Abstract

A field-widened spatial heterodyne Raman spectrometer with a mosaic grating structure is developed for the simultaneous sensitivity enhancement and broadband transmission Raman measurements. We optimize the etendue to maximize the signals collected from the samples by using field-widening prisms and employ two mosaic gratings to achieve broadband operation, covering 5638 cm−1 with 2.865 cm−1 spectral resolution. The signal-to-noise ratios are improved by a factor of more than 11 and show a good stability and fair repeatability. We investigate the effects of the sample thickness and outer layer depth and observe liquids, solids, mixed targets, and anti-Stokes shifts. The instrument exhibits good performance for wide-field, high-resolution broadband transmission Raman measurements.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Backscattering Raman spectroscopy using multi-grating spatial heterodyne Raman spectrometer

Jianli Liu, Bayanheshig, Xiangdong Qi, Shanwen Zhang, Ci Sun, Jiwei Zhu, Jicheng Cui, and Xiaotian Li
Appl. Opt. 57(33) 9735-9745 (2018)

Development of a spatial heterodyne Raman spectrometer with echelle-mirror structure

Jun Qiu, Xiangdong Qi, Xiaotian Li, Zhenyu Ma, Jirigalantu, Yuguo Tang, Xiaotao Mi, Xiaoming Zheng, Rui Zhang, and Bayanheshig
Opt. Express 26(9) 11994-12006 (2018)

Broadband, high-resolution Raman observations from a double-echelle spatial heterodyne Raman spectrometer

Jun Qiu, Xiangdong Qi, Xiaotian Li, Wenhui Xu, Yuguo Tang, Zhenyu Ma, and Bayanheshig
Appl. Opt. 57(30) 8936-8941 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Lin, C. S. Liao, P. Wang, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
    [Crossref]
  2. P. Lutsyk, R. Arif, J. Huby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, and G. A. Rance, “A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes,” Light Sci. Appl. 5(2), e16028 (2016).
    [Crossref]
  3. L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
    [Crossref]
  4. M. Sun, Z. Zhang, P. Wang, Q. Li, F. Ma, and H. Xu, “Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires,” Light Sci. Appl. 2(11), e112 (2013).
    [Crossref]
  5. A. M. Christine, D. B. France, C. R. Thomas, Doney, and O. Madden, “Ft-Raman Spectroscopy as a Method for Screening Collagen Diagenesis in Bone,” J. Archaeol. Sci. 42, 346–355 (2014).
    [Crossref]
  6. S. Mattana, M. Mattarelli, L. Urbanelli, S. Krizia, E. Carla, D. S. Mauro, F. Daniele, and C. Silvia, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
    [Crossref]
  7. H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
    [Crossref] [PubMed]
  8. J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fiber Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
    [Crossref]
  9. A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
    [Crossref] [PubMed]
  10. J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
    [Crossref] [PubMed]
  11. B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
    [Crossref]
  12. C. Hu, Q. Chen, F. Chen, T. H. Gfroerer, M. W. Wanlass, and Y. Zhang, “Overcoming diffusion-related limitations in semiconductor defect imaging with phonon-plasmon-coupled mode Raman scatrtering,” Light Sci. Appl. 7(1), 23 (2018).
    [Crossref]
  13. N. Stone and P. Matousek, “Advanced Transmission Raman Spectroscopy: A Promising Tool for Breast Disease Diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
    [Crossref] [PubMed]
  14. C. Eliasson, N. A. Macleod, L. C. Jayes, F. C. Clarke, S. V. Hammond, M. R. Smith, and P. Matousek, “Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy,” J. Pharm. Biomed. Anal. 47(2), 221–229 (2008).
    [Crossref] [PubMed]
  15. P. Matousek and A. W. Parker, “Bulk Raman analysis of pharmaceutical tablets,” Appl. Spectrosc. 60(12), 1353–1357 (2006).
    [Crossref] [PubMed]
  16. N. A. Macleod and P. Matousek, “Emerging non-invasive Raman methods in process control and forensic applications,” Pharm. Res. 25(10), 2205–2215 (2008).
    [Crossref] [PubMed]
  17. N. Everall, I. Priestnall, P. Dallin, J. Andrews, I. Lewis, K. Davis, H. Owen, and M. W. George, “Measurement of spatial resolution and sensitivity in transmission and backscattering Raman spectroscopy of opaque samples: impact on pharmaceutical quality control and Raman tomography,” Appl. Spectrosc. 64(5), 476–484 (2010).
    [Crossref] [PubMed]
  18. K. A. Strange, K. C. Paul, and S. M. Angel, “Transmission Raman Measurements Using a Spatial Heterodyne Raman Spectrometer (SHRS),” Appl. Spectrosc. 71(2), 250–257 (2017).
    [Crossref] [PubMed]
  19. M. J. Foster, J. Storey, and M. A. Zentile, “Spatial-heterodyne spectrometer for transmission-Raman observations,” Opt. Express 25(2), 1598–1604 (2017).
    [Crossref] [PubMed]
  20. J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Thesis (Ph.D.) University of Wisconsin—Madison (1991), Chap. 3, Chap. 5.
  21. T. Nathaniel, “Spatial Heterodyne Raman Spectroscopy,” University of Surrey (2011), Chap. 4.
  22. C. R. Englert, J. M. Harlander, J. C. Owrutsky, and J. T. Bays, “Shim-Free Breadboard Instrument Design, Integration, and First Measurements,” NRL/MR/7640–05–8926, 1 (2005).
  23. C. R. Englert and J. M. Harlander, “Flatfielding in spatial heterodyne spectroscopy,” Appl. Opt. 45(19), 4583–4590 (2006).
    [Crossref] [PubMed]
  24. C. R. Englert, J. M. Harlander, J. G. Cardon, and F. L. Roesler, “Correction of phase distortion in spatial heterodyne spectroscopy,” Appl. Opt. 43(36), 6680–6687 (2004).
    [Crossref] [PubMed]
  25. M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi, Wavelet Toolbox User’s Guide (The Math Works, Inc, 2018).
  26. J. Qiu, X. Qi, X. Li, Z. Ma, Y. Jirigalantu, X. Tang, X. Mi, R. Zheng, Zhang, and Bayanheshig, “Development of a spatial heterodyne Raman spectrometer with echelle-mirror structure,” Opt. Express 26(9), 11994–12006 (2018).
    [Crossref] [PubMed]
  27. J. Lin and Y. Q. Li, “Ultralow frequency Stokes and anti-Stokes Raman spectroscopy of single living cells and microparticles using a hot rubidium vapor filter,” Opt. Lett. 39(1), 108–110 (2014).
    [Crossref] [PubMed]
  28. D. Tuschel, “Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization,” Spectrosc. 29, 15 (2014).
  29. B. M. Kawther, H. K. Thomas, A. Hassen, and D. F. Marc, “Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions,” J. Raman Spectrosc. 44(11), 1603–1608 (2013).
    [Crossref]

2018 (6)

H. Lin, C. S. Liao, P. Wang, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

S. Mattana, M. Mattarelli, L. Urbanelli, S. Krizia, E. Carla, D. S. Mauro, F. Daniele, and C. Silvia, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fiber Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

C. Hu, Q. Chen, F. Chen, T. H. Gfroerer, M. W. Wanlass, and Y. Zhang, “Overcoming diffusion-related limitations in semiconductor defect imaging with phonon-plasmon-coupled mode Raman scatrtering,” Light Sci. Appl. 7(1), 23 (2018).
[Crossref]

J. Qiu, X. Qi, X. Li, Z. Ma, Y. Jirigalantu, X. Tang, X. Mi, R. Zheng, Zhang, and Bayanheshig, “Development of a spatial heterodyne Raman spectrometer with echelle-mirror structure,” Opt. Express 26(9), 11994–12006 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (2)

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

P. Lutsyk, R. Arif, J. Huby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, and G. A. Rance, “A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes,” Light Sci. Appl. 5(2), e16028 (2016).
[Crossref]

2014 (4)

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

A. M. Christine, D. B. France, C. R. Thomas, Doney, and O. Madden, “Ft-Raman Spectroscopy as a Method for Screening Collagen Diagenesis in Bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

J. Lin and Y. Q. Li, “Ultralow frequency Stokes and anti-Stokes Raman spectroscopy of single living cells and microparticles using a hot rubidium vapor filter,” Opt. Lett. 39(1), 108–110 (2014).
[Crossref] [PubMed]

D. Tuschel, “Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization,” Spectrosc. 29, 15 (2014).

2013 (2)

B. M. Kawther, H. K. Thomas, A. Hassen, and D. F. Marc, “Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions,” J. Raman Spectrosc. 44(11), 1603–1608 (2013).
[Crossref]

M. Sun, Z. Zhang, P. Wang, Q. Li, F. Ma, and H. Xu, “Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires,” Light Sci. Appl. 2(11), e112 (2013).
[Crossref]

2010 (1)

2008 (3)

N. A. Macleod and P. Matousek, “Emerging non-invasive Raman methods in process control and forensic applications,” Pharm. Res. 25(10), 2205–2215 (2008).
[Crossref] [PubMed]

N. Stone and P. Matousek, “Advanced Transmission Raman Spectroscopy: A Promising Tool for Breast Disease Diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
[Crossref] [PubMed]

C. Eliasson, N. A. Macleod, L. C. Jayes, F. C. Clarke, S. V. Hammond, M. R. Smith, and P. Matousek, “Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy,” J. Pharm. Biomed. Anal. 47(2), 221–229 (2008).
[Crossref] [PubMed]

2006 (2)

2005 (2)

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

2004 (1)

Ahmadi, Z.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Andrea, C. D.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Andrews, J.

Angel, S. M.

Arif, R.

P. Lutsyk, R. Arif, J. Huby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, and G. A. Rance, “A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes,” Light Sci. Appl. 5(2), e16028 (2016).
[Crossref]

Artoni, P.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Azina, C.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Bayanheshig,

Boles, S. T.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fiber Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Bonefacino, J.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fiber Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Boraey, M. A.

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

Bukivskyi, A.

P. Lutsyk, R. Arif, J. Huby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, and G. A. Rance, “A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes,” Light Sci. Appl. 5(2), e16028 (2016).
[Crossref]

Cardon, J. G.

Carla, E.

S. Mattana, M. Mattarelli, L. Urbanelli, S. Krizia, E. Carla, D. S. Mauro, F. Daniele, and C. Silvia, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Chen, F.

C. Hu, Q. Chen, F. Chen, T. H. Gfroerer, M. W. Wanlass, and Y. Zhang, “Overcoming diffusion-related limitations in semiconductor defect imaging with phonon-plasmon-coupled mode Raman scatrtering,” Light Sci. Appl. 7(1), 23 (2018).
[Crossref]

Chen, Q.

C. Hu, Q. Chen, F. Chen, T. H. Gfroerer, M. W. Wanlass, and Y. Zhang, “Overcoming diffusion-related limitations in semiconductor defect imaging with phonon-plasmon-coupled mode Raman scatrtering,” Light Sci. Appl. 7(1), 23 (2018).
[Crossref]

Cheng, J. X.

H. Lin, C. S. Liao, P. Wang, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

Cheng, X.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fiber Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Chio, C. H.

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

Christine, A. M.

A. M. Christine, D. B. France, C. R. Thomas, Doney, and O. Madden, “Ft-Raman Spectroscopy as a Method for Screening Collagen Diagenesis in Bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

Clarke, F. C.

C. Eliasson, N. A. Macleod, L. C. Jayes, F. C. Clarke, S. V. Hammond, M. R. Smith, and P. Matousek, “Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy,” J. Pharm. Biomed. Anal. 47(2), 221–229 (2008).
[Crossref] [PubMed]

Constanin, L.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Cui, B.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Dallin, P.

Daniele, F.

S. Mattana, M. Mattarelli, L. Urbanelli, S. Krizia, E. Carla, D. S. Mauro, F. Daniele, and C. Silvia, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Davis, K.

Doney,

A. M. Christine, D. B. France, C. R. Thomas, Doney, and O. Madden, “Ft-Raman Spectroscopy as a Method for Screening Collagen Diagenesis in Bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

Eliasson, C.

C. Eliasson, N. A. Macleod, L. C. Jayes, F. C. Clarke, S. V. Hammond, M. R. Smith, and P. Matousek, “Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy,” J. Pharm. Biomed. Anal. 47(2), 221–229 (2008).
[Crossref] [PubMed]

Englert, C. R.

Everall, N.

Fan, L. S.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Fazio, B.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Foster, M. J.

France, D. B.

A. M. Christine, D. B. France, C. R. Thomas, Doney, and O. Madden, “Ft-Raman Spectroscopy as a Method for Screening Collagen Diagenesis in Bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

Galli, M.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

George, M. W.

Gfroerer, T. H.

C. Hu, Q. Chen, F. Chen, T. H. Gfroerer, M. W. Wanlass, and Y. Zhang, “Overcoming diffusion-related limitations in semiconductor defect imaging with phonon-plasmon-coupled mode Raman scatrtering,” Light Sci. Appl. 7(1), 23 (2018).
[Crossref]

Glen, T. S.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fiber Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Golgir, H. R.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Gucciardi, P. G.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Hammond, S. V.

C. Eliasson, N. A. Macleod, L. C. Jayes, F. C. Clarke, S. V. Hammond, M. R. Smith, and P. Matousek, “Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy,” J. Pharm. Biomed. Anal. 47(2), 221–229 (2008).
[Crossref] [PubMed]

Harlander, J. M.

Hassen, A.

B. M. Kawther, H. K. Thomas, A. Hassen, and D. F. Marc, “Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions,” J. Raman Spectrosc. 44(11), 1603–1608 (2013).
[Crossref]

Hu, C.

C. Hu, Q. Chen, F. Chen, T. H. Gfroerer, M. W. Wanlass, and Y. Zhang, “Overcoming diffusion-related limitations in semiconductor defect imaging with phonon-plasmon-coupled mode Raman scatrtering,” Light Sci. Appl. 7(1), 23 (2018).
[Crossref]

Huang, X.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Hubble, H. W.

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

Huby, J.

P. Lutsyk, R. Arif, J. Huby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, and G. A. Rance, “A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes,” Light Sci. Appl. 5(2), e16028 (2016).
[Crossref]

Iatì, M. A.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Irrera, A.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Jayes, L. C.

C. Eliasson, N. A. Macleod, L. C. Jayes, F. C. Clarke, S. V. Hammond, M. R. Smith, and P. Matousek, “Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy,” J. Pharm. Biomed. Anal. 47(2), 221–229 (2008).
[Crossref] [PubMed]

Jirigalantu, Y.

Kawther, B. M.

B. M. Kawther, H. K. Thomas, A. Hassen, and D. F. Marc, “Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions,” J. Raman Spectrosc. 44(11), 1603–1608 (2013).
[Crossref]

Keramatnejad, K.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Kovtun, Y.

P. Lutsyk, R. Arif, J. Huby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, and G. A. Rance, “A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes,” Light Sci. Appl. 5(2), e16028 (2016).
[Crossref]

Krizia, S.

S. Mattana, M. Mattarelli, L. Urbanelli, S. Krizia, E. Carla, D. S. Mauro, F. Daniele, and C. Silvia, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Lechuga-Ballesteros, D.

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

Lee, P.-H.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fiber Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Lewis, I.

Li, D. W.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Li, Q.

M. Sun, Z. Zhang, P. Wang, Q. Li, F. Ma, and H. Xu, “Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires,” Light Sci. Appl. 2(11), e112 (2013).
[Crossref]

Li, X.

Li, Y. Q.

Liao, C. S.

H. Lin, C. S. Liao, P. Wang, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

Lienert, B.

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

Lin, H.

H. Lin, C. S. Liao, P. Wang, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

Lin, J.

liu, L.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Lo Faro, M. J.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Lu, Y.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Lu, Y. F.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Lucey, P. G.

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

Lutsyk, P.

P. Lutsyk, R. Arif, J. Huby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, and G. A. Rance, “A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes,” Light Sci. Appl. 5(2), e16028 (2016).
[Crossref]

Ma, F.

M. Sun, Z. Zhang, P. Wang, Q. Li, F. Ma, and H. Xu, “Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires,” Light Sci. Appl. 2(11), e112 (2013).
[Crossref]

Ma, Z.

Macleod, N. A.

N. A. Macleod and P. Matousek, “Emerging non-invasive Raman methods in process control and forensic applications,” Pharm. Res. 25(10), 2205–2215 (2008).
[Crossref] [PubMed]

C. Eliasson, N. A. Macleod, L. C. Jayes, F. C. Clarke, S. V. Hammond, M. R. Smith, and P. Matousek, “Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy,” J. Pharm. Biomed. Anal. 47(2), 221–229 (2008).
[Crossref] [PubMed]

Madden, O.

A. M. Christine, D. B. France, C. R. Thomas, Doney, and O. Madden, “Ft-Raman Spectroscopy as a Method for Screening Collagen Diagenesis in Bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

Marc, D. F.

B. M. Kawther, H. K. Thomas, A. Hassen, and D. F. Marc, “Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions,” J. Raman Spectrosc. 44(11), 1603–1608 (2013).
[Crossref]

Matousek, P.

N. Stone and P. Matousek, “Advanced Transmission Raman Spectroscopy: A Promising Tool for Breast Disease Diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
[Crossref] [PubMed]

N. A. Macleod and P. Matousek, “Emerging non-invasive Raman methods in process control and forensic applications,” Pharm. Res. 25(10), 2205–2215 (2008).
[Crossref] [PubMed]

C. Eliasson, N. A. Macleod, L. C. Jayes, F. C. Clarke, S. V. Hammond, M. R. Smith, and P. Matousek, “Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy,” J. Pharm. Biomed. Anal. 47(2), 221–229 (2008).
[Crossref] [PubMed]

P. Matousek and A. W. Parker, “Bulk Raman analysis of pharmaceutical tablets,” Appl. Spectrosc. 60(12), 1353–1357 (2006).
[Crossref] [PubMed]

Mattana, S.

S. Mattana, M. Mattarelli, L. Urbanelli, S. Krizia, E. Carla, D. S. Mauro, F. Daniele, and C. Silvia, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Mattarelli, M.

S. Mattana, M. Mattarelli, L. Urbanelli, S. Krizia, E. Carla, D. S. Mauro, F. Daniele, and C. Silvia, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Mauro, D. S.

S. Mattana, M. Mattarelli, L. Urbanelli, S. Krizia, E. Carla, D. S. Mauro, F. Daniele, and C. Silvia, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Mi, X.

Misra, A. K.

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

Musumeci, P.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Owen, H.

Parker, A. W.

Paul, K. C.

Pirotta, S.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Priestnall, I.

Priolo, F.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Pun, C.-F. J.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fiber Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Qi, X.

Qiu, J.

Rance, G. A.

P. Lutsyk, R. Arif, J. Huby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, and G. A. Rance, “A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes,” Light Sci. Appl. 5(2), e16028 (2016).
[Crossref]

Roesler, F. L.

Saija, R.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Shandura, M.

P. Lutsyk, R. Arif, J. Huby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, and G. A. Rance, “A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes,” Light Sci. Appl. 5(2), e16028 (2016).
[Crossref]

Sharma, S. K.

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

Shield, J.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Silvain, J. F.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Silvia, C.

S. Mattana, M. Mattarelli, L. Urbanelli, S. Krizia, E. Carla, D. S. Mauro, F. Daniele, and C. Silvia, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Smith, M. R.

C. Eliasson, N. A. Macleod, L. C. Jayes, F. C. Clarke, S. V. Hammond, M. R. Smith, and P. Matousek, “Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy,” J. Pharm. Biomed. Anal. 47(2), 221–229 (2008).
[Crossref] [PubMed]

Sorbo, S. D.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Stone, N.

N. Stone and P. Matousek, “Advanced Transmission Raman Spectroscopy: A Promising Tool for Breast Disease Diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
[Crossref] [PubMed]

Stopar, J. D.

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

Storey, J.

Strange, K. A.

Sun, M.

M. Sun, Z. Zhang, P. Wang, Q. Li, F. Ma, and H. Xu, “Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires,” Light Sci. Appl. 2(11), e112 (2013).
[Crossref]

Tam, H.-Y.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fiber Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Tang, X.

Taylor, G. J.

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

Thomas, C. R.

A. M. Christine, D. B. France, C. R. Thomas, Doney, and O. Madden, “Ft-Raman Spectroscopy as a Method for Screening Collagen Diagenesis in Bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

Thomas, H. K.

B. M. Kawther, H. K. Thomas, A. Hassen, and D. F. Marc, “Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions,” J. Raman Spectrosc. 44(11), 1603–1608 (2013).
[Crossref]

Tse, M.-L. V.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fiber Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Tuschel, D.

D. Tuschel, “Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization,” Spectrosc. 29, 15 (2014).

Urbanelli, L.

S. Mattana, M. Mattarelli, L. Urbanelli, S. Krizia, E. Carla, D. S. Mauro, F. Daniele, and C. Silvia, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Vasi, C. S. E.

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

Vehring, R.

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

Vinijchuk, O.

P. Lutsyk, R. Arif, J. Huby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, and G. A. Rance, “A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes,” Light Sci. Appl. 5(2), e16028 (2016).
[Crossref]

Wang, F.

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

Wang, H.

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

Wang, J.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fiber Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Wang, P.

H. Lin, C. S. Liao, P. Wang, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

M. Sun, Z. Zhang, P. Wang, Q. Li, F. Ma, and H. Xu, “Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires,” Light Sci. Appl. 2(11), e112 (2013).
[Crossref]

Wanlass, M. W.

C. Hu, Q. Chen, F. Chen, T. H. Gfroerer, M. W. Wanlass, and Y. Zhang, “Overcoming diffusion-related limitations in semiconductor defect imaging with phonon-plasmon-coupled mode Raman scatrtering,” Light Sci. Appl. 7(1), 23 (2018).
[Crossref]

Williams, L.

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

Xu, H.

M. Sun, Z. Zhang, P. Wang, Q. Li, F. Ma, and H. Xu, “Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires,” Light Sci. Appl. 2(11), e112 (2013).
[Crossref]

Yakubovskyi, V.

P. Lutsyk, R. Arif, J. Huby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, and G. A. Rance, “A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes,” Light Sci. Appl. 5(2), e16028 (2016).
[Crossref]

Zentile, M. A.

Zhang,

Zhang, Y.

C. Hu, Q. Chen, F. Chen, T. H. Gfroerer, M. W. Wanlass, and Y. Zhang, “Overcoming diffusion-related limitations in semiconductor defect imaging with phonon-plasmon-coupled mode Raman scatrtering,” Light Sci. Appl. 7(1), 23 (2018).
[Crossref]

Zhang, Z.

M. Sun, Z. Zhang, P. Wang, Q. Li, F. Ma, and H. Xu, “Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires,” Light Sci. Appl. 2(11), e112 (2013).
[Crossref]

Zheng, R.

Appl. Opt. (2)

Appl. Spectrosc. (3)

Cancer Res. (1)

N. Stone and P. Matousek, “Advanced Transmission Raman Spectroscopy: A Promising Tool for Breast Disease Diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
[Crossref] [PubMed]

Int. J. Pharm. (1)

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

J. Archaeol. Sci. (1)

A. M. Christine, D. B. France, C. R. Thomas, Doney, and O. Madden, “Ft-Raman Spectroscopy as a Method for Screening Collagen Diagenesis in Bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

J. Pharm. Biomed. Anal. (1)

C. Eliasson, N. A. Macleod, L. C. Jayes, F. C. Clarke, S. V. Hammond, M. R. Smith, and P. Matousek, “Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy,” J. Pharm. Biomed. Anal. 47(2), 221–229 (2008).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

B. M. Kawther, H. K. Thomas, A. Hassen, and D. F. Marc, “Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions,” J. Raman Spectrosc. 44(11), 1603–1608 (2013).
[Crossref]

Light Sci. Appl. (8)

S. Mattana, M. Mattarelli, L. Urbanelli, S. Krizia, E. Carla, D. S. Mauro, F. Daniele, and C. Silvia, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

B. Fazio, P. Artoni, M. A. Iatì, C. D. Andrea, M. J. Lo Faro, S. D. Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), e16062 (2016).
[Crossref]

C. Hu, Q. Chen, F. Chen, T. H. Gfroerer, M. W. Wanlass, and Y. Zhang, “Overcoming diffusion-related limitations in semiconductor defect imaging with phonon-plasmon-coupled mode Raman scatrtering,” Light Sci. Appl. 7(1), 23 (2018).
[Crossref]

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fiber Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

H. Lin, C. S. Liao, P. Wang, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

P. Lutsyk, R. Arif, J. Huby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, and G. A. Rance, “A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes,” Light Sci. Appl. 5(2), e16028 (2016).
[Crossref]

L. S. Fan, L. Constanin, D. W. Li, L. liu, K. Keramatnejad, C. Azina, X. Huang, H. R. Golgir, Y. Lu, Z. Ahmadi, F. Wang, J. Shield, B. Cui, J. F. Silvain, and Y. F. Lu, “Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films,” Light Sci. Appl. 7(4), 17177 (2018).
[Crossref]

M. Sun, Z. Zhang, P. Wang, Q. Li, F. Ma, and H. Xu, “Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires,” Light Sci. Appl. 2(11), e112 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Pharm. Res. (1)

N. A. Macleod and P. Matousek, “Emerging non-invasive Raman methods in process control and forensic applications,” Pharm. Res. 25(10), 2205–2215 (2008).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (2)

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

Spectrosc. (1)

D. Tuschel, “Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization,” Spectrosc. 29, 15 (2014).

Other (4)

M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi, Wavelet Toolbox User’s Guide (The Math Works, Inc, 2018).

J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Thesis (Ph.D.) University of Wisconsin—Madison (1991), Chap. 3, Chap. 5.

T. Nathaniel, “Spatial Heterodyne Raman Spectroscopy,” University of Surrey (2011), Chap. 4.

C. R. Englert, J. M. Harlander, J. C. Owrutsky, and J. T. Bays, “Shim-Free Breadboard Instrument Design, Integration, and First Measurements,” NRL/MR/7640–05–8926, 1 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Spatial heterodyne Raman spectrometer system layout for transmission Raman measurements. (b) Definition of the mosaic grating.
Fig. 2
Fig. 2 Layout of spatial heterodyne Raman spectrometer breadboard instrumentation.
Fig. 3
Fig. 3 (a) Interferogram of the mercury lamp. (b) Spatial frequency profile obtained from the FFT. (c) Mercury lamp spectrum as measured after calibration; the absolute line positions are 576.961 nm, 579.067 nm and 668.617 nm.
Fig. 4
Fig. 4 (a) Interferogram of sulfur at the laser power 50 mW with the integration time 5 s. (b) Interferogram of sulfur at the laser power of 50 mW with an integration time of 5 s without field widening. (c) Recovered Raman measurements and wide-field measurements for sulfur at the laser power of 50 mW with an integration time of 5 s. Plot of the calculated Raman intensities (d) and SNRs (e) for the field-widened MGSHRS and MGSHRS without field widening versus integration times at the laser power of 50 mW.
Fig. 5
Fig. 5 (a) Measured SNR at different laser powers with integration times of 4 s, 6 s and 8 s. (b) Measured SNR at different integration times at laser powers of 25 mW, 50 mW and 75 mW.
Fig. 6
Fig. 6 (a) Recovered Raman spectral of sulfur contained in different-thickness plastic bags at the laser power of 90 mW with an integration time of 8 s. (b) Recovered Raman spectral of CCl4 contained in different-thickness airtight tubes at the laser power of 60 mW with an integration time of 5 s. (c) Calculated transmission Raman intensities of sulfur versus surface depth at the laser power of 40 mW with integration times of 2 s, 5 s and 8 s. Calculated transmission Raman intensities of sulfur versus sample thickness with a laser power of 70 mW with integration times of 3 s, 5 s and 8 s; the results are presented as linear (d)
Fig. 7
Fig. 7 Recovered Raman spectra of solid sodium (a) and potassium sulfates (b) at the laser power 75 mW with the integration time 5 s.
Fig. 8
Fig. 8 (a) Recovered Raman spectra of inorganic solids at the laser power of 60 mW with an integration time of 15 s. (b) Recovered Raman spectra of organic liquids at the laser power of 90 mW with an integration time of 10 s.
Fig. 9
Fig. 9 (a) Stokes and anti-Stokes Raman spectra of carbon tetrachloride at the laser power of 60 mW with an integration time of 5 s. (b) Stokes and anti-Stokes Raman spectra of sulfur at the laser power of 80 mW with an integration time of 4 s.

Tables (2)

Tables Icon

Table 1 Key Parameters of Components Used in the Experimental Breadboard

Tables Icon

Table 2 Plastic Bags and Airtight Tubes Used in the Experiment

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

σ ( sin θ L + sin ( θ L ψ ) ) = m G 1 , 2 .
f x = 2 σ sin γ 4 ( σ σ L ) tan θ L .
I ( x ) = 0 B ( σ ) { 1 + cos [ 2 π ( 4 ( σ σ L ) x tan θ L ) ] } d σ .
I ( x , y ) = 0 B ( σ ) { 1 + cos [ 2 π ( 4 ( σ σ L ) x tan θ L + σ y ε ) ] } d σ .
R = σ δ σ = 4 W σ sin θ L .
Δ σ 1 , 2 = N δ σ .
Δ σ M = M N δ σ .
2 ( n 2 1 ) tan γ = n 2 tan θ L .
S N R = η A Ω 2 N I δ σ T .
λ L = f 2 f 1 ( f 2 / λ 1 ) ( f 1 / λ 2 ) .
θ L 1 , 2 = a r c sin ( λ L × G 1 , 2 2 ) .
W = f 1 2 ( 1 / λ L 1 / λ 1 ) tan ( θ L ) .
S N R = I P e a k _ s i g n a l R M S N o i s e .

Metrics