Abstract

We demonstrate generation and detection of 120-Gbaud PAM-4 signals using an I/Q modulator based on optical band interleaving (OBI) technique. The spectral components of target PAM signals are split and pre-processed before being sent to two digital-to-analog convertors (sub-DACs) whose outputs are imprinted to an optical carrier by an optical I/Q modulator forming a carrier-suppressed tandem single side-band (SSB) signal. The PAM signals can be recovered after photo-detection provided that an optical beating tone is added at the edge of the signal spectrum along with the modulator output. The proposed method requires only half of the Nyquist bandwidth of the target PAM signal for the transmitter and has the advantage of a simple implementation. Using Kramers-Kronig (K-K) detection, a 120 Gbaud PAM-4 transmission over 80-km standard single mode fiber (SSMF) is successfully demonstrated. The proposed scheme entails a simple implementation and a much lower bandwidth requirement at the transmitter compared with conventional all-electronic high baud rate signal generation schemes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transmission of single lane 128 Gbit/s PAM-4 signals over an 80 km SSMF link, enabled by DDMZM aided dispersion pre-compensation

Qiang Zhang, Nebojsa Stojanovic, Changsong Xie, Cristian Prodaniuc, and Piotr Laskowski
Opt. Express 24(21) 24580-24591 (2016)

112 Gb/s transmission over 80 km SSMF using PDM-PAM4 and coherent detection without optical amplifier

Xian Zhou, Kangping Zhong, Jiahao Huo, Lei Gao, Yiguang Wang, Liang Wang, Yanfu Yang, Jinhui Yuan, Keping Long, Li Zeng, Alan Pak Tao Lau, and Chao Lu
Opt. Express 24(15) 17359-17371 (2016)

Single wavelength 480 Gb/s direct detection over 80km SSMF enabled by Stokes vector Kramers Kronig transceiver

Thang M. Hoang, Mohammed Y. S. Sowailem, Qunbi Zhuge, Zhenping Xing, Mohamed Morsy-Osman, Eslam El-Fiky, Sujie Fan, Meng Xiang, and David V. Plant
Opt. Express 25(26) 33534-33542 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
    [Crossref] [PubMed]
  2. T. Richter, E. Palushani, C. S. Langhorst, R. Ludwig, L. Molle, M. Nölle, and C. Schubert, “Transmission of single-channel 16-QAM data signals at Terabaud symbol rates,” J. Lightwave Technol. 30(4), 504–511 (2012).
    [Crossref]
  3. R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, “1-terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference (Optical Society of America, 2015), Paper Th5B.1.
  4. J. Zhang, J. Yu, and H.-C. Chien, “Advanced algorithm for high-baud rate signal generation and detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3D.1.
    [Crossref]
  5. X. Chen, S. Chandrasekhar, S. Rande, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190-GBaud,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th5C.5.
    [Crossref]
  6. H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed Image,” inProceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2014), post deadline paper.
  7. X. Chen, S. Chandrasekhar, P. Pupalaikis, and P. Winzer, “Fast DAC solutions for future high symbol rate systems,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2E.3.
    [Crossref]
  8. Y. Zhang, M. O’Sullivan, and R. Hui, “Theoretical and experimental investigation of compatible SSB modulation for single channel long-distance optical OFDM transmission,” Opt. Express 18(16), 16751–16764 (2010).
    [Crossref] [PubMed]
  9. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
    [Crossref]
  10. A. Mecozzi, C. Antonelli, and M. Shtaif, “A necessary and sufficient condition for minimum phase and implications for phase retrieval,” arXiv preprint arXiv:1606.04861 (2016).
  11. X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “Kramers–Kronig receivers for 100-km datacenter interconnects,” J. Lightwave Technol. 36(1), 79–89 (2018).
    [Crossref]
  12. S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “1.72-Tb/s virtual-carrier-assisted direct-detection transmission over 200 km,” J. Lightwave Technol. 36(6), 1347–1353 (2018).
    [Crossref]
  13. C. Antonelli, A. Mecozzi, and M. Shtaif, “Kramers-Kronig PAM transceiver,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu3I.5.
    [Crossref]
  14. C. Antonelli, A. Mecozzi, and M. Shtaif, “Kramers-Kronig PAM transceiver and two-side polarization-multiplexed Kramers-Kronig transceiver,” J. Lightwave Technol. 36(2), 468–475 (2018).
    [Crossref]
  15. T. M. Hoang, M. Y. S. Sowailem, Q. Zhuge, Z. Xing, M. Morsy-Osman, E. El-Fiky, S. Fan, M. Xiang, and D. V. Plant, “Single wavelength 480 Gb/s direct detection over 80 km SSMF enabled by Stokes vector Kramers Kronig transceiver,” Opt. Express 25(26), 33534–33542 (2017).
    [Crossref]
  16. T. Bo and H. Kim, “Kramers-Kronig receiver operable without digital upsampling,” Opt. Express 26(11), 13810–13818 (2018).
    [Crossref] [PubMed]

2018 (4)

2017 (1)

2016 (1)

2015 (1)

2012 (1)

2010 (1)

Adamiecki, A.

X. Chen, S. Chandrasekhar, S. Rande, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190-GBaud,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th5C.5.
[Crossref]

Antonelli, C.

Aref, V.

Bo, T.

Brindel, P.

R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, “1-terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference (Optical Society of America, 2015), Paper Th5B.1.

Buchali, F.

Buelow, H.

Chagnon, M.

Chandrasekhar, S.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “Kramers–Kronig receivers for 100-km datacenter interconnects,” J. Lightwave Technol. 36(1), 79–89 (2018).
[Crossref]

X. Chen, S. Chandrasekhar, S. Rande, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190-GBaud,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th5C.5.
[Crossref]

X. Chen, S. Chandrasekhar, P. Pupalaikis, and P. Winzer, “Fast DAC solutions for future high symbol rate systems,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2E.3.
[Crossref]

Charlet, G.

R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, “1-terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference (Optical Society of America, 2015), Paper Th5B.1.

Chen, W.

Chen, X.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “Kramers–Kronig receivers for 100-km datacenter interconnects,” J. Lightwave Technol. 36(1), 79–89 (2018).
[Crossref]

X. Chen, S. Chandrasekhar, S. Rande, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190-GBaud,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th5C.5.
[Crossref]

X. Chen, S. Chandrasekhar, P. Pupalaikis, and P. Winzer, “Fast DAC solutions for future high symbol rate systems,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2E.3.
[Crossref]

Chien, H.-C.

J. Zhang, J. Yu, and H.-C. Chien, “Advanced algorithm for high-baud rate signal generation and detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3D.1.
[Crossref]

Dischler, R.

El-Fiky, E.

Engenhardt, K.

Fan, S.

Gao, Y.

Gui, T.

Hoang, T. M.

Hui, R.

Jenneve, P.

R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, “1-terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference (Optical Society of America, 2015), Paper Th5B.1.

Kim, H.

Langhorst, C. S.

Lau, A. P. T.

Le, S. T.

Lu, C.

Ludwig, R.

Man, J.

Mardoyan, H.

R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, “1-terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference (Optical Society of America, 2015), Paper Th5B.1.

Mecozzi, A.

Molle, L.

Morsy-Osman, M.

Nölle, M.

O’Sullivan, M.

Palushani, E.

Plant, D. V.

Pupalaikis, P.

X. Chen, S. Chandrasekhar, P. Pupalaikis, and P. Winzer, “Fast DAC solutions for future high symbol rate systems,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2E.3.
[Crossref]

X. Chen, S. Chandrasekhar, S. Rande, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190-GBaud,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th5C.5.
[Crossref]

Rande, S.

X. Chen, S. Chandrasekhar, S. Rande, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190-GBaud,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th5C.5.
[Crossref]

Raybon, G.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “Kramers–Kronig receivers for 100-km datacenter interconnects,” J. Lightwave Technol. 36(1), 79–89 (2018).
[Crossref]

X. Chen, S. Chandrasekhar, S. Rande, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190-GBaud,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th5C.5.
[Crossref]

Renaudier, J.

R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, “1-terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference (Optical Society of America, 2015), Paper Th5B.1.

Richter, T.

Rios-Muller, R.

R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, “1-terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference (Optical Society of America, 2015), Paper Th5B.1.

Schmalen, L.

R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, “1-terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference (Optical Society of America, 2015), Paper Th5B.1.

Schubert, C.

Schuh, K.

Shtaif, M.

Sowailem, M. Y. S.

Tao, L.

Winzer, P.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “Kramers–Kronig receivers for 100-km datacenter interconnects,” J. Lightwave Technol. 36(1), 79–89 (2018).
[Crossref]

X. Chen, S. Chandrasekhar, P. Pupalaikis, and P. Winzer, “Fast DAC solutions for future high symbol rate systems,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2E.3.
[Crossref]

X. Chen, S. Chandrasekhar, S. Rande, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190-GBaud,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th5C.5.
[Crossref]

Xiang, M.

Xing, Z.

Yu, J.

J. Zhang, J. Yu, and H.-C. Chien, “Advanced algorithm for high-baud rate signal generation and detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3D.1.
[Crossref]

Zeng, L.

Zhang, J.

J. Zhang, J. Yu, and H.-C. Chien, “Advanced algorithm for high-baud rate signal generation and detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3D.1.
[Crossref]

Zhang, Y.

Zhong, K.

Zhou, X.

Zhuge, Q.

J. Lightwave Technol. (4)

Opt. Express (4)

Optica (1)

Other (7)

A. Mecozzi, C. Antonelli, and M. Shtaif, “A necessary and sufficient condition for minimum phase and implications for phase retrieval,” arXiv preprint arXiv:1606.04861 (2016).

C. Antonelli, A. Mecozzi, and M. Shtaif, “Kramers-Kronig PAM transceiver,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu3I.5.
[Crossref]

R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, “1-terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference (Optical Society of America, 2015), Paper Th5B.1.

J. Zhang, J. Yu, and H.-C. Chien, “Advanced algorithm for high-baud rate signal generation and detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3D.1.
[Crossref]

X. Chen, S. Chandrasekhar, S. Rande, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190-GBaud,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th5C.5.
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed Image,” inProceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2014), post deadline paper.

X. Chen, S. Chandrasekhar, P. Pupalaikis, and P. Winzer, “Fast DAC solutions for future high symbol rate systems,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2E.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Recently-proposed all-electronic high-symbol-rate generation schemes. (a) DBI based DAC [5]; (b) Digital-preprocessed analog-multiplexed DAC [6].
Fig. 2
Fig. 2 Principle of the OBI PAM-4 waveform generator.
Fig. 3
Fig. 3 (a) The spectra of PAM-4 SSB signals before and after PD; (b) block diagram of K-K PAM receiver.
Fig. 4
Fig. 4 (a) Simulation results showing receiver sensitivity of 120 Gaud PAM-4 SSB systems with and without K-K under different CSPRs; (b) Simulated BER as a function of the extinction ratio (ER) of the optical I/Q modulator at a SNR of 21 dB. The laser linewidth was 100 KHz. (c) The electrical SNR of the generated PAM-4 signal as a function of the CSPR in VC cases.
Fig. 5
Fig. 5 Experimental setup of the OBI based 120 Gbaud PAM-4 SSB/DD system and its DSP structure. (a) additional optical carrier (AOC) transmitter scheme; (b) virtual carrier (VC) transmitter scheme. (MOD: modulator; EDFA: erbium-doped fiber amplifier).
Fig. 6
Fig. 6 (a) BER as a function of CSPR in back-to-back (B2B) case; (b) Optimization of launched power for 80 km transmission under optimum CSPR; The measured BER vs. equivalent OSNR for (c) AOC scheme and (d) VC scheme, under B2B and 80-km transmission cases. The black curves show theoretical BER performance of the PAM-4 signals under AWGN without SSBI.
Fig. 7
Fig. 7 Error magnitude spectra after decision-directed least-mean-square (DD-LMS) equalization with different K-K schemes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S DAC-A = S 1 * ( f + f B 2 ) + S 1 ( f + f B 2 ) + S 2 * ( f + f B 2 ) + S 2 ( f + f B 2 ) .
S DAC-B = { S 1 * ( f + f B 2 ) S 1 ( f + f B 2 ) S 2 * ( f + f B 2 ) + S 2 ( f + f B 2 ) } e π 2 j .
E o u t ( f ) S 1 ( f f c + f B 2 ) + S 2 ( f f c + f B 2 ) = S ( f f c + f B 2 ) .
E o u t ( t ) [ A + s ( t ) + j s ^ ( t ) ] e j 2 π ( f c f B 2 ) t .
I ( t ) = | E o u t ( t ) | 2 = A 2 + 2 A s ( t ) + | s ( t ) | 2 + | s ^ ( t ) | 2 S S B I ,

Metrics