Abstract

Laser-induced breakdown spectroscopy (LIBS) evaluates the emission spectra of ions, radicals, and atoms generated from the breakdown of molecules by the incident laser; however, the LIBS signal is unstable at elevated pressures. To understand the cause of the signal instability, we perform simultaneous time-resolved measurements of the electron density and LIBS emission signal for nitrogen (568 nm) and hydrogen (656 nm) at high pressure (up to 11 bars). From correlations between the LIBS signal and electron number density, we find that the uncontrollable generation of excess electrons at high pressure causes high instability in the high-pressure LIBS signal. A possible method using ultrafast lasers is proposed to circumvent the uncontrolled electron generation and improve signal stability at high pressure.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1–11 bar

Paul S. Hsu, Mark Gragston, Yue Wu, Zhili Zhang, Anil K. Patnaik, Johannes Kiefer, Sukesh Roy, and James R. Gord
Appl. Opt. 55(28) 8042-8048 (2016)

Measurement of electron density and temperature from laser-induced nitrogen plasma at elevated pressure (1–6 bar)

Ashwin P. Rao, Mark Gragston, Anil K. Patnaik, Paul S. Hsu, and Michael B. Shattan
Opt. Express 27(23) 33779-33788 (2019)

Helium detection in gas mixtures by laser-induced breakdown spectroscopy

Kemal E. Eseller, Fang-Yu Yueh, Jagdish P. Singh, and Noureddine Melikechi
Appl. Opt. 51(7) B171-B175 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Singh and S. N. Thakur, Laser-induced Breakdown Spectroscopy (Elsevier Science B.V., 2007).
  2. S. Musazzi, Laser-Induced Breakdown Spectroscopy (Springer-Verlag, 2014).
  3. C. D. Chaffe, “LIBS continue to evolve,” Opt. Photonics News 28(5), 42 (2017).
    [Crossref]
  4. R. S. Harmon, R. E. Russo, and R. R. Hark, “Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review,” Spectrochim. Acta B At. Spectrosc. 87, 11–26 (2013).
    [Crossref]
  5. L. Dudragne, P. Adam, and J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52(10), 1321–1327 (1998).
    [Crossref]
  6. D. K. Ottensen, L. L. Baxter, L. J. Radziemski, and J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverised coal particle composition,” Energy Fuels 5(2), 304–312 (1991).
    [Crossref]
  7. H. Zhang, J. P. Singh, F.-Y. Yueh, and R. L. Cook, “Laser-Induced Breakdown Spectra in a Coal-Fired MHD Facility,” Appl. Spectrosc. 49(11), 1617–1623 (1995).
    [Crossref]
  8. T. X. Phuoc and F. P. White, “Laser-induced spark for measurement of the fuel-to-air ratio of a combustible mixture,” Fuel 81(13), 1761–1765 (2002).
    [Crossref]
  9. V. Sturm and R. Noll, “Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2, and C3H8 for simultaneous C, H, O, and N measurement,” Appl. Opt. 42(30), 6221–6225 (2003).
    [Crossref] [PubMed]
  10. F. Ferioli, P. V. Puzinauskas, and S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57(9), 1183–1189 (2003).
    [Crossref] [PubMed]
  11. P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane–air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404(4-6), 309–314 (2005).
    [Crossref]
  12. P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1092–1097 (2005).
    [Crossref]
  13. L. Zimmer, K. Okai, and Y. Kurosawa, “Combined laser induced ignition and plasma spectroscopy: Fundamentals and application to a hydrogen–air combustor,” Spectrochim. Acta B At. Spectrosc. 62(12), 1484–1495 (2007).
    [Crossref]
  14. S. Joshi, D. B. Olsen, C. Dumitrescu, P. V. Puzinauskas, and A. P. Yalin, “Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines,” Appl. Spectrosc. 63(5), 549–554 (2009).
    [Crossref] [PubMed]
  15. L. Zimmer and S. Yoshida, “Feasibility of laser-induced plasma sprectroscopy for measurement of equivalence ratio in high-pressure conditions,” Exp. Fluids 52(4), 891–904 (2012).
    [Crossref]
  16. P. S. Hsu, M. Gragston, Y. Wu, Z. Zhang, A. K. Patnaik, J. Kiefer, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar,” Appl. Opt. 55(28), 8042–8048 (2016).
    [Crossref] [PubMed]
  17. E. Vors, C. Gallou, and L. Salmon, “Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure,” Spectrochim. Acta B At. Spectrosc. 63(10), 1198–1204 (2008).
    [Crossref]
  18. Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta B At. Spectrosc. 59(7), 987–999 (2004).
    [Crossref]
  19. Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “1D fuel/air-ratio measurements in high-pressure reacting flows with laser-induced breakdown spectroscopy (LIBS),” Combust. Flame, in press.
  20. M. N. Shneider and R. B. Miles, “Microwave diagnostics of small plasma objects,” J. Appl. Phys. 98(3), 033301 (2005).
    [Crossref]
  21. J. Sawyer, Z. Zhang, and M. N. Shneider, “Microwave scattering from laser spark in air,” J. Appl. Phys. 112(6), 063101 (2012).
    [Crossref]
  22. Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
    [Crossref] [PubMed]
  23. L. M. Miller and H. G. Maahs, “High-pressure flame systems for pollutions studies with results for methane-air diffusion flames,” TN D-8407, NASA Report (2007).
  24. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th ed. (Academic, 2005).
  25. N. J. DeLuca, R. B. Miles, N. Jiang, W. D. Kulatilaka, A. K. Patnaik, and J. R. Gord, “FLEET velocimetry for combustion and flow diagnostics,” Appl. Opt. 56(31), 8632–8638 (2017).
    [Crossref] [PubMed]
  26. P. S. Hsu, N. Jiang, P. M. Danehy, J. R. Gord, and S. Roy, “Fiber-coupled ultrashort-pulse-laser-based electronic-excitation tagging velocimetry,” Appl. Opt. 57(3), 560–566 (2018).
    [Crossref] [PubMed]
  27. M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown for combustion diagnostics,” Appl. Phys. Lett. 100(26), 264104 (2012).
    [Crossref]
  28. A. K. Patnaik, P. S. Hsu, S. Roy, Y. Wu, M. Gragston, Z. Zhang, and J. R. Gord, “Ultrafast Laser-Induced-Breakdown Spectroscopy (LIBS) for F/A-Ratio Measurement of Hydrocarbon Flames,” in AIAA SciTech (Kissimmee, FL, 2018).
  29. A. K. Patnaik, P. S. Hsu, A. J. Stolt, J. Estevadeordal, J. R. Gord, and S. Roy, “Advantages of Ultrafast LIBS for High-Pressure Diagnostics,” in LACSEA, OSA Imaging and Applied Optics (Orlando, FL, 2018), pp. LW5C.4.

2018 (1)

2017 (2)

2016 (1)

2013 (1)

R. S. Harmon, R. E. Russo, and R. R. Hark, “Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review,” Spectrochim. Acta B At. Spectrosc. 87, 11–26 (2013).
[Crossref]

2012 (3)

L. Zimmer and S. Yoshida, “Feasibility of laser-induced plasma sprectroscopy for measurement of equivalence ratio in high-pressure conditions,” Exp. Fluids 52(4), 891–904 (2012).
[Crossref]

M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown for combustion diagnostics,” Appl. Phys. Lett. 100(26), 264104 (2012).
[Crossref]

J. Sawyer, Z. Zhang, and M. N. Shneider, “Microwave scattering from laser spark in air,” J. Appl. Phys. 112(6), 063101 (2012).
[Crossref]

2009 (1)

2008 (1)

E. Vors, C. Gallou, and L. Salmon, “Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure,” Spectrochim. Acta B At. Spectrosc. 63(10), 1198–1204 (2008).
[Crossref]

2007 (2)

L. Zimmer, K. Okai, and Y. Kurosawa, “Combined laser induced ignition and plasma spectroscopy: Fundamentals and application to a hydrogen–air combustor,” Spectrochim. Acta B At. Spectrosc. 62(12), 1484–1495 (2007).
[Crossref]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[Crossref] [PubMed]

2005 (3)

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane–air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404(4-6), 309–314 (2005).
[Crossref]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1092–1097 (2005).
[Crossref]

M. N. Shneider and R. B. Miles, “Microwave diagnostics of small plasma objects,” J. Appl. Phys. 98(3), 033301 (2005).
[Crossref]

2004 (1)

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta B At. Spectrosc. 59(7), 987–999 (2004).
[Crossref]

2003 (2)

2002 (1)

T. X. Phuoc and F. P. White, “Laser-induced spark for measurement of the fuel-to-air ratio of a combustible mixture,” Fuel 81(13), 1761–1765 (2002).
[Crossref]

1998 (1)

1995 (1)

1991 (1)

D. K. Ottensen, L. L. Baxter, L. J. Radziemski, and J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverised coal particle composition,” Energy Fuels 5(2), 304–312 (1991).
[Crossref]

Adam, P.

Amouroux, J.

Arp, Z. A.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta B At. Spectrosc. 59(7), 987–999 (2004).
[Crossref]

Baxter, L. L.

D. K. Ottensen, L. L. Baxter, L. J. Radziemski, and J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverised coal particle composition,” Energy Fuels 5(2), 304–312 (1991).
[Crossref]

Buckley, S. G.

Burrows, J. F.

D. K. Ottensen, L. L. Baxter, L. J. Radziemski, and J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverised coal particle composition,” Energy Fuels 5(2), 304–312 (1991).
[Crossref]

Chaffe, C. D.

C. D. Chaffe, “LIBS continue to evolve,” Opt. Photonics News 28(5), 42 (2017).
[Crossref]

Cook, R. L.

Couris, S.

M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown for combustion diagnostics,” Appl. Phys. Lett. 100(26), 264104 (2012).
[Crossref]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane–air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404(4-6), 309–314 (2005).
[Crossref]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1092–1097 (2005).
[Crossref]

Cremers, D. A.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta B At. Spectrosc. 59(7), 987–999 (2004).
[Crossref]

Danehy, P. M.

DeLuca, N. J.

Dudragne, L.

Dumitrescu, C.

Ferioli, F.

Gallou, C.

E. Vors, C. Gallou, and L. Salmon, “Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure,” Spectrochim. Acta B At. Spectrosc. 63(10), 1198–1204 (2008).
[Crossref]

Gord, J. R.

Gragston, M.

P. S. Hsu, M. Gragston, Y. Wu, Z. Zhang, A. K. Patnaik, J. Kiefer, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar,” Appl. Opt. 55(28), 8042–8048 (2016).
[Crossref] [PubMed]

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “1D fuel/air-ratio measurements in high-pressure reacting flows with laser-induced breakdown spectroscopy (LIBS),” Combust. Flame, in press.

Hark, R. R.

R. S. Harmon, R. E. Russo, and R. R. Hark, “Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review,” Spectrochim. Acta B At. Spectrosc. 87, 11–26 (2013).
[Crossref]

Harmon, R. S.

R. S. Harmon, R. E. Russo, and R. R. Hark, “Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review,” Spectrochim. Acta B At. Spectrosc. 87, 11–26 (2013).
[Crossref]

Harris, R. D.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta B At. Spectrosc. 59(7), 987–999 (2004).
[Crossref]

Hsu, P. S.

Jiang, N.

Joshi, S.

Kiefer, J.

Kotzagianni, M.

M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown for combustion diagnostics,” Appl. Phys. Lett. 100(26), 264104 (2012).
[Crossref]

Kulatilaka, W. D.

Kurosawa, Y.

L. Zimmer, K. Okai, and Y. Kurosawa, “Combined laser induced ignition and plasma spectroscopy: Fundamentals and application to a hydrogen–air combustor,” Spectrochim. Acta B At. Spectrosc. 62(12), 1484–1495 (2007).
[Crossref]

Michalakou, A.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1092–1097 (2005).
[Crossref]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane–air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404(4-6), 309–314 (2005).
[Crossref]

Miles, R. B.

N. J. DeLuca, R. B. Miles, N. Jiang, W. D. Kulatilaka, A. K. Patnaik, and J. R. Gord, “FLEET velocimetry for combustion and flow diagnostics,” Appl. Opt. 56(31), 8632–8638 (2017).
[Crossref] [PubMed]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[Crossref] [PubMed]

M. N. Shneider and R. B. Miles, “Microwave diagnostics of small plasma objects,” J. Appl. Phys. 98(3), 033301 (2005).
[Crossref]

Noll, R.

Okai, K.

L. Zimmer, K. Okai, and Y. Kurosawa, “Combined laser induced ignition and plasma spectroscopy: Fundamentals and application to a hydrogen–air combustor,” Spectrochim. Acta B At. Spectrosc. 62(12), 1484–1495 (2007).
[Crossref]

Olsen, D. B.

Oschwald, D. M.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta B At. Spectrosc. 59(7), 987–999 (2004).
[Crossref]

Ottensen, D. K.

D. K. Ottensen, L. L. Baxter, L. J. Radziemski, and J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverised coal particle composition,” Energy Fuels 5(2), 304–312 (1991).
[Crossref]

Parker, G. R.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta B At. Spectrosc. 59(7), 987–999 (2004).
[Crossref]

Patnaik, A. K.

Phuoc, T. X.

T. X. Phuoc and F. P. White, “Laser-induced spark for measurement of the fuel-to-air ratio of a combustible mixture,” Fuel 81(13), 1761–1765 (2002).
[Crossref]

Puzinauskas, P. V.

Radziemski, L. J.

D. K. Ottensen, L. L. Baxter, L. J. Radziemski, and J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverised coal particle composition,” Energy Fuels 5(2), 304–312 (1991).
[Crossref]

Roy, S.

Russo, R. E.

R. S. Harmon, R. E. Russo, and R. R. Hark, “Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review,” Spectrochim. Acta B At. Spectrosc. 87, 11–26 (2013).
[Crossref]

Salmon, L.

E. Vors, C. Gallou, and L. Salmon, “Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure,” Spectrochim. Acta B At. Spectrosc. 63(10), 1198–1204 (2008).
[Crossref]

Sawyer, J.

J. Sawyer, Z. Zhang, and M. N. Shneider, “Microwave scattering from laser spark in air,” J. Appl. Phys. 112(6), 063101 (2012).
[Crossref]

Shneider, M. N.

J. Sawyer, Z. Zhang, and M. N. Shneider, “Microwave scattering from laser spark in air,” J. Appl. Phys. 112(6), 063101 (2012).
[Crossref]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[Crossref] [PubMed]

M. N. Shneider and R. B. Miles, “Microwave diagnostics of small plasma objects,” J. Appl. Phys. 98(3), 033301 (2005).
[Crossref]

Singh, J. P.

Skevis, G.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane–air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404(4-6), 309–314 (2005).
[Crossref]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1092–1097 (2005).
[Crossref]

Stavropoulos, P.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1092–1097 (2005).
[Crossref]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane–air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404(4-6), 309–314 (2005).
[Crossref]

Sturm, V.

Vors, E.

E. Vors, C. Gallou, and L. Salmon, “Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure,” Spectrochim. Acta B At. Spectrosc. 63(10), 1198–1204 (2008).
[Crossref]

Wayne, D. M.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta B At. Spectrosc. 59(7), 987–999 (2004).
[Crossref]

White, F. P.

T. X. Phuoc and F. P. White, “Laser-induced spark for measurement of the fuel-to-air ratio of a combustible mixture,” Fuel 81(13), 1761–1765 (2002).
[Crossref]

Wu, Y.

P. S. Hsu, M. Gragston, Y. Wu, Z. Zhang, A. K. Patnaik, J. Kiefer, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar,” Appl. Opt. 55(28), 8042–8048 (2016).
[Crossref] [PubMed]

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “1D fuel/air-ratio measurements in high-pressure reacting flows with laser-induced breakdown spectroscopy (LIBS),” Combust. Flame, in press.

Yalin, A. P.

Yoshida, S.

L. Zimmer and S. Yoshida, “Feasibility of laser-induced plasma sprectroscopy for measurement of equivalence ratio in high-pressure conditions,” Exp. Fluids 52(4), 891–904 (2012).
[Crossref]

Yueh, F.-Y.

Zhang, H.

Zhang, Z.

P. S. Hsu, M. Gragston, Y. Wu, Z. Zhang, A. K. Patnaik, J. Kiefer, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar,” Appl. Opt. 55(28), 8042–8048 (2016).
[Crossref] [PubMed]

J. Sawyer, Z. Zhang, and M. N. Shneider, “Microwave scattering from laser spark in air,” J. Appl. Phys. 112(6), 063101 (2012).
[Crossref]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[Crossref] [PubMed]

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “1D fuel/air-ratio measurements in high-pressure reacting flows with laser-induced breakdown spectroscopy (LIBS),” Combust. Flame, in press.

Zimmer, L.

L. Zimmer and S. Yoshida, “Feasibility of laser-induced plasma sprectroscopy for measurement of equivalence ratio in high-pressure conditions,” Exp. Fluids 52(4), 891–904 (2012).
[Crossref]

L. Zimmer, K. Okai, and Y. Kurosawa, “Combined laser induced ignition and plasma spectroscopy: Fundamentals and application to a hydrogen–air combustor,” Spectrochim. Acta B At. Spectrosc. 62(12), 1484–1495 (2007).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown for combustion diagnostics,” Appl. Phys. Lett. 100(26), 264104 (2012).
[Crossref]

Appl. Spectrosc. (4)

Chem. Phys. Lett. (1)

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane–air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404(4-6), 309–314 (2005).
[Crossref]

Energy Fuels (1)

D. K. Ottensen, L. L. Baxter, L. J. Radziemski, and J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverised coal particle composition,” Energy Fuels 5(2), 304–312 (1991).
[Crossref]

Exp. Fluids (1)

L. Zimmer and S. Yoshida, “Feasibility of laser-induced plasma sprectroscopy for measurement of equivalence ratio in high-pressure conditions,” Exp. Fluids 52(4), 891–904 (2012).
[Crossref]

Fuel (1)

T. X. Phuoc and F. P. White, “Laser-induced spark for measurement of the fuel-to-air ratio of a combustible mixture,” Fuel 81(13), 1761–1765 (2002).
[Crossref]

J. Appl. Phys. (2)

M. N. Shneider and R. B. Miles, “Microwave diagnostics of small plasma objects,” J. Appl. Phys. 98(3), 033301 (2005).
[Crossref]

J. Sawyer, Z. Zhang, and M. N. Shneider, “Microwave scattering from laser spark in air,” J. Appl. Phys. 112(6), 063101 (2012).
[Crossref]

Opt. Photonics News (1)

C. D. Chaffe, “LIBS continue to evolve,” Opt. Photonics News 28(5), 42 (2017).
[Crossref]

Phys. Rev. Lett. (1)

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (5)

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1092–1097 (2005).
[Crossref]

L. Zimmer, K. Okai, and Y. Kurosawa, “Combined laser induced ignition and plasma spectroscopy: Fundamentals and application to a hydrogen–air combustor,” Spectrochim. Acta B At. Spectrosc. 62(12), 1484–1495 (2007).
[Crossref]

R. S. Harmon, R. E. Russo, and R. R. Hark, “Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review,” Spectrochim. Acta B At. Spectrosc. 87, 11–26 (2013).
[Crossref]

E. Vors, C. Gallou, and L. Salmon, “Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure,” Spectrochim. Acta B At. Spectrosc. 63(10), 1198–1204 (2008).
[Crossref]

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta B At. Spectrosc. 59(7), 987–999 (2004).
[Crossref]

Other (7)

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “1D fuel/air-ratio measurements in high-pressure reacting flows with laser-induced breakdown spectroscopy (LIBS),” Combust. Flame, in press.

J. P. Singh and S. N. Thakur, Laser-induced Breakdown Spectroscopy (Elsevier Science B.V., 2007).

S. Musazzi, Laser-Induced Breakdown Spectroscopy (Springer-Verlag, 2014).

A. K. Patnaik, P. S. Hsu, S. Roy, Y. Wu, M. Gragston, Z. Zhang, and J. R. Gord, “Ultrafast Laser-Induced-Breakdown Spectroscopy (LIBS) for F/A-Ratio Measurement of Hydrocarbon Flames,” in AIAA SciTech (Kissimmee, FL, 2018).

A. K. Patnaik, P. S. Hsu, A. J. Stolt, J. Estevadeordal, J. R. Gord, and S. Roy, “Advantages of Ultrafast LIBS for High-Pressure Diagnostics,” in LACSEA, OSA Imaging and Applied Optics (Orlando, FL, 2018), pp. LW5C.4.

L. M. Miller and H. G. Maahs, “High-pressure flame systems for pollutions studies with results for methane-air diffusion flames,” TN D-8407, NASA Report (2007).

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th ed. (Academic, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic view of the experimental setup for simultaneous LIBS and electron number density measurements in a high-pressure combustion chamber. λ/2: half-wave plate; PBS: polarized beam splitter; BD: beam dump; F1, F2: convex lenses with focal lengths of 50 mm and 250 mm, respectively; E: gas exhaust of the high-pressure chamber; MH: microwave horn for electron density measurement. Note that a 25%-transparent cross sectional view of the high-pressure chamber is shown for illustration purpose only.
Fig. 2
Fig. 2 (a) Laser energy at different shots, (b) normalized microwave signal, (c) normalized H, and (d) normalized N with respect to the shot numbers at atmospheric pressure. The LIBS signal in (c) and (d) are recorded with a camera delay of 80 ns, and the gate duration was maintained at 20 ns.
Fig. 3
Fig. 3 Time-resolved plot of (a, d) electron density, (b, e) H (656 nm), and (c, f) N (568 nm) for pressures of 1 bar (column 1) and 11 bars (column 2). The square (blue) and circle (red) data points correspond to laser energies of 50 mJ and 150 mJ, respectively. The grayed out data points are excluded from the exponential fit shown in black dashed lines. The green dashed line in (a) and (d) represent the pulse trace of the excitation pulse.
Fig. 4
Fig. 4 Correlation between initial electron density (Tdelay = 0) vs electron density at a delay Tdelay = 80 ns for pressure of 1 bar (a and b) and 11 bar (c and d).
Fig. 5
Fig. 5 Same-time signal correlation of the LIBS signal of Hα(t) and NII(t) with electron density as a function of time in (a and b) and (c and d), respectively. The left and right columns correspond to laser energies of 50 mJ and 150 mJ, respectively.
Fig. 6
Fig. 6 Time-delayed correlation of the LIBS signal of Hα(t + τ) and NII(t + τ) with electron density σe(τ) as a function of time in (a and b) and (c and d), respectively. For this plot, initial time delay τ = 80 ns, where the effect of inital broadband emission is reduced. The left and right columns correspond to laser energies of 50 mJ and 150 mJ, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E S E mo N(t),
N( t )~2π 0 n e ( r,t )rdr.
S α 2 = 1 (n1) i ( A αi A ¯ α ) 2 ,
S e 2 = 1 (n1) i ( A ei A ¯ e ) 2 .
cov( A α , A e )= 1 (n1) i ( A αi A ¯ α ) j ( A ej A ¯ e ) .
g αe = cov( A α A e ) S α 2 × S e 2 .
g αe (t+τ,τ)= cov{ A α (t+τ), A e (τ) } { S α (t+τ)} 2 × { S e (τ)} 2 .

Metrics