Abstract

A conventional optofluidic lens usually has one liquid-liquid (L-L) interface, which can be deformed to achieve variable focal length. Such a single lens cannot be used alone to realize optical zooming because its back focal distance keeps changing. Here, we report a novel displaceable and focus-tunable electrowetting optofluidic lens. In comparison with the conventional optofluidic lens, our new lens has a different working principle and it can function as an optical zoom lens. The L-L interface can be displaced by a voltage. The object distance and image distance can be adjusted by shifting the L-L interface position to achieve the desired magnification, yet the lens can refocus the image by reshaping the L-L interface with another voltage. Under such condition, only one lens is adequate to realize the zooming functionality. To prove the concept, we fabricate an optofluidic lens whose largest displaceable distance is ~8.3 mm and the zooming ratio is ~1.31 ×. The proposed optofluidic lens greatly simplifies the zoom lens system. Widespread application of such an adaptive zoom lens is foreseeable.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid driving variable-focus optofluidic lens

Jin-Hui Wang, Wei-Pu Tang, Lin-Yang Li, Liang Xiao, Xin Zhou, and Qiong-Hua Wang
Opt. Express 27(24) 35203-35215 (2019)

Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography

Chao Liu, Di Wang, Qiong-Hua Wang, and Jiancheng Fang
Opt. Express 27(9) 12963-12975 (2019)

Zoom microscope objective using electrowetting lenses

Lei Li, Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 24(3) 2931-2940 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Finn, “Capillary Surface Interfaces,” Not. Am. Math. Soc. 46(7), 770–781 (1999).
  2. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  3. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  4. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [Crossref] [PubMed]
  5. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [Crossref] [PubMed]
  6. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [Crossref] [PubMed]
  7. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
    [Crossref]
  8. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [Crossref] [PubMed]
  9. S. Xu, H. Ren, and S. T. Wu, “Adaptive liquid lens actuated by liquid crystal pistons,” Opt. Express 20(27), 28518–28523 (2012).
    [Crossref] [PubMed]
  10. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [Crossref]
  11. C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
    [Crossref]
  12. D. Koyama, R. Isago, and K. Nakamura, “Compact, high-speed variable-focus liquid lens using acoustic radiation force,” Opt. Express 18(24), 25158–25169 (2010).
    [Crossref] [PubMed]
  13. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
    [Crossref] [PubMed]
  14. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
    [Crossref] [PubMed]
  15. Z. Wang, M. Lei, B. Yao, Y. Cai, Y. Liang, Y. Yang, X. Yang, H. Li, and D. Xiong, “Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing,” Biomed. Opt. Express 6(11), 4353–4364 (2015).
    [Crossref] [PubMed]
  16. Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
    [Crossref] [PubMed]
  17. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
    [Crossref] [PubMed]
  18. D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
    [Crossref]
  19. C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
    [Crossref]
  20. S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
    [Crossref]
  21. S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
    [Crossref] [PubMed]
  22. L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
    [Crossref] [PubMed]
  23. L. Li, D. Wang, C. Liu, and Q. H. Wang, “Ultrathin zoom telescopic objective,” Opt. Express 24(16), 18674–18684 (2016).
    [Crossref] [PubMed]
  24. L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
    [Crossref]
  25. D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
    [Crossref] [PubMed]
  26. H. Choi and Y. Won, “Fluidic lens of floating oil using round-pot chamber based on electrowetting,” Opt. Lett. 38(13), 2197–2199 (2013).
    [Crossref] [PubMed]
  27. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19(19), 18584–18592 (2011).
    [Crossref] [PubMed]
  28. I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuator A-Phys. 273, 317–323 (2018).
    [Crossref]
  29. SCHOTT, http://www.schott.com/optocs_devices/english/download/

2018 (1)

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuator A-Phys. 273, 317–323 (2018).
[Crossref]

2017 (1)

2016 (2)

2015 (3)

Z. Wang, M. Lei, B. Yao, Y. Cai, Y. Liang, Y. Yang, X. Yang, H. Li, and D. Xiong, “Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing,” Biomed. Opt. Express 6(11), 4353–4364 (2015).
[Crossref] [PubMed]

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

2013 (3)

2012 (2)

S. Xu, H. Ren, and S. T. Wu, “Adaptive liquid lens actuated by liquid crystal pistons,” Opt. Express 20(27), 28518–28523 (2012).
[Crossref] [PubMed]

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

2011 (2)

2010 (2)

D. Koyama, R. Isago, and K. Nakamura, “Compact, high-speed variable-focus liquid lens using acoustic radiation force,” Opt. Express 18(24), 25158–25169 (2010).
[Crossref] [PubMed]

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

2008 (2)

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[Crossref]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
[Crossref] [PubMed]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

2005 (1)

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[Crossref]

2004 (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

2003 (1)

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

1999 (1)

R. Finn, “Capillary Surface Interfaces,” Not. Am. Math. Soc. 46(7), 770–781 (1999).

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Berdichevsky, Y.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Boilot, V.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Brender, T.

Cai, Y.

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Chang, J. H.

Chen, M. S.

Cheng, C. C.

Choi, H.

Choi, J.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Choi, M.

Chung, S. K.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuator A-Phys. 273, 317–323 (2018).
[Crossref]

Clark, J.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Draviam, V. M.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Fan, Y. H.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Finn, R.

R. Finn, “Capillary Surface Interfaces,” Not. Am. Math. Soc. 46(7), 770–781 (1999).

Funahashi, A.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Gauza, S.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Hiraiwa, T.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Hiroi, N.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Hirsa, A. H.

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[Crossref]

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[Crossref]

Isago, R.

Jiang, H.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Jung, K. D.

Kim, W.

Kopp, D.

Koyama, D.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Lavrentovich, O. D.

Lee, C. C.

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[Crossref]

Lee, E.

Lee, S.

Lei, M.

Li, C.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

Li, H.

Li, L.

Liang, Y.

Liebetraut, P.

Lien, V.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Lin, H. C.

Lin, Y. H.

Liu, C.

Lo, Y. H.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

López, C. A.

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[Crossref]

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[Crossref]

Mader, D.

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Mishra, K.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Mugele, F.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Nakai, Y.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Nakamura, K.

Nonaka, S.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Oh, S. H.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuator A-Phys. 273, 317–323 (2018).
[Crossref]

Oku, H.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Ozeki, M.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Park, I. S.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuator A-Phys. 273, 317–323 (2018).
[Crossref]

Park, Y.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuator A-Phys. 273, 317–323 (2018).
[Crossref]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Pishnyak, O.

Ren, H.

Roghair, I.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Sato, S.

Seifert, A.

Shrestha, R.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Tamura, N.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Taniguchi, A.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Tanimoto, R.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

van den Ende, D.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Waibel, P.

Wang, D.

Wang, Q. H.

Wang, Z.

Won, Y.

Wu, S. T.

Xianyu, H.

Xiong, D.

Xu, S.

Yang, J. W.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuator A-Phys. 273, 317–323 (2018).
[Crossref]

Yang, X.

Yang, Y.

Yao, B.

Yeh, J. A.

Zappe, H.

Zeng, X.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

Zhang, D. Y.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Zhu, D.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Biomed. Opt. Express (1)

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Nat. Photonics (1)

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[Crossref]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Not. Am. Math. Soc. (1)

R. Finn, “Capillary Surface Interfaces,” Not. Am. Math. Soc. 46(7), 770–781 (1999).

Opt. Eng. (1)

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

Opt. Express (10)

S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
[Crossref] [PubMed]

L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref] [PubMed]

L. Li, D. Wang, C. Liu, and Q. H. Wang, “Ultrathin zoom telescopic objective,” Opt. Express 24(16), 18674–18684 (2016).
[Crossref] [PubMed]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19(19), 18584–18592 (2011).
[Crossref] [PubMed]

S. Xu, H. Ren, and S. T. Wu, “Adaptive liquid lens actuated by liquid crystal pistons,” Opt. Express 20(27), 28518–28523 (2012).
[Crossref] [PubMed]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref] [PubMed]

H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
[Crossref] [PubMed]

D. Koyama, R. Isago, and K. Nakamura, “Compact, high-speed variable-focus liquid lens using acoustic radiation force,” Opt. Express 18(24), 25158–25169 (2010).
[Crossref] [PubMed]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instrum. 86(1), 013707 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Sens. Actuator A-Phys. (1)

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuator A-Phys. 273, 317–323 (2018).
[Crossref]

Other (1)

SCHOTT, http://www.schott.com/optocs_devices/english/download/

Supplementary Material (2)

NameDescription
» Visualization 1       Moving actuation of the the optofludidic lens
» Visualization 2       Moving and deforming actuation of the optofluidic lens

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic cross-sectional structure and operating mechanism of the displaceable and focus-tunable electrowetting optofluidic lens: (a) Cell structure. (b) Moving actuation and deforming actuation. (c) Working principle.
Fig. 2
Fig. 2 Analysis of the force balance of the displaceable and focus-tunable electrowetting optofluidic lens: (a) Initial equilibrium state. (b) Equilibrium state when applying an external voltage U1 on the device. (c) Equilibrium state when applying an internal voltage U2 and the external voltage U1 on the device.
Fig. 3
Fig. 3 Performance of moving and deforming actuation of the displaceable and focus-tunable electrowetting optofluidic lens. (a) Moving performance of the proposed lens at different voltages. Blue water is the dyed conductive liquid (see Visualization 1). (b) Moving distance with different voltages. (c) Deforming performance of the proposed lens. UM is the voltage which is applied for moving actuation. UD is the voltage which is applied for deforming actuation (see Visualization 2). (d) Optical power with different voltages.
Fig. 4
Fig. 4 Fabricated prototype of the displaceable and focus-tunable electrowetting optofluidic lens. (a) All the elements of the device. The inner tube has 6 holes which connects the two chambers. (b) Assembled prototype.
Fig. 5
Fig. 5 Optofluidic zoom system using a displaceable and focus-tunable electrowetting optofluidic lens. (a) Setup of the zoom system which consists of a displaceable and focus-tunable electrowetting optofluidic lens and a glass lens. (b) Assembled prototype.
Fig. 6
Fig. 6 Imaging experiment using one displaceable and focus-tunable electrowetting optofluidic lens. (a) Zemax model of the zoom lens system. Firstly, the L-L interface remains in the initial position and deforms the shape to focus image on the CMOS. Then, the position is shifted forward. Finally, the shape of the L-L interface is deformed to refocus the image on the CMOS. (b) Experimental results of zoom in and out state of the proposed optofluidic zoom lens system.
Fig. 7
Fig. 7 Applied voltage dependent magnification of the proposed optofluidic lens.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ p = ρ g h γ 2 R ,
Δ p 1 = ρ g ( H h 1 ) γ 12 2 R 1 ,
Δ p 2 = ρ g ( H h 2 ) γ 12 2 R 2 ,
ρ g h 1 + γ 12 2 R 1 = ρ g h 2 + γ 12 2 R 2 ,
cos θ = γ 1 γ 2 γ 12 + ε 2 γ 12 d U 2 ,

Metrics