainman, and J. H. Price, “In-vivo confocal microscopy based on the Texas Instruments digital micromirror device,” in Optical Diagnostics of Living Cells III (2000).
  5. A. Jain, S. Todd, G. K. Fedder, and H. Xie, “A large-scanning-angle, electrothermal SCS micromirror for biomedical imaging,” Indiana Mag. Hist. 16(1), 29–46 (2003).
  6. W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier Transform Spectrometer With an Electrothermal micro mirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
    [Crossref]
  7. L. Anjiang, Z. Zhengping, B. Zhongchen, C. Qiao, and Q. Shuijie, “Fourier transform infrared spectrometer based on electro-thermal MEMS micro-mirror,” Inf. Laser Eng. 45(5), 1–7 (2016).
  8. H. Chen, M. Li, Y. Zhang, H. Xie, C. Chen, Z. Peng, and S. Su, “H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems,” Sensors (Basel) 18(2), 508 (2018).
    [Crossref] [PubMed]
  9. H. Xie, S. Lan, D. Wang, and W. Wang, “Miniature fourier transform spectrometers based on electrothermal MEMS mirrors with large piston scan range,” in 2015 IEEE Sensors (2016), pp. 1–4.
  10. K. Jia, S. Pal, and H. Xie, “An Electrothermal Tip–Tilt–Piston Micromirror Based on Folded Dual S-Shaped Bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
    [Crossref]
  11. F. Han, W. Wang, X. Zhang, and H. Xie, “Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror,” Opt. Express 24(20), 22650–22660 (2016).
    [Crossref] [PubMed]
  12. I. Ishikawa, R. Sawada, E. Higurashi, S. Sanada, and D. Chino, “Integrated micro-displacement sensor that measures tilting angle and linear movement of an external mirror,” Sens. Actuators 138(2), 269–275 (2007).
    [Crossref]
  13. X. Cheng, X. Sun, Y. Liu, L. Zhu, X. Zhang, L. Zhou, and H. Xie, “Integrated optoelectronic position sensor for scanning micromirrors,” Sensors (Basel) 18(4), 982 (2018).
    [Crossref] [PubMed]
  14. E. C. Lee, T. J. An, J. S. Park, G. C. Ahn, and S. H. Lee, “Calibrated 10 b 28 nm CMOS SAR ADC based on integer-based split capacitors,” Electron. Lett. 54(7), 414–416 (2018).
    [Crossref]
  15. F. Gomez-Bravo, J. Medina García, R. Jiménez Naharro, J. A. Gómez Galán, and M. Sánchez Raya, “Plataforma Experimental para el Estudio de la Vulnerabilidad Hardware en los Robots Móviles el Bus I2C como Caso de Estudio,” Revista Iberoamericana De Automática E Informá 14(2), 205–216 (2017).
    [Crossref]
  16. L. Wang, Z. Hu, and H. Ji, “Laser spot center location algorithm based on Gaussian fitting,” J. Appl. Opt. 33(5), 986–990 (2012).
  17. Y. Tang, G. Gu, W. Qian, Q. Chen, and J. Zhang, “Laser spot center location algorithm of four-quadrant detector based on Gaussian distribution,” Inf. Laser Eng. 46(2), 1–7 (2017).
  18. C. Fan, X. Cheng, and H. Yan, “Realization of a High Sensitivity Fully-integrated Receiver with Optimized Large-area Photodetector,” Acta Photon Sin. 44(4), 76–81 (2015).
  19. C. Fan, X. Cheng, H. Yan, X. Shi, M. Zheng, P. Xu, and C. Chen, “Realization of a high sensitivity fully integrated receiver with optimized large-area photodetector,” Guangzi Xuebao 44(4), 1–6 (2015).
  20. X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

2018 (5)

F. Pieri and A. Cilea, “A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors,” Micromachines (Basel) 9(1), 2 (2018).

B. Khorramdel, A. Torkkeli, and M. Mäntysalo, “Electrical Contacts in SOI MEMS Using Aerosol Jet Printing,” IEEE J. Electron. Dev. Soc. 6, 34–40 (2018).
[Crossref]

H. Chen, M. Li, Y. Zhang, H. Xie, C. Chen, Z. Peng, and S. Su, “H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems,” Sensors (Basel) 18(2), 508 (2018).
[Crossref] [PubMed]

X. Cheng, X. Sun, Y. Liu, L. Zhu, X. Zhang, L. Zhou, and H. Xie, “Integrated optoelectronic position sensor for scanning micromirrors,” Sensors (Basel) 18(4), 982 (2018).
[Crossref] [PubMed]

E. C. Lee, T. J. An, J. S. Park, G. C. Ahn, and S. H. Lee, “Calibrated 10 b 28 nm CMOS SAR ADC based on integer-based split capacitors,” Electron. Lett. 54(7), 414–416 (2018).
[Crossref]

2017 (2)

F. Gomez-Bravo, J. Medina García, R. Jiménez Naharro, J. A. Gómez Galán, and M. Sánchez Raya, “Plataforma Experimental para el Estudio de la Vulnerabilidad Hardware en los Robots Móviles el Bus I2C como Caso de Estudio,” Revista Iberoamericana De Automática E Informá 14(2), 205–216 (2017).
[Crossref]

Y. Tang, G. Gu, W. Qian, Q. Chen, and J. Zhang, “Laser spot center location algorithm of four-quadrant detector based on Gaussian distribution,” Inf. Laser Eng. 46(2), 1–7 (2017).

2016 (2)

F. Han, W. Wang, X. Zhang, and H. Xie, “Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror,” Opt. Express 24(20), 22650–22660 (2016).
[Crossref] [PubMed]

L. Anjiang, Z. Zhengping, B. Zhongchen, C. Qiao, and Q. Shuijie, “Fourier transform infrared spectrometer based on electro-thermal MEMS micro-mirror,” Inf. Laser Eng. 45(5), 1–7 (2016).

2015 (4)

W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier Transform Spectrometer With an Electrothermal micro mirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
[Crossref]

C. Fan, X. Cheng, and H. Yan, “Realization of a High Sensitivity Fully-integrated Receiver with Optimized Large-area Photodetector,” Acta Photon Sin. 44(4), 76–81 (2015).

C. Fan, X. Cheng, H. Yan, X. Shi, M. Zheng, P. Xu, and C. Chen, “Realization of a high sensitivity fully integrated receiver with optimized large-area photodetector,” Guangzi Xuebao 44(4), 1–6 (2015).

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

2012 (1)

L. Wang, Z. Hu, and H. Ji, “Laser spot center location algorithm based on Gaussian fitting,” J. Appl. Opt. 33(5), 986–990 (2012).

2009 (1)

K. Jia, S. Pal, and H. Xie, “An Electrothermal Tip–Tilt–Piston Micromirror Based on Folded Dual S-Shaped Bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

2007 (1)

I. Ishikawa, R. Sawada, E. Higurashi, S. Sanada, and D. Chino, “Integrated micro-displacement sensor that measures tilting angle and linear movement of an external mirror,” Sens. Actuators 138(2), 269–275 (2007).
[Crossref]

2003 (1)

A. Jain, S. Todd, G. K. Fedder, and H. Xie, “A large-scanning-angle, electrothermal SCS micromirror for biomedical imaging,” Indiana Mag. Hist. 16(1), 29–46 (2003).

Ahn, G. C.

E. C. Lee, T. J. An, J. S. Park, G. C. Ahn, and S. H. Lee, “Calibrated 10 b 28 nm CMOS SAR ADC based on integer-based split capacitors,” Electron. Lett. 54(7), 414–416 (2018).
[Crossref]

An, T. J.

E. C. Lee, T. J. An, J. S. Park, G. C. Ahn, and S. H. Lee, “Calibrated 10 b 28 nm CMOS SAR ADC based on integer-based split capacitors,” Electron. Lett. 54(7), 414–416 (2018).
[Crossref]

Anjiang, L.

L. Anjiang, Z. Zhengping, B. Zhongchen, C. Qiao, and Q. Shuijie, “Fourier transform infrared spectrometer based on electro-thermal MEMS micro-mirror,” Inf. Laser Eng. 45(5), 1–7 (2016).

Chen, C.

H. Chen, M. Li, Y. Zhang, H. Xie, C. Chen, Z. Peng, and S. Su, “H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems,” Sensors (Basel) 18(2), 508 (2018).
[Crossref] [PubMed]

C. Fan, X. Cheng, H. Yan, X. Shi, M. Zheng, P. Xu, and C. Chen, “Realization of a high sensitivity fully integrated receiver with optimized large-area photodetector,” Guangzi Xuebao 44(4), 1–6 (2015).

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Chen, H.

H. Chen, M. Li, Y. Zhang, H. Xie, C. Chen, Z. Peng, and S. Su, “H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems,” Sensors (Basel) 18(2), 508 (2018).
[Crossref] [PubMed]

Chen, J.

W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier Transform Spectrometer With an Electrothermal micro mirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
[Crossref]

Chen, Q.

Y. Tang, G. Gu, W. Qian, Q. Chen, and J. Zhang, “Laser spot center location algorithm of four-quadrant detector based on Gaussian distribution,” Inf. Laser Eng. 46(2), 1–7 (2017).

Cheng, X.

X. Cheng, X. Sun, Y. Liu, L. Zhu, X. Zhang, L. Zhou, and H. Xie, “Integrated optoelectronic position sensor for scanning micromirrors,” Sensors (Basel) 18(4), 982 (2018).
[Crossref] [PubMed]

C. Fan, X. Cheng, and H. Yan, “Realization of a High Sensitivity Fully-integrated Receiver with Optimized Large-area Photodetector,” Acta Photon Sin. 44(4), 76–81 (2015).

C. Fan, X. Cheng, H. Yan, X. Shi, M. Zheng, P. Xu, and C. Chen, “Realization of a high sensitivity fully integrated receiver with optimized large-area photodetector,” Guangzi Xuebao 44(4), 1–6 (2015).

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Chino, D.

I. Ishikawa, R. Sawada, E. Higurashi, S. Sanada, and D. Chino, “Integrated micro-displacement sensor that measures tilting angle and linear movement of an external mirror,” Sens. Actuators 138(2), 269–275 (2007).
[Crossref]

Cilea, A.

F. Pieri and A. Cilea, “A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors,” Micromachines (Basel) 9(1), 2 (2018).

Fan, C.

C. Fan, X. Cheng, and H. Yan, “Realization of a High Sensitivity Fully-integrated Receiver with Optimized Large-area Photodetector,” Acta Photon Sin. 44(4), 76–81 (2015).

C. Fan, X. Cheng, H. Yan, X. Shi, M. Zheng, P. Xu, and C. Chen, “Realization of a high sensitivity fully integrated receiver with optimized large-area photodetector,” Guangzi Xuebao 44(4), 1–6 (2015).

Fedder, G. K.

A. Jain, S. Todd, G. K. Fedder, and H. Xie, “A large-scanning-angle, electrothermal SCS micromirror for biomedical imaging,” Indiana Mag. Hist. 16(1), 29–46 (2003).

Gómez Galán, J. A.

F. Gomez-Bravo, J. Medina García, R. Jiménez Naharro, J. A. Gómez Galán, and M. Sánchez Raya, “Plataforma Experimental para el Estudio de la Vulnerabilidad Hardware en los Robots Móviles el Bus I2C como Caso de Estudio,” Revista Iberoamericana De Automática E Informá 14(2), 205–216 (2017).
[Crossref]

Gomez-Bravo, F.

F. Gomez-Bravo, J. Medina García, R. Jiménez Naharro, J. A. Gómez Galán, and M. Sánchez Raya, “Plataforma Experimental para el Estudio de la Vulnerabilidad Hardware en los Robots Móviles el Bus I2C como Caso de Estudio,” Revista Iberoamericana De Automática E Informá 14(2), 205–216 (2017).
[Crossref]

Gu, G.

Y. Tang, G. Gu, W. Qian, Q. Chen, and J. Zhang, “Laser spot center location algorithm of four-quadrant detector based on Gaussian distribution,” Inf. Laser Eng. 46(2), 1–7 (2017).

Han, B.

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Han, F.

Higurashi, E.

I. Ishikawa, R. Sawada, E. Higurashi, S. Sanada, and D. Chino, “Integrated micro-displacement sensor that measures tilting angle and linear movement of an external mirror,” Sens. Actuators 138(2), 269–275 (2007).
[Crossref]

Hu, Z.

L. Wang, Z. Hu, and H. Ji, “Laser spot center location algorithm based on Gaussian fitting,” J. Appl. Opt. 33(5), 986–990 (2012).

Ishikawa, I.

I. Ishikawa, R. Sawada, E. Higurashi, S. Sanada, and D. Chino, “Integrated micro-displacement sensor that measures tilting angle and linear movement of an external mirror,” Sens. Actuators 138(2), 269–275 (2007).
[Crossref]

Jain, A.

A. Jain, S. Todd, G. K. Fedder, and H. Xie, “A large-scanning-angle, electrothermal SCS micromirror for biomedical imaging,” Indiana Mag. Hist. 16(1), 29–46 (2003).

Ji, H.

L. Wang, Z. Hu, and H. Ji, “Laser spot center location algorithm based on Gaussian fitting,” J. Appl. Opt. 33(5), 986–990 (2012).

Jia, K.

K. Jia, S. Pal, and H. Xie, “An Electrothermal Tip–Tilt–Piston Micromirror Based on Folded Dual S-Shaped Bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

Jiménez Naharro, R.

F. Gomez-Bravo, J. Medina García, R. Jiménez Naharro, J. A. Gómez Galán, and M. Sánchez Raya, “Plataforma Experimental para el Estudio de la Vulnerabilidad Hardware en los Robots Móviles el Bus I2C como Caso de Estudio,” Revista Iberoamericana De Automática E Informá 14(2), 205–216 (2017).
[Crossref]

Khorramdel, B.

B. Khorramdel, A. Torkkeli, and M. Mäntysalo, “Electrical Contacts in SOI MEMS Using Aerosol Jet Printing,” IEEE J. Electron. Dev. Soc. 6, 34–40 (2018).
[Crossref]

Lee, E. C.

E. C. Lee, T. J. An, J. S. Park, G. C. Ahn, and S. H. Lee, “Calibrated 10 b 28 nm CMOS SAR ADC based on integer-based split capacitors,” Electron. Lett. 54(7), 414–416 (2018).
[Crossref]

Lee, S. H.

E. C. Lee, T. J. An, J. S. Park, G. C. Ahn, and S. H. Lee, “Calibrated 10 b 28 nm CMOS SAR ADC based on integer-based split capacitors,” Electron. Lett. 54(7), 414–416 (2018).
[Crossref]

Li, J.

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Li, M.

H. Chen, M. Li, Y. Zhang, H. Xie, C. Chen, Z. Peng, and S. Su, “H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems,” Sensors (Basel) 18(2), 508 (2018).
[Crossref] [PubMed]

Liu, Y.

X. Cheng, X. Sun, Y. Liu, L. Zhu, X. Zhang, L. Zhou, and H. Xie, “Integrated optoelectronic position sensor for scanning micromirrors,” Sensors (Basel) 18(4), 982 (2018).
[Crossref] [PubMed]

Mäntysalo, M.

B. Khorramdel, A. Torkkeli, and M. Mäntysalo, “Electrical Contacts in SOI MEMS Using Aerosol Jet Printing,” IEEE J. Electron. Dev. Soc. 6, 34–40 (2018).
[Crossref]

Medina García, J.

F. Gomez-Bravo, J. Medina García, R. Jiménez Naharro, J. A. Gómez Galán, and M. Sánchez Raya, “Plataforma Experimental para el Estudio de la Vulnerabilidad Hardware en los Robots Móviles el Bus I2C como Caso de Estudio,” Revista Iberoamericana De Automática E Informá 14(2), 205–216 (2017).
[Crossref]

Niu, L.

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Pal, S.

K. Jia, S. Pal, and H. Xie, “An Electrothermal Tip–Tilt–Piston Micromirror Based on Folded Dual S-Shaped Bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

Park, J. S.

E. C. Lee, T. J. An, J. S. Park, G. C. Ahn, and S. H. Lee, “Calibrated 10 b 28 nm CMOS SAR ADC based on integer-based split capacitors,” Electron. Lett. 54(7), 414–416 (2018).
[Crossref]

Peng, Z.

H. Chen, M. Li, Y. Zhang, H. Xie, C. Chen, Z. Peng, and S. Su, “H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems,” Sensors (Basel) 18(2), 508 (2018).
[Crossref] [PubMed]

Pieri, F.

F. Pieri and A. Cilea, “A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors,” Micromachines (Basel) 9(1), 2 (2018).

Qian, W.

Y. Tang, G. Gu, W. Qian, Q. Chen, and J. Zhang, “Laser spot center location algorithm of four-quadrant detector based on Gaussian distribution,” Inf. Laser Eng. 46(2), 1–7 (2017).

Qiao, C.

L. Anjiang, Z. Zhengping, B. Zhongchen, C. Qiao, and Q. Shuijie, “Fourier transform infrared spectrometer based on electro-thermal MEMS micro-mirror,” Inf. Laser Eng. 45(5), 1–7 (2016).

Samuelson, S. R.

W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier Transform Spectrometer With an Electrothermal micro mirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
[Crossref]

Sanada, S.

I. Ishikawa, R. Sawada, E. Higurashi, S. Sanada, and D. Chino, “Integrated micro-displacement sensor that measures tilting angle and linear movement of an external mirror,” Sens. Actuators 138(2), 269–275 (2007).
[Crossref]

Sánchez Raya, M.

F. Gomez-Bravo, J. Medina García, R. Jiménez Naharro, J. A. Gómez Galán, and M. Sánchez Raya, “Plataforma Experimental para el Estudio de la Vulnerabilidad Hardware en los Robots Móviles el Bus I2C como Caso de Estudio,” Revista Iberoamericana De Automática E Informá 14(2), 205–216 (2017).
[Crossref]

Sawada, R.

I. Ishikawa, R. Sawada, E. Higurashi, S. Sanada, and D. Chino, “Integrated micro-displacement sensor that measures tilting angle and linear movement of an external mirror,” Sens. Actuators 138(2), 269–275 (2007).
[Crossref]

Shi, X.

C. Fan, X. Cheng, H. Yan, X. Shi, M. Zheng, P. Xu, and C. Chen, “Realization of a high sensitivity fully integrated receiver with optimized large-area photodetector,” Guangzi Xuebao 44(4), 1–6 (2015).

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Shuijie, Q.

L. Anjiang, Z. Zhengping, B. Zhongchen, C. Qiao, and Q. Shuijie, “Fourier transform infrared spectrometer based on electro-thermal MEMS micro-mirror,” Inf. Laser Eng. 45(5), 1–7 (2016).

Song, Y.

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Su, S.

H. Chen, M. Li, Y. Zhang, H. Xie, C. Chen, Z. Peng, and S. Su, “H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems,” Sensors (Basel) 18(2), 508 (2018).
[Crossref] [PubMed]

Sun, X.

X. Cheng, X. Sun, Y. Liu, L. Zhu, X. Zhang, L. Zhou, and H. Xie, “Integrated optoelectronic position sensor for scanning micromirrors,” Sensors (Basel) 18(4), 982 (2018).
[Crossref] [PubMed]

Tang, Y.

Y. Tang, G. Gu, W. Qian, Q. Chen, and J. Zhang, “Laser spot center location algorithm of four-quadrant detector based on Gaussian distribution,” Inf. Laser Eng. 46(2), 1–7 (2017).

Todd, S.

A. Jain, S. Todd, G. K. Fedder, and H. Xie, “A large-scanning-angle, electrothermal SCS micromirror for biomedical imaging,” Indiana Mag. Hist. 16(1), 29–46 (2003).

Torkkeli, A.

B. Khorramdel, A. Torkkeli, and M. Mäntysalo, “Electrical Contacts in SOI MEMS Using Aerosol Jet Printing,” IEEE J. Electron. Dev. Soc. 6, 34–40 (2018).
[Crossref]

Wang, D.

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Wang, F.

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Wang, J.

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Wang, L.

L. Wang, Z. Hu, and H. Ji, “Laser spot center location algorithm based on Gaussian fitting,” J. Appl. Opt. 33(5), 986–990 (2012).

Wang, S.

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Wang, W.

F. Han, W. Wang, X. Zhang, and H. Xie, “Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror,” Opt. Express 24(20), 22650–22660 (2016).
[Crossref] [PubMed]

W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier Transform Spectrometer With an Electrothermal micro mirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
[Crossref]

Xie, H.

H. Chen, M. Li, Y. Zhang, H. Xie, C. Chen, Z. Peng, and S. Su, “H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems,” Sensors (Basel) 18(2), 508 (2018).
[Crossref] [PubMed]

X. Cheng, X. Sun, Y. Liu, L. Zhu, X. Zhang, L. Zhou, and H. Xie, “Integrated optoelectronic position sensor for scanning micromirrors,” Sensors (Basel) 18(4), 982 (2018).
[Crossref] [PubMed]

F. Han, W. Wang, X. Zhang, and H. Xie, “Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror,” Opt. Express 24(20), 22650–22660 (2016).
[Crossref] [PubMed]

W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier Transform Spectrometer With an Electrothermal micro mirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
[Crossref]

K. Jia, S. Pal, and H. Xie, “An Electrothermal Tip–Tilt–Piston Micromirror Based on Folded Dual S-Shaped Bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

A. Jain, S. Todd, G. K. Fedder, and H. Xie, “A large-scanning-angle, electrothermal SCS micromirror for biomedical imaging,” Indiana Mag. Hist. 16(1), 29–46 (2003).

Xu, P.

C. Fan, X. Cheng, H. Yan, X. Shi, M. Zheng, P. Xu, and C. Chen, “Realization of a high sensitivity fully integrated receiver with optimized large-area photodetector,” Guangzi Xuebao 44(4), 1–6 (2015).

Yan, H.

C. Fan, X. Cheng, H. Yan, X. Shi, M. Zheng, P. Xu, and C. Chen, “Realization of a high sensitivity fully integrated receiver with optimized large-area photodetector,” Guangzi Xuebao 44(4), 1–6 (2015).

C. Fan, X. Cheng, and H. Yan, “Realization of a High Sensitivity Fully-integrated Receiver with Optimized Large-area Photodetector,” Acta Photon Sin. 44(4), 76–81 (2015).

Zhang, J.

Y. Tang, G. Gu, W. Qian, Q. Chen, and J. Zhang, “Laser spot center location algorithm of four-quadrant detector based on Gaussian distribution,” Inf. Laser Eng. 46(2), 1–7 (2017).

Zhang, X.

X. Cheng, X. Sun, Y. Liu, L. Zhu, X. Zhang, L. Zhou, and H. Xie, “Integrated optoelectronic position sensor for scanning micromirrors,” Sensors (Basel) 18(4), 982 (2018).
[Crossref] [PubMed]

F. Han, W. Wang, X. Zhang, and H. Xie, “Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror,” Opt. Express 24(20), 22650–22660 (2016).
[Crossref] [PubMed]

Zhang, Y.

H. Chen, M. Li, Y. Zhang, H. Xie, C. Chen, Z. Peng, and S. Su, “H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems,” Sensors (Basel) 18(2), 508 (2018).
[Crossref] [PubMed]

Zhao, Z.

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Zheng, M.

C. Fan, X. Cheng, H. Yan, X. Shi, M. Zheng, P. Xu, and C. Chen, “Realization of a high sensitivity fully integrated receiver with optimized large-area photodetector,” Guangzi Xuebao 44(4), 1–6 (2015).

Zhengping, Z.

L. Anjiang, Z. Zhengping, B. Zhongchen, C. Qiao, and Q. Shuijie, “Fourier transform infrared spectrometer based on electro-thermal MEMS micro-mirror,” Inf. Laser Eng. 45(5), 1–7 (2016).

Zhongchen, B.

L. Anjiang, Z. Zhengping, B. Zhongchen, C. Qiao, and Q. Shuijie, “Fourier transform infrared spectrometer based on electro-thermal MEMS micro-mirror,” Inf. Laser Eng. 45(5), 1–7 (2016).

Zhou, L.

X. Cheng, X. Sun, Y. Liu, L. Zhu, X. Zhang, L. Zhou, and H. Xie, “Integrated optoelectronic position sensor for scanning micromirrors,” Sensors (Basel) 18(4), 982 (2018).
[Crossref] [PubMed]

Zhu, L.

X. Cheng, X. Sun, Y. Liu, L. Zhu, X. Zhang, L. Zhou, and H. Xie, “Integrated optoelectronic position sensor for scanning micromirrors,” Sensors (Basel) 18(4), 982 (2018).
[Crossref] [PubMed]

Acta Photon Sin. (1)

C. Fan, X. Cheng, and H. Yan, “Realization of a High Sensitivity Fully-integrated Receiver with Optimized Large-area Photodetector,” Acta Photon Sin. 44(4), 76–81 (2015).

Electron. Lett. (1)

E. C. Lee, T. J. An, J. S. Park, G. C. Ahn, and S. H. Lee, “Calibrated 10 b 28 nm CMOS SAR ADC based on integer-based split capacitors,” Electron. Lett. 54(7), 414–416 (2018).
[Crossref]

Guangzi Xuebao (1)

C. Fan, X. Cheng, H. Yan, X. Shi, M. Zheng, P. Xu, and C. Chen, “Realization of a high sensitivity fully integrated receiver with optimized large-area photodetector,” Guangzi Xuebao 44(4), 1–6 (2015).

IEEE J. Electron. Dev. Soc. (1)

B. Khorramdel, A. Torkkeli, and M. Mäntysalo, “Electrical Contacts in SOI MEMS Using Aerosol Jet Printing,” IEEE J. Electron. Dev. Soc. 6, 34–40 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier Transform Spectrometer With an Electrothermal micro mirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
[Crossref]

Indiana Mag. Hist. (1)

A. Jain, S. Todd, G. K. Fedder, and H. Xie, “A large-scanning-angle, electrothermal SCS micromirror for biomedical imaging,” Indiana Mag. Hist. 16(1), 29–46 (2003).

Inf. Laser Eng. (2)

L. Anjiang, Z. Zhengping, B. Zhongchen, C. Qiao, and Q. Shuijie, “Fourier transform infrared spectrometer based on electro-thermal MEMS micro-mirror,” Inf. Laser Eng. 45(5), 1–7 (2016).

Y. Tang, G. Gu, W. Qian, Q. Chen, and J. Zhang, “Laser spot center location algorithm of four-quadrant detector based on Gaussian distribution,” Inf. Laser Eng. 46(2), 1–7 (2017).

J. Appl. Opt. (1)

L. Wang, Z. Hu, and H. Ji, “Laser spot center location algorithm based on Gaussian fitting,” J. Appl. Opt. 33(5), 986–990 (2012).

J. Microelectromech. Syst. (1)

K. Jia, S. Pal, and H. Xie, “An Electrothermal Tip–Tilt–Piston Micromirror Based on Folded Dual S-Shaped Bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

J. Optoelectron. Laser (1)

X. Shi, D. Wang, F. Wang, Z. Zhao, S. Wang, B. Han, L. Niu, Y. Song, J. Li, J. Wang, X. Cheng, and C. Chen, “Research on high-speed optical receiver with integrated large photosensitive surface photodetector based on standard CMOS process,” J. Optoelectron. Laser 26(8), 1460–1467 (2015).

Micromachines (Basel) (1)

F. Pieri and A. Cilea, “A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors,” Micromachines (Basel) 9(1), 2 (2018).

Opt. Express (1)

Revista Iberoamericana De Automática E Informá (1)

F. Gomez-Bravo, J. Medina García, R. Jiménez Naharro, J. A. Gómez Galán, and M. Sánchez Raya, “Plataforma Experimental para el Estudio de la Vulnerabilidad Hardware en los Robots Móviles el Bus I2C como Caso de Estudio,” Revista Iberoamericana De Automática E Informá 14(2), 205–216 (2017).
[Crossref]

Sens. Actuators (1)

I. Ishikawa, R. Sawada, E. Higurashi, S. Sanada, and D. Chino, “Integrated micro-displacement sensor that measures tilting angle and linear movement of an external mirror,” Sens. Actuators 138(2), 269–275 (2007).
[Crossref]

Sensors (Basel) (2)

X. Cheng, X. Sun, Y. Liu, L. Zhu, X. Zhang, L. Zhou, and H. Xie, “Integrated optoelectronic position sensor for scanning micromirrors,” Sensors (Basel) 18(4), 982 (2018).
[Crossref] [PubMed]

H. Chen, M. Li, Y. Zhang, H. Xie, C. Chen, Z. Peng, and S. Su, “H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems,” Sensors (Basel) 18(2), 508 (2018).
[Crossref] [PubMed]

Other (3)

H. Xie, S. Lan, D. Wang, and W. Wang, “Miniature fourier transform spectrometers based on electrothermal MEMS mirrors with large piston scan range,” in 2015 IEEE Sensors (2016), pp. 1–4.

M. Seifikar, A. Amann, and F. H. Peters, “Frequency and stability analysis of two mutually delaycoupled semiconductor lasers in photonic integrated circuits,” in CLEO 2017, Optical Society of America (2017), paper JW2A.133.

E. L. Botvinick, F. Li, S. Cha, D. A. Gough, Y. Fainman, and J. H. Price, “In-vivo confocal microscopy based on the Texas Instruments digital micromirror device,” in Optical Diagnostics of Living Cells III (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 SEM of the MEMS mirror after release.
Fig. 2
Fig. 2 The closed-up view of a pair of DSB actuators.
Fig. 3
Fig. 3 Displacement versus driving voltage
Fig. 4
Fig. 4 The architecture of the iOE-PS chip.
Fig. 5
Fig. 5 A 3D model of the proposed iOE-PS for an electrothermal MEMS mirror.
Fig. 6
Fig. 6 The block diagram of the complete system.
Fig. 7
Fig. 7 iOE-PS MEMS sensing with an external tilt angle monitoring mechanism.
Fig. 8
Fig. 8 Detailed optical path diagram of the reflected light at different mirror plate positions.
Fig. 9
Fig. 9 Schematic diagram showing the locations of the QPDs and the light spots at different vertical displacements
Fig. 10
Fig. 10 S versus vertical displacement
Fig. 11
Fig. 11 Received optical power versus tilt angle when the vertical displacement is 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm.
Fig. 12
Fig. 12 The topology of the TIA.
Fig. 13
Fig. 13 The structure of the SAR-ADC.
Fig. 14
Fig. 14 Packaged MEMS mirror and iOE-PS
Fig. 15
Fig. 15 The topology of the CCSD.
Fig. 16
Fig. 16 The digital output (output voltage and optical power) versus the vertical displacement.
Fig. 17
Fig. 17 The digital output versus the tilt angle.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

B 1 M 3 C , B 2 N 4 D , B 1 7 F 7 ' B 1
B 1 M ' 1 C ' , B 2 N ' 1 D ' , B 1 7 F 8 B 2
p ¯ = P 0 π r 2 = P 0 4 π h 2 t a n 2 β
S = { 0 0 < r W L 2 r 2 × a r c cos W - L 2 r - r 2 - ( W - L 2 ) 2 × ( W - L 2 ) W L 2 < r r 1 r 2 × a r c sin ( L 2 r ) L 2 × r 2 L 2 4 + L ( r 2 L 2 4 W + L 2 ) r 1 < r r 2 r 2 L 2 4 W L 2 2 × r 2 ( x + W ) 2 d x + ( r 2 L 2 4 W + L 2 ) L r 2 < r r 3 L 2 r 3 < r W h e r e r 1 = ( W - L 2 ) 2 + L 2 4 , r 2 = W + L 2 , r 3 = ( W + L 2 ) 2 + L 2 4 .
B D ' = h cos α cos ( α - β ) [ s i n β + cos β tan ( β - 2 α ) ]
B C ' = B M ' s i n β + B M ' cos β tan δ = h cos α cos ( α + β ) [ s i n β + cos β tan ( β + 2 α ) ]
B 1 B 2 = H t a n 2 α
I ( x , y ) = P 0 2 π σ 2 e x p { - ( x - x 0 ) 2 + y 2 2 σ 2 } .
P α = P A - P C = S A I ( x , y ) d x d y - S C I ( x , y ) d x d y = W - L 2 W + L 2 - L 2 L 2 P 0 2 π σ 2 e x p { - ( x - x 0 ) 2 + y 2 2 σ 2 } d x d y - - ( W + L 2 ) - ( W - L 2 ) - L 2 L 2 P 0 2 π σ 2 e x p { - ( x - x 0 ) 2 + y 2 2 σ 2 } d x d y .
x 0 = 1 2 ( B C ' - B D ' ) = 1 2 h cos α [ sin β + cos β tan ( 2 α + β ) cos ( α + β ) - sin β + cos β tan ( β - 2 α ) cos ( α - β ) ] .
σ = 1 2 ( B C ' + B D ' ) = 1 2 h cos α [ sin β + cos β tan ( 2 α + β ) cos ( α + β ) + sin β + cos β tan ( β - 2 α ) cos ( α - β ) ] .
V i = ρ i R m i P .
R m = v o u t i P D = R f g m 3 g m 6 g ( r o 2 r o 6 ) - 1 g m 3 + g m b 3 + g m 3 g m 6 g ( r o 2 r o 6 ) + 1 r o 3 + 1 r o 7 R f g m 3 + g m b 3 g m 3 g m 6 g ( r o 2 r o 6 ) + 1 .
V α = V A - V C .
α ( V α ) = P α - 1 ( α ) = V α ρ R m - 1 ( α ) .

Metrics