Abstract

Porous phosphor microstructures are studied for their potential as light converter in laser-based, high-resolution lighting systems. Phosphor particles are filled into pre-patterned silicon molds and coated by an atomic layer deposition with a thin layer of Al2O3 for mechanical stability. Pixel sizes of 2 mm by 2 mm down to 25 µm by 25 µm are fabricated. The structures show a significant drop in luminance between the illuminated and the non-illuminated, adjacent pixel. The high thermal conductivity of the silicon allows an efficient cooling of the structures. Having removed the backside silicon, an active air flow cooling of the porous phosphor structure is possible.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

Franziska Steudel, Thomas Lisec, Peter W. Nolte, Ulrich Hofmann, Thomas von Wantoch, Fabian Lofink, and Stefan Schweizer, "Pixelated phosphors for high-resolution and high-contrast white light sources: erratum," Opt. Express 27, 9097-9098 (2019)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-6-9097

OSA Recommended Articles
Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor

Ken Sakuma, Koji Omichi, Naoki Kimura, Masakazu Ohashi, Daiichiro Tanaka, Naoto Hirosaki, Yoshinobu Yamamoto, Rong-Jun Xie, and Takayuki Suehiro
Opt. Lett. 29(17) 2001-2003 (2004)

Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites

Shudong Yu, Yong Tang, Zongtao Li, Kaihang Chen, Xinrui Ding, and Binhai Yu
Photon. Res. 6(2) 90-98 (2018)

Highly efficient full-color display based on blue LED backlight and electrochromic light-valve coupled with front-emitting phosphors

Jeong Rok Oh, Hoo Keun Park, Ji Hye Oh, Taejoon Kouh, and Young Rag Do
Opt. Express 19(17) 16022-16031 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. Kloppenburg, A. Wolf, and R. Lachmayer, “High-resolution vehicle headlamps: technologies and scanning prototype,” Adv. Opt. Technol. 5, 147–155 (2016).
  2. C. Weissig, I. Feldmann, J. Schüssler, U. Höfker, P. Eisert, and P. Kauff, “A Modular High Resolution Multi-Projection System,” in Proceedings of 2nd Workshop on Immersive Communication and Broadcast Systems (ICOB 2005),(2005).
  3. P. J. Cianci, High Definition Television: The Creation, Development and Implementation of HDTV Technology (McFarland & Company, Inc. Publishers, 2012).
  4. OSRAM GmbH, “Driving with glare-free full beam: New automotive lighting revolutionizes road safety,” (2017). https://www.osram-group.com/~/media/Files/O/Osram/documents/en/media-kits/2017/300-glare-free-led-pixel-headlights-background.pdf .
  5. A. Peña-García, P. Peña, A. Espín, and F. Aznar, “Impact of Adaptive Front-lighting Systems (AFS) on road safety: Evidences and open points,” Saf. Sci. 50, 945–949 (2012). First International Symposium on Mine Safety Science and Engineering 2011.
    [Crossref]
  6. M. Hamm, “Matrix is Everywhere: Front, Rear and Interior Lighting goes Digital,” in Proceedings of the 12th, International Symposium on Automotive Lightning, T. Q. Khanh, ed. (Herbert Utz Verlag GmbH, München, 2017), pp. 281–290.
  7. H. Hesse, “LCD Headlamp for a Fully Adaptive Light Distribution,” ATZ worldwide 117, 28–31 (2015).
    [Crossref]
  8. L. SunLED Company, “NanoPoint-0201 - XZxx155x Series - World’s Smallest 0201 LED,” (2016). http://www.sunledusa.com/promote.aspx?id=9 .
  9. S. Wang, Y. Li, L. Feng, L. Zhang, Y. Zhang, X. Su, W. Ding, and F. Yun, “Laser patterning of Y3Al5O12:Ce3+ ceramic phosphor platelets for enhanced forward light extraction and angular color uniformity of white LEDs,” Opt. Express 24, 17522–17531 (2016).
    [Crossref] [PubMed]
  10. S. Wang, Y. Peng, R. Li, M. Chen, and S. Liu, “Enhancement in light extraction of white leds using micro-cone patterned phosphor-in-glass,” in China Semiconductor Technology International Conference (CSTIC), (2016), pp. 1–3.
  11. H. Shi, C. Zhu, J. Huang, J. Chen, D. Chen, W. Wang, F. Wang, Y. Cao, and X. Yuan, “Luminescence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances,” Opt. Mater. Express 4, 649–655 (2014).
    [Crossref]
  12. S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
    [Crossref]
  13. X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
    [Crossref]
  14. T. Katsumata, H. Yamaguchi, C. Nakayama, H. Aizawa, and S. Komuro, “Fluorescence sensor using two-dimensional phosphor array,” in SICE Annual Conference 2007, (2007), pp. 1758–1761.
  15. T. Lisec, S. Chemnitz, F. Lofink, T. Reimer, A. Kulkarni, G. Piechotta, and B. Wagner, “A novel technology for MEMS based on the agglomeration of powder by atomic layer deposition,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2017), pp. 427–430.
  16. T. Lisec, T. Reimer, M. Knez, S. Chemnitz, A. V. Schulz-Walsemann, and A. Kulkarni, “A Novel Fabrication Technique for MEMS Based on Agglomeration of Powder by ALD,” J. Microelectromechanical Syst. 26, 1093–1098 (2017).
    [Crossref]
  17. P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett. 11, 107–112 (2011).
    [Crossref]
  18. T. Ghrib, A. L. Al-Otaibi, M. A. Almessiere, A. Ashahri, and I. Masoudi, “Structural, optical and thermal properties of the Ce doped YAG synthesized by solid state reaction method,” Thermochimica Acta 654, 35–39 (2017).
    [Crossref]
  19. Scientific Materials, “Laser Materials Ce:YAG,” (2018).
  20. K. H. Lee and S. W. R. Lee, “Process development for yellow phosphor coating on blue light emitting diodes (LEDs) for white light illumination,” in 8th Electronics Packaging Technology Conference, (2006), pp. 379–384.
  21. Intematix Corporation, “DATASHEET GAL555-02-13,” (2016). http://www.intematix.com/uploads/phosphor-datasheets/Aluminate/GAL555-02-13-datasheet.pdf .
  22. A. Yoshida and T. Asakura, “A simple technique for quickly measuring the spot size of Gaussian laser beams,” Opt. & Laser Technol. 8, 273–274 (1976).
    [Crossref]
  23. R. P. Prasankumar and A. J. Taylor, eds., Optical Techniques for Solid-State Materials Characterization (CRC Press, 2012).
  24. CRYTUR spol.s.r.o., “Cryphosphor™ single crystal phosphor,” (2017). https://www.crytur.cz/products/cryphosphor-single-crystal-phosphor .
  25. CIE, “TN 001:2014 Chromaticity Difference Specification for Light Sources,” (2014). http://files.cie.co.at/738_CIE_TN_001-2014.pdf .

2017 (2)

T. Lisec, T. Reimer, M. Knez, S. Chemnitz, A. V. Schulz-Walsemann, and A. Kulkarni, “A Novel Fabrication Technique for MEMS Based on Agglomeration of Powder by ALD,” J. Microelectromechanical Syst. 26, 1093–1098 (2017).
[Crossref]

T. Ghrib, A. L. Al-Otaibi, M. A. Almessiere, A. Ashahri, and I. Masoudi, “Structural, optical and thermal properties of the Ce doped YAG synthesized by solid state reaction method,” Thermochimica Acta 654, 35–39 (2017).
[Crossref]

2016 (4)

G. Kloppenburg, A. Wolf, and R. Lachmayer, “High-resolution vehicle headlamps: technologies and scanning prototype,” Adv. Opt. Technol. 5, 147–155 (2016).

S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
[Crossref]

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

S. Wang, Y. Li, L. Feng, L. Zhang, Y. Zhang, X. Su, W. Ding, and F. Yun, “Laser patterning of Y3Al5O12:Ce3+ ceramic phosphor platelets for enhanced forward light extraction and angular color uniformity of white LEDs,” Opt. Express 24, 17522–17531 (2016).
[Crossref] [PubMed]

2015 (1)

H. Hesse, “LCD Headlamp for a Fully Adaptive Light Distribution,” ATZ worldwide 117, 28–31 (2015).
[Crossref]

2014 (1)

2012 (1)

A. Peña-García, P. Peña, A. Espín, and F. Aznar, “Impact of Adaptive Front-lighting Systems (AFS) on road safety: Evidences and open points,” Saf. Sci. 50, 945–949 (2012). First International Symposium on Mine Safety Science and Engineering 2011.
[Crossref]

2011 (1)

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett. 11, 107–112 (2011).
[Crossref]

1976 (1)

A. Yoshida and T. Asakura, “A simple technique for quickly measuring the spot size of Gaussian laser beams,” Opt. & Laser Technol. 8, 273–274 (1976).
[Crossref]

Aizawa, H.

T. Katsumata, H. Yamaguchi, C. Nakayama, H. Aizawa, and S. Komuro, “Fluorescence sensor using two-dimensional phosphor array,” in SICE Annual Conference 2007, (2007), pp. 1758–1761.

Almessiere, M. A.

T. Ghrib, A. L. Al-Otaibi, M. A. Almessiere, A. Ashahri, and I. Masoudi, “Structural, optical and thermal properties of the Ce doped YAG synthesized by solid state reaction method,” Thermochimica Acta 654, 35–39 (2017).
[Crossref]

Al-Otaibi, A. L.

T. Ghrib, A. L. Al-Otaibi, M. A. Almessiere, A. Ashahri, and I. Masoudi, “Structural, optical and thermal properties of the Ce doped YAG synthesized by solid state reaction method,” Thermochimica Acta 654, 35–39 (2017).
[Crossref]

Asakura, T.

A. Yoshida and T. Asakura, “A simple technique for quickly measuring the spot size of Gaussian laser beams,” Opt. & Laser Technol. 8, 273–274 (1976).
[Crossref]

Ashahri, A.

T. Ghrib, A. L. Al-Otaibi, M. A. Almessiere, A. Ashahri, and I. Masoudi, “Structural, optical and thermal properties of the Ce doped YAG synthesized by solid state reaction method,” Thermochimica Acta 654, 35–39 (2017).
[Crossref]

Aznar, F.

A. Peña-García, P. Peña, A. Espín, and F. Aznar, “Impact of Adaptive Front-lighting Systems (AFS) on road safety: Evidences and open points,” Saf. Sci. 50, 945–949 (2012). First International Symposium on Mine Safety Science and Engineering 2011.
[Crossref]

Cao, L.

S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
[Crossref]

Cao, Y.

Chemnitz, S.

T. Lisec, T. Reimer, M. Knez, S. Chemnitz, A. V. Schulz-Walsemann, and A. Kulkarni, “A Novel Fabrication Technique for MEMS Based on Agglomeration of Powder by ALD,” J. Microelectromechanical Syst. 26, 1093–1098 (2017).
[Crossref]

T. Lisec, S. Chemnitz, F. Lofink, T. Reimer, A. Kulkarni, G. Piechotta, and B. Wagner, “A novel technology for MEMS based on the agglomeration of powder by atomic layer deposition,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2017), pp. 427–430.

Chen, D.

Chen, J.

Chen, M.

S. Wang, Y. Peng, R. Li, M. Chen, and S. Liu, “Enhancement in light extraction of white leds using micro-cone patterned phosphor-in-glass,” in China Semiconductor Technology International Conference (CSTIC), (2016), pp. 1–3.

Cianci, P. J.

P. J. Cianci, High Definition Television: The Creation, Development and Implementation of HDTV Technology (McFarland & Company, Inc. Publishers, 2012).

Ding, W.

Eisert, P.

C. Weissig, I. Feldmann, J. Schüssler, U. Höfker, P. Eisert, and P. Kauff, “A Modular High Resolution Multi-Projection System,” in Proceedings of 2nd Workshop on Immersive Communication and Broadcast Systems (ICOB 2005),(2005).

El-Kady, I.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett. 11, 107–112 (2011).
[Crossref]

Espín, A.

A. Peña-García, P. Peña, A. Espín, and F. Aznar, “Impact of Adaptive Front-lighting Systems (AFS) on road safety: Evidences and open points,” Saf. Sci. 50, 945–949 (2012). First International Symposium on Mine Safety Science and Engineering 2011.
[Crossref]

Feldmann, I.

C. Weissig, I. Feldmann, J. Schüssler, U. Höfker, P. Eisert, and P. Kauff, “A Modular High Resolution Multi-Projection System,” in Proceedings of 2nd Workshop on Immersive Communication and Broadcast Systems (ICOB 2005),(2005).

Feng, L.

Ghrib, T.

T. Ghrib, A. L. Al-Otaibi, M. A. Almessiere, A. Ashahri, and I. Masoudi, “Structural, optical and thermal properties of the Ce doped YAG synthesized by solid state reaction method,” Thermochimica Acta 654, 35–39 (2017).
[Crossref]

Hamm, M.

M. Hamm, “Matrix is Everywhere: Front, Rear and Interior Lighting goes Digital,” in Proceedings of the 12th, International Symposium on Automotive Lightning, T. Q. Khanh, ed. (Herbert Utz Verlag GmbH, München, 2017), pp. 281–290.

Hesse, H.

H. Hesse, “LCD Headlamp for a Fully Adaptive Light Distribution,” ATZ worldwide 117, 28–31 (2015).
[Crossref]

Hirosaki, N.

S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
[Crossref]

Höfker, U.

C. Weissig, I. Feldmann, J. Schüssler, U. Höfker, P. Eisert, and P. Kauff, “A Modular High Resolution Multi-Projection System,” in Proceedings of 2nd Workshop on Immersive Communication and Broadcast Systems (ICOB 2005),(2005).

Hopkins, P. E.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett. 11, 107–112 (2011).
[Crossref]

Hu, R.

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Huang, J.

Huang, Z.

S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
[Crossref]

Katsumata, T.

T. Katsumata, H. Yamaguchi, C. Nakayama, H. Aizawa, and S. Komuro, “Fluorescence sensor using two-dimensional phosphor array,” in SICE Annual Conference 2007, (2007), pp. 1758–1761.

Kauff, P.

C. Weissig, I. Feldmann, J. Schüssler, U. Höfker, P. Eisert, and P. Kauff, “A Modular High Resolution Multi-Projection System,” in Proceedings of 2nd Workshop on Immersive Communication and Broadcast Systems (ICOB 2005),(2005).

Kloppenburg, G.

G. Kloppenburg, A. Wolf, and R. Lachmayer, “High-resolution vehicle headlamps: technologies and scanning prototype,” Adv. Opt. Technol. 5, 147–155 (2016).

Knez, M.

T. Lisec, T. Reimer, M. Knez, S. Chemnitz, A. V. Schulz-Walsemann, and A. Kulkarni, “A Novel Fabrication Technique for MEMS Based on Agglomeration of Powder by ALD,” J. Microelectromechanical Syst. 26, 1093–1098 (2017).
[Crossref]

Komuro, S.

T. Katsumata, H. Yamaguchi, C. Nakayama, H. Aizawa, and S. Komuro, “Fluorescence sensor using two-dimensional phosphor array,” in SICE Annual Conference 2007, (2007), pp. 1758–1761.

Kulkarni, A.

T. Lisec, T. Reimer, M. Knez, S. Chemnitz, A. V. Schulz-Walsemann, and A. Kulkarni, “A Novel Fabrication Technique for MEMS Based on Agglomeration of Powder by ALD,” J. Microelectromechanical Syst. 26, 1093–1098 (2017).
[Crossref]

T. Lisec, S. Chemnitz, F. Lofink, T. Reimer, A. Kulkarni, G. Piechotta, and B. Wagner, “A novel technology for MEMS based on the agglomeration of powder by atomic layer deposition,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2017), pp. 427–430.

Lachmayer, R.

G. Kloppenburg, A. Wolf, and R. Lachmayer, “High-resolution vehicle headlamps: technologies and scanning prototype,” Adv. Opt. Technol. 5, 147–155 (2016).

Lee, K. H.

K. H. Lee and S. W. R. Lee, “Process development for yellow phosphor coating on blue light emitting diodes (LEDs) for white light illumination,” in 8th Electronics Packaging Technology Conference, (2006), pp. 379–384.

Lee, S. W. R.

K. H. Lee and S. W. R. Lee, “Process development for yellow phosphor coating on blue light emitting diodes (LEDs) for white light illumination,” in 8th Electronics Packaging Technology Conference, (2006), pp. 379–384.

Leseman, Z. C.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett. 11, 107–112 (2011).
[Crossref]

Li, R.

S. Wang, Y. Peng, R. Li, M. Chen, and S. Liu, “Enhancement in light extraction of white leds using micro-cone patterned phosphor-in-glass,” in China Semiconductor Technology International Conference (CSTIC), (2016), pp. 1–3.

Li, S.

S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
[Crossref]

Li, Y.

Lisec, T.

T. Lisec, T. Reimer, M. Knez, S. Chemnitz, A. V. Schulz-Walsemann, and A. Kulkarni, “A Novel Fabrication Technique for MEMS Based on Agglomeration of Powder by ALD,” J. Microelectromechanical Syst. 26, 1093–1098 (2017).
[Crossref]

T. Lisec, S. Chemnitz, F. Lofink, T. Reimer, A. Kulkarni, G. Piechotta, and B. Wagner, “A novel technology for MEMS based on the agglomeration of powder by atomic layer deposition,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2017), pp. 427–430.

Liu, S.

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

S. Wang, Y. Peng, R. Li, M. Chen, and S. Liu, “Enhancement in light extraction of white leds using micro-cone patterned phosphor-in-glass,” in China Semiconductor Technology International Conference (CSTIC), (2016), pp. 1–3.

Liu, X.

S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
[Crossref]

Lofink, F.

T. Lisec, S. Chemnitz, F. Lofink, T. Reimer, A. Kulkarni, G. Piechotta, and B. Wagner, “A novel technology for MEMS based on the agglomeration of powder by atomic layer deposition,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2017), pp. 427–430.

Luo, X.

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Masoudi, I.

T. Ghrib, A. L. Al-Otaibi, M. A. Almessiere, A. Ashahri, and I. Masoudi, “Structural, optical and thermal properties of the Ce doped YAG synthesized by solid state reaction method,” Thermochimica Acta 654, 35–39 (2017).
[Crossref]

Nakayama, C.

T. Katsumata, H. Yamaguchi, C. Nakayama, H. Aizawa, and S. Komuro, “Fluorescence sensor using two-dimensional phosphor array,” in SICE Annual Conference 2007, (2007), pp. 1758–1761.

Nishimura, T.

S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
[Crossref]

Olsson, R. H.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett. 11, 107–112 (2011).
[Crossref]

Ouyang, G.

S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
[Crossref]

Peña, P.

A. Peña-García, P. Peña, A. Espín, and F. Aznar, “Impact of Adaptive Front-lighting Systems (AFS) on road safety: Evidences and open points,” Saf. Sci. 50, 945–949 (2012). First International Symposium on Mine Safety Science and Engineering 2011.
[Crossref]

Peña-García, A.

A. Peña-García, P. Peña, A. Espín, and F. Aznar, “Impact of Adaptive Front-lighting Systems (AFS) on road safety: Evidences and open points,” Saf. Sci. 50, 945–949 (2012). First International Symposium on Mine Safety Science and Engineering 2011.
[Crossref]

Peng, Y.

S. Wang, Y. Peng, R. Li, M. Chen, and S. Liu, “Enhancement in light extraction of white leds using micro-cone patterned phosphor-in-glass,” in China Semiconductor Technology International Conference (CSTIC), (2016), pp. 1–3.

Phinney, L. M.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett. 11, 107–112 (2011).
[Crossref]

Piechotta, G.

T. Lisec, S. Chemnitz, F. Lofink, T. Reimer, A. Kulkarni, G. Piechotta, and B. Wagner, “A novel technology for MEMS based on the agglomeration of powder by atomic layer deposition,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2017), pp. 427–430.

Reimer, T.

T. Lisec, T. Reimer, M. Knez, S. Chemnitz, A. V. Schulz-Walsemann, and A. Kulkarni, “A Novel Fabrication Technique for MEMS Based on Agglomeration of Powder by ALD,” J. Microelectromechanical Syst. 26, 1093–1098 (2017).
[Crossref]

T. Lisec, S. Chemnitz, F. Lofink, T. Reimer, A. Kulkarni, G. Piechotta, and B. Wagner, “A novel technology for MEMS based on the agglomeration of powder by atomic layer deposition,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2017), pp. 427–430.

Reinke, C. M.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett. 11, 107–112 (2011).
[Crossref]

Schulz-Walsemann, A. V.

T. Lisec, T. Reimer, M. Knez, S. Chemnitz, A. V. Schulz-Walsemann, and A. Kulkarni, “A Novel Fabrication Technique for MEMS Based on Agglomeration of Powder by ALD,” J. Microelectromechanical Syst. 26, 1093–1098 (2017).
[Crossref]

Schüssler, J.

C. Weissig, I. Feldmann, J. Schüssler, U. Höfker, P. Eisert, and P. Kauff, “A Modular High Resolution Multi-Projection System,” in Proceedings of 2nd Workshop on Immersive Communication and Broadcast Systems (ICOB 2005),(2005).

Serrano, J. R.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett. 11, 107–112 (2011).
[Crossref]

Shaner, E. A.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett. 11, 107–112 (2011).
[Crossref]

Shi, H.

Su, M. F.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett. 11, 107–112 (2011).
[Crossref]

Su, X.

Tang, D.

S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
[Crossref]

Wagner, B.

T. Lisec, S. Chemnitz, F. Lofink, T. Reimer, A. Kulkarni, G. Piechotta, and B. Wagner, “A novel technology for MEMS based on the agglomeration of powder by atomic layer deposition,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2017), pp. 427–430.

Wang, F.

Wang, K.

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Wang, S.

S. Wang, Y. Li, L. Feng, L. Zhang, Y. Zhang, X. Su, W. Ding, and F. Yun, “Laser patterning of Y3Al5O12:Ce3+ ceramic phosphor platelets for enhanced forward light extraction and angular color uniformity of white LEDs,” Opt. Express 24, 17522–17531 (2016).
[Crossref] [PubMed]

S. Wang, Y. Peng, R. Li, M. Chen, and S. Liu, “Enhancement in light extraction of white leds using micro-cone patterned phosphor-in-glass,” in China Semiconductor Technology International Conference (CSTIC), (2016), pp. 1–3.

Wang, W.

Weissig, C.

C. Weissig, I. Feldmann, J. Schüssler, U. Höfker, P. Eisert, and P. Kauff, “A Modular High Resolution Multi-Projection System,” in Proceedings of 2nd Workshop on Immersive Communication and Broadcast Systems (ICOB 2005),(2005).

Wolf, A.

G. Kloppenburg, A. Wolf, and R. Lachmayer, “High-resolution vehicle headlamps: technologies and scanning prototype,” Adv. Opt. Technol. 5, 147–155 (2016).

Xie, R.-J.

S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
[Crossref]

Yamaguchi, H.

T. Katsumata, H. Yamaguchi, C. Nakayama, H. Aizawa, and S. Komuro, “Fluorescence sensor using two-dimensional phosphor array,” in SICE Annual Conference 2007, (2007), pp. 1758–1761.

Yoshida, A.

A. Yoshida and T. Asakura, “A simple technique for quickly measuring the spot size of Gaussian laser beams,” Opt. & Laser Technol. 8, 273–274 (1976).
[Crossref]

Yuan, X.

Yun, F.

Zhang, L.

Zhang, Y.

Zhu, C.

Zhu, Q.

S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
[Crossref]

Adv. Opt. Technol. (1)

G. Kloppenburg, A. Wolf, and R. Lachmayer, “High-resolution vehicle headlamps: technologies and scanning prototype,” Adv. Opt. Technol. 5, 147–155 (2016).

ATZ worldwide (1)

H. Hesse, “LCD Headlamp for a Fully Adaptive Light Distribution,” ATZ worldwide 117, 28–31 (2015).
[Crossref]

J. Mater. Chem. C (1)

S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao, N. Hirosaki, T. Nishimura, Z. Huang, and R.-J. Xie, “Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting,” J. Mater. Chem. C 4, 8648–8654 (2016).
[Crossref]

J. Microelectromechanical Syst. (1)

T. Lisec, T. Reimer, M. Knez, S. Chemnitz, A. V. Schulz-Walsemann, and A. Kulkarni, “A Novel Fabrication Technique for MEMS Based on Agglomeration of Powder by ALD,” J. Microelectromechanical Syst. 26, 1093–1098 (2017).
[Crossref]

Nano Lett. (1)

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett. 11, 107–112 (2011).
[Crossref]

Opt. & Laser Technol. (1)

A. Yoshida and T. Asakura, “A simple technique for quickly measuring the spot size of Gaussian laser beams,” Opt. & Laser Technol. 8, 273–274 (1976).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Prog. Energy Combust. Sci. (1)

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Saf. Sci. (1)

A. Peña-García, P. Peña, A. Espín, and F. Aznar, “Impact of Adaptive Front-lighting Systems (AFS) on road safety: Evidences and open points,” Saf. Sci. 50, 945–949 (2012). First International Symposium on Mine Safety Science and Engineering 2011.
[Crossref]

Thermochimica Acta (1)

T. Ghrib, A. L. Al-Otaibi, M. A. Almessiere, A. Ashahri, and I. Masoudi, “Structural, optical and thermal properties of the Ce doped YAG synthesized by solid state reaction method,” Thermochimica Acta 654, 35–39 (2017).
[Crossref]

Other (14)

Scientific Materials, “Laser Materials Ce:YAG,” (2018).

K. H. Lee and S. W. R. Lee, “Process development for yellow phosphor coating on blue light emitting diodes (LEDs) for white light illumination,” in 8th Electronics Packaging Technology Conference, (2006), pp. 379–384.

Intematix Corporation, “DATASHEET GAL555-02-13,” (2016). http://www.intematix.com/uploads/phosphor-datasheets/Aluminate/GAL555-02-13-datasheet.pdf .

T. Katsumata, H. Yamaguchi, C. Nakayama, H. Aizawa, and S. Komuro, “Fluorescence sensor using two-dimensional phosphor array,” in SICE Annual Conference 2007, (2007), pp. 1758–1761.

T. Lisec, S. Chemnitz, F. Lofink, T. Reimer, A. Kulkarni, G. Piechotta, and B. Wagner, “A novel technology for MEMS based on the agglomeration of powder by atomic layer deposition,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2017), pp. 427–430.

M. Hamm, “Matrix is Everywhere: Front, Rear and Interior Lighting goes Digital,” in Proceedings of the 12th, International Symposium on Automotive Lightning, T. Q. Khanh, ed. (Herbert Utz Verlag GmbH, München, 2017), pp. 281–290.

L. SunLED Company, “NanoPoint-0201 - XZxx155x Series - World’s Smallest 0201 LED,” (2016). http://www.sunledusa.com/promote.aspx?id=9 .

C. Weissig, I. Feldmann, J. Schüssler, U. Höfker, P. Eisert, and P. Kauff, “A Modular High Resolution Multi-Projection System,” in Proceedings of 2nd Workshop on Immersive Communication and Broadcast Systems (ICOB 2005),(2005).

P. J. Cianci, High Definition Television: The Creation, Development and Implementation of HDTV Technology (McFarland & Company, Inc. Publishers, 2012).

OSRAM GmbH, “Driving with glare-free full beam: New automotive lighting revolutionizes road safety,” (2017). https://www.osram-group.com/~/media/Files/O/Osram/documents/en/media-kits/2017/300-glare-free-led-pixel-headlights-background.pdf .

S. Wang, Y. Peng, R. Li, M. Chen, and S. Liu, “Enhancement in light extraction of white leds using micro-cone patterned phosphor-in-glass,” in China Semiconductor Technology International Conference (CSTIC), (2016), pp. 1–3.

R. P. Prasankumar and A. J. Taylor, eds., Optical Techniques for Solid-State Materials Characterization (CRC Press, 2012).

CRYTUR spol.s.r.o., “Cryphosphor™ single crystal phosphor,” (2017). https://www.crytur.cz/products/cryphosphor-single-crystal-phosphor .

CIE, “TN 001:2014 Chromaticity Difference Specification for Light Sources,” (2014). http://files.cie.co.at/738_CIE_TN_001-2014.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic cross sections of the investigated phosphor structures: The structures A, C, and E represent a single square pattern with a side length of 2 mm. The structures B, D, and F represent pixelated structures. The side length of the square pixels ranges from 250 µm down to 25 µm.
Fig. 2
Fig. 2 Photographic image of the structures. The investigated structures are marked with a red square.
Fig. 3
Fig. 3 Secondary electron images of the phosphor-filled silicon structures with pixel sizes of (a) 25 µm, (b) 125 µm, (c) 250 µm, and (d) 2000 µm.
Fig. 4
Fig. 4 Secondary electron image of a phosphor array with 125 µm pixel size after selective removal of the surrounding silicon. Note that the Al2O3 walls of the phosphor-filled containers are 75 nm in thickness.
Fig. 5
Fig. 5 Backscatter and emission spectrum of structure A2000 excited under an incident angle of 60° to the surface normal with a mid-power 450-nm laser diode. The detection is in direction of the surface normal. The backscattered laser light is centered at the laser emission wavelength (blue shaded area), while the phosphor emission ranges from 465 nm to 800 nm (orange shaded area). The inset shows the CIE chromaticity diagram with the point of equal energy, E, and the coordinates for the spectrum of structure A2000.
Fig. 6
Fig. 6 Normalized intensity plot of the backscattered blue laser light and the yellow-orange phosphor emission of structure A2000 in the (a) C0-C180 and (b) C90-C270 planes. To obtain the corresponding intensity values, the measured spectra, as shown in Fig. 5, are integrated. The intense peak, observed in the C0 plane at an angle of γ = 60°, is caused by specular reflection of the laser beam. In the C180 plane, the angular range from γ = 45° to 90° is blocked by the experimental setup (laser diode mount).
Fig. 7
Fig. 7 CIE 1976 (u′, v′) uniform chromaticity diagram with coordinates for all angles between 0° and 80° (angular resolution of 1°) in the C90-C270 plane, indicated by crosses. The ten-step uv′ circle has the averaged color coordinates u ¯ and v ¯ as center (red dot).
Fig. 8
Fig. 8 Luminance of structure B25 under low-power excitation at 442 nm. The incident angle of the laser excitation is 60° to the surface normal, the detection is in direction to the surface normal. (b) Luminance profile of structure B25 along the line indicated in (a). The vertical dashed lines indicate the position of the silicon walls between the pixels. The luminance profile of structure A2000 is added for comparison.
Fig. 9
Fig. 9 Maximum temperature versus optical excitation power for the four different structures investigated. The dashed lines represent exponential fits to the experimental data.
Fig. 10
Fig. 10 Temperature profiles of an air-cooled (left, blue curve) and an uncooled (right, orange curve) phosphor sample of structure E. The insets show the as-recorded thermal images for a phosphor area of 700 µm by 700 µm, each. The laser excitation power is 600 mW.

Tables (1)

Tables Icon

Table 1 Structures investigated with corresponding pixel size, pixel pitch, and pixel depth.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( u u ¯ ) 2 + ( v v ¯ ) 2 = r 2

Metrics