Abstract

We report a fully–correlated multi–mode pumping architecture optimized for dramatic noise reduction of a class–A dual–frequency Vertical External Cavity Surface Emitting Laser (VECSEL). Thanks to amplitude division of a laser diode, the two orthogonally polarized modes emitted by the VECSEL oscillating at 852 nm are separately pumped by two beams exhibiting fully in–phase correlated intensity noises. This is shown to lead to very strong and in–phase correlations between the two lasing modes intensities. As a result, the phase noise power spectral density of the RF beat note generated by the two modes undergoes a drastic reduction of about 10 to 20 dB throughout the whole frequency range from 10 kHz to 20 MHz and falls below the detection floor above a few MHz. A good agreement is found with a model which uses the framework of rate equations coupled by cross–saturation. The remaining phase noise is attributed to thermal effects and additional technical noises and lies mainly within the bandwidth of a phase–locked–loop.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intensity noise correlations in a two-frequency VECSEL

S. De, V. Pal, A. El Amili, G. Pillet, G. Baili, M. Alouini, I. Sagnes, R. Ghosh, and F. Bretenaker
Opt. Express 21(3) 2538-2550 (2013)

Ultra-low noise dual-frequency VECSEL at telecom wavelength using fully correlated pumping

Hui Liu, Gregory Gredat, Syamsundar De, Ihsan Fsaifes, Aliou Ly, Rémy Vatré, Ghaya Baili, Sophie Bouchoule, Fabienne Goldfarb, and Fabien Bretenaker
Opt. Lett. 43(8) 1794-1797 (2018)

Theoretical and experimental analysis of intensity noise correlations in an optically pumped, dual-frequency Nd:YAG laser

Syamsundar De, Goulc’hen Loas, Abdelkrim El Amili, Mehdi Alouini, and Fabien Bretenaker
J. Opt. Soc. Am. B 30(11) 2830-2839 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
    [Crossref] [PubMed]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. photonics 1, 319–330 (2007).
    [Crossref]
  3. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. D. Bin, F. Bretenaker, A. L. Floch, and P. Thony, “Offset phase locking of Er, Yb:Glass laser eigenstates for RF photonics applications,” IEEE Photonics Technol. Lett. 13, 367–369 (2001).
    [Crossref]
  4. G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
    [Crossref]
  5. S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili, F. Goldfarb, M. Alouini, I. Sagnes, and F. Bretenaker, “Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL,” J. Light. Technol. 32, 1307–1316 (2014).
    [Crossref]
  6. H. Liu, G. Gredat, G. Baili, F. Gutty, F. Goldfarb, I. Sagnes, and F. Bretenaker, “Noise investigation of a dual-frequency VECSEL for application to cesium clocks,” J. Light. Technol. 36, 3882–3891 (2018).
    [Crossref]
  7. P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
    [Crossref]
  8. T. Zanon, S. Guerandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
    [Crossref] [PubMed]
  9. H. Liu, G. Gredat, S. De, I. Fsaifes, A. Ly, R. Vatré, G. Baili, S. Bouchoule, F. Goldfarb, and F. Bretenaker, “Ultra-low noise dual-frequency VECSEL at telecom wavelength using fully correlated pumping,” Opt. Lett. 43, 1794–1797 (2018).
    [Crossref] [PubMed]
  10. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
    [Crossref]
  11. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “Multiwatt-power highly-coherent compact single-frequency tunable vertical-external-cavity-surface-emitting-semiconductor-laser,” Opt. Express 18, 14627–14636 (2010).
    [Crossref] [PubMed]
  12. M. Reichling and H. Grönbeck, “Harmonic heat flow in isotropic layered systems and its use for thin film thermal conductivity measurements,” J. Appl. Phys. 75, 1914–1922 (1994).
    [Crossref]
  13. F. Tricot, “Analysis and reduction of the frequency instability noise sources in a compact CPT clock,” Ph.D. thesis, Sorbonne université (2018).
  14. P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).
  15. B. François, C. Calosso, J. M. Danet, and R. Boudot, “A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock,” Rev. Sci. Instruments 85, 094709 (2014).
    [Crossref]
  16. F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).
  17. B. Chomet, J. Zhao, L. Ferrieres, M. Myara, G. Guiraud, G. Beaudoin, V. Lecocq, I. Sagnes, N. Traynor, G. Santarelli, S. Denet, and A. Garnache, “High-power tunable low-noise coherent source at 1.06 μm based on a surface-emitting semiconductor laser,” Appl. Opt. 57, 5224–5229 (2018).
    [Crossref] [PubMed]
  18. S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
    [Crossref] [PubMed]

2018 (3)

2017 (1)

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
[Crossref] [PubMed]

2015 (1)

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

2014 (3)

B. François, C. Calosso, J. M. Danet, and R. Boudot, “A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock,” Rev. Sci. Instruments 85, 094709 (2014).
[Crossref]

S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili, F. Goldfarb, M. Alouini, I. Sagnes, and F. Bretenaker, “Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL,” J. Light. Technol. 32, 1307–1316 (2014).
[Crossref]

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

2013 (1)

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

2010 (1)

2009 (1)

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. photonics 1, 319–330 (2007).
[Crossref]

2005 (1)

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

2001 (1)

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. D. Bin, F. Bretenaker, A. L. Floch, and P. Thony, “Offset phase locking of Er, Yb:Glass laser eigenstates for RF photonics applications,” IEEE Photonics Technol. Lett. 13, 367–369 (2001).
[Crossref]

1994 (2)

L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[Crossref] [PubMed]

M. Reichling and H. Grönbeck, “Harmonic heat flow in isotropic layered systems and its use for thin film thermal conductivity measurements,” J. Appl. Phys. 75, 1914–1922 (1994).
[Crossref]

1982 (1)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

Alouini, M.

S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili, F. Goldfarb, M. Alouini, I. Sagnes, and F. Bretenaker, “Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL,” J. Light. Technol. 32, 1307–1316 (2014).
[Crossref]

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. D. Bin, F. Bretenaker, A. L. Floch, and P. Thony, “Offset phase locking of Er, Yb:Glass laser eigenstates for RF photonics applications,” IEEE Photonics Technol. Lett. 13, 367–369 (2001).
[Crossref]

Amili, A. E.

S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili, F. Goldfarb, M. Alouini, I. Sagnes, and F. Bretenaker, “Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL,” J. Light. Technol. 32, 1307–1316 (2014).
[Crossref]

Baili, G.

H. Liu, G. Gredat, G. Baili, F. Gutty, F. Goldfarb, I. Sagnes, and F. Bretenaker, “Noise investigation of a dual-frequency VECSEL for application to cesium clocks,” J. Light. Technol. 36, 3882–3891 (2018).
[Crossref]

H. Liu, G. Gredat, S. De, I. Fsaifes, A. Ly, R. Vatré, G. Baili, S. Bouchoule, F. Goldfarb, and F. Bretenaker, “Ultra-low noise dual-frequency VECSEL at telecom wavelength using fully correlated pumping,” Opt. Lett. 43, 1794–1797 (2018).
[Crossref] [PubMed]

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili, F. Goldfarb, M. Alouini, I. Sagnes, and F. Bretenaker, “Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL,” J. Light. Technol. 32, 1307–1316 (2014).
[Crossref]

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

Beaudoin, G.

B. Chomet, J. Zhao, L. Ferrieres, M. Myara, G. Guiraud, G. Beaudoin, V. Lecocq, I. Sagnes, N. Traynor, G. Santarelli, S. Denet, and A. Garnache, “High-power tunable low-noise coherent source at 1.06 μm based on a surface-emitting semiconductor laser,” Appl. Opt. 57, 5224–5229 (2018).
[Crossref] [PubMed]

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “Multiwatt-power highly-coherent compact single-frequency tunable vertical-external-cavity-surface-emitting-semiconductor-laser,” Opt. Express 18, 14627–14636 (2010).
[Crossref] [PubMed]

Benazet, B.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. D. Bin, F. Bretenaker, A. L. Floch, and P. Thony, “Offset phase locking of Er, Yb:Glass laser eigenstates for RF photonics applications,” IEEE Photonics Technol. Lett. 13, 367–369 (2001).
[Crossref]

Bin, P. D.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. D. Bin, F. Bretenaker, A. L. Floch, and P. Thony, “Offset phase locking of Er, Yb:Glass laser eigenstates for RF photonics applications,” IEEE Photonics Technol. Lett. 13, 367–369 (2001).
[Crossref]

Bouchoule, S.

Boudot, R.

B. François, C. Calosso, J. M. Danet, and R. Boudot, “A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock,” Rev. Sci. Instruments 85, 094709 (2014).
[Crossref]

Bretenaker, F.

H. Liu, G. Gredat, S. De, I. Fsaifes, A. Ly, R. Vatré, G. Baili, S. Bouchoule, F. Goldfarb, and F. Bretenaker, “Ultra-low noise dual-frequency VECSEL at telecom wavelength using fully correlated pumping,” Opt. Lett. 43, 1794–1797 (2018).
[Crossref] [PubMed]

H. Liu, G. Gredat, G. Baili, F. Gutty, F. Goldfarb, I. Sagnes, and F. Bretenaker, “Noise investigation of a dual-frequency VECSEL for application to cesium clocks,” J. Light. Technol. 36, 3882–3891 (2018).
[Crossref]

S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili, F. Goldfarb, M. Alouini, I. Sagnes, and F. Bretenaker, “Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL,” J. Light. Technol. 32, 1307–1316 (2014).
[Crossref]

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. D. Bin, F. Bretenaker, A. L. Floch, and P. Thony, “Offset phase locking of Er, Yb:Glass laser eigenstates for RF photonics applications,” IEEE Photonics Technol. Lett. 13, 367–369 (2001).
[Crossref]

Brunel, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. D. Bin, F. Bretenaker, A. L. Floch, and P. Thony, “Offset phase locking of Er, Yb:Glass laser eigenstates for RF photonics applications,” IEEE Photonics Technol. Lett. 13, 367–369 (2001).
[Crossref]

Calosso, C.

B. François, C. Calosso, J. M. Danet, and R. Boudot, “A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock,” Rev. Sci. Instruments 85, 094709 (2014).
[Crossref]

Camargo, F.

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

Camargo, F. A.

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. photonics 1, 319–330 (2007).
[Crossref]

Chomet, B.

Clairon, A.

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Danet, J.

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

Danet, J. M.

B. François, C. Calosso, J. M. Danet, and R. Boudot, “A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock,” Rev. Sci. Instruments 85, 094709 (2014).
[Crossref]

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

Danet, J. M. .

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

De, S.

H. Liu, G. Gredat, S. De, I. Fsaifes, A. Ly, R. Vatré, G. Baili, S. Bouchoule, F. Goldfarb, and F. Bretenaker, “Ultra-low noise dual-frequency VECSEL at telecom wavelength using fully correlated pumping,” Opt. Lett. 43, 1794–1797 (2018).
[Crossref] [PubMed]

S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili, F. Goldfarb, M. Alouini, I. Sagnes, and F. Bretenaker, “Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL,” J. Light. Technol. 32, 1307–1316 (2014).
[Crossref]

de Clercq, E.

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Denet, S.

Dimarcq, N.

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Dolfi, D.

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

Dumont, P.

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

Ferrieres, L.

Floch, A. L.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. D. Bin, F. Bretenaker, A. L. Floch, and P. Thony, “Offset phase locking of Er, Yb:Glass laser eigenstates for RF photonics applications,” IEEE Photonics Technol. Lett. 13, 367–369 (2001).
[Crossref]

François, B.

B. François, C. Calosso, J. M. Danet, and R. Boudot, “A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock,” Rev. Sci. Instruments 85, 094709 (2014).
[Crossref]

Fsaifes, I.

H. Liu, G. Gredat, S. De, I. Fsaifes, A. Ly, R. Vatré, G. Baili, S. Bouchoule, F. Goldfarb, and F. Bretenaker, “Ultra-low noise dual-frequency VECSEL at telecom wavelength using fully correlated pumping,” Opt. Lett. 43, 1794–1797 (2018).
[Crossref] [PubMed]

S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili, F. Goldfarb, M. Alouini, I. Sagnes, and F. Bretenaker, “Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL,” J. Light. Technol. 32, 1307–1316 (2014).
[Crossref]

Garnache, A.

Georges, P.

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

Girard, N.

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

Goldfarb, F.

H. Liu, G. Gredat, S. De, I. Fsaifes, A. Ly, R. Vatré, G. Baili, S. Bouchoule, F. Goldfarb, and F. Bretenaker, “Ultra-low noise dual-frequency VECSEL at telecom wavelength using fully correlated pumping,” Opt. Lett. 43, 1794–1797 (2018).
[Crossref] [PubMed]

H. Liu, G. Gredat, G. Baili, F. Gutty, F. Goldfarb, I. Sagnes, and F. Bretenaker, “Noise investigation of a dual-frequency VECSEL for application to cesium clocks,” J. Light. Technol. 36, 3882–3891 (2018).
[Crossref]

S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili, F. Goldfarb, M. Alouini, I. Sagnes, and F. Bretenaker, “Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL,” J. Light. Technol. 32, 1307–1316 (2014).
[Crossref]

Gozhyk, I.

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

Gredat, G.

H. Liu, G. Gredat, G. Baili, F. Gutty, F. Goldfarb, I. Sagnes, and F. Bretenaker, “Noise investigation of a dual-frequency VECSEL for application to cesium clocks,” J. Light. Technol. 36, 3882–3891 (2018).
[Crossref]

H. Liu, G. Gredat, S. De, I. Fsaifes, A. Ly, R. Vatré, G. Baili, S. Bouchoule, F. Goldfarb, and F. Bretenaker, “Ultra-low noise dual-frequency VECSEL at telecom wavelength using fully correlated pumping,” Opt. Lett. 43, 1794–1797 (2018).
[Crossref] [PubMed]

Grönbeck, H.

M. Reichling and H. Grönbeck, “Harmonic heat flow in isotropic layered systems and its use for thin film thermal conductivity measurements,” J. Appl. Phys. 75, 1914–1922 (1994).
[Crossref]

Guerandel, S.

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Guérandel, S.

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

Guiraud, G.

Gutty, F.

H. Liu, G. Gredat, G. Baili, F. Gutty, F. Goldfarb, I. Sagnes, and F. Bretenaker, “Noise investigation of a dual-frequency VECSEL for application to cesium clocks,” J. Light. Technol. 36, 3882–3891 (2018).
[Crossref]

Hall, J. L.

Henry, C.

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

Holleville, D.

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Jungner, P.

Keller, U.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
[Crossref] [PubMed]

Laurain, A.

Lecocq, V.

Link, S. M.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
[Crossref] [PubMed]

Liu, H.

H. Liu, G. Gredat, S. De, I. Fsaifes, A. Ly, R. Vatré, G. Baili, S. Bouchoule, F. Goldfarb, and F. Bretenaker, “Ultra-low noise dual-frequency VECSEL at telecom wavelength using fully correlated pumping,” Opt. Lett. 43, 1794–1797 (2018).
[Crossref] [PubMed]

H. Liu, G. Gredat, G. Baili, F. Gutty, F. Goldfarb, I. Sagnes, and F. Bretenaker, “Noise investigation of a dual-frequency VECSEL for application to cesium clocks,” J. Light. Technol. 36, 3882–3891 (2018).
[Crossref]

Lucas-Leclin, G.

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

Ly, A.

Ma, L. S.

Maas, D. J. H. C.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
[Crossref] [PubMed]

Malherbe, T.

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

Morvan, L.

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

Myara, M.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. photonics 1, 319–330 (2007).
[Crossref]

Pillet, G.

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili, F. Goldfarb, M. Alouini, I. Sagnes, and F. Bretenaker, “Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL,” J. Light. Technol. 32, 1307–1316 (2014).
[Crossref]

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

Reichling, M.

M. Reichling and H. Grönbeck, “Harmonic heat flow in isotropic layered systems and its use for thin film thermal conductivity measurements,” J. Appl. Phys. 75, 1914–1922 (1994).
[Crossref]

Sagnes, I.

B. Chomet, J. Zhao, L. Ferrieres, M. Myara, G. Guiraud, G. Beaudoin, V. Lecocq, I. Sagnes, N. Traynor, G. Santarelli, S. Denet, and A. Garnache, “High-power tunable low-noise coherent source at 1.06 μm based on a surface-emitting semiconductor laser,” Appl. Opt. 57, 5224–5229 (2018).
[Crossref] [PubMed]

H. Liu, G. Gredat, G. Baili, F. Gutty, F. Goldfarb, I. Sagnes, and F. Bretenaker, “Noise investigation of a dual-frequency VECSEL for application to cesium clocks,” J. Light. Technol. 36, 3882–3891 (2018).
[Crossref]

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili, F. Goldfarb, M. Alouini, I. Sagnes, and F. Bretenaker, “Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL,” J. Light. Technol. 32, 1307–1316 (2014).
[Crossref]

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “Multiwatt-power highly-coherent compact single-frequency tunable vertical-external-cavity-surface-emitting-semiconductor-laser,” Opt. Express 18, 14627–14636 (2010).
[Crossref] [PubMed]

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

Santarelli, G.

Thony, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. D. Bin, F. Bretenaker, A. L. Floch, and P. Thony, “Offset phase locking of Er, Yb:Glass laser eigenstates for RF photonics applications,” IEEE Photonics Technol. Lett. 13, 367–369 (2001).
[Crossref]

Traynor, N.

Tricot, F.

F. Tricot, “Analysis and reduction of the frequency instability noise sources in a compact CPT clock,” Ph.D. thesis, Sorbonne université (2018).

Vallet, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. D. Bin, F. Bretenaker, A. L. Floch, and P. Thony, “Offset phase locking of Er, Yb:Glass laser eigenstates for RF photonics applications,” IEEE Photonics Technol. Lett. 13, 367–369 (2001).
[Crossref]

Vatré, R.

Waldburger, D.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
[Crossref] [PubMed]

Ye, J.

Zanon, T.

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Zhao, J.

Appl. Opt. (1)

Europhys. Lett. (1)

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. D. Bin, F. Bretenaker, A. L. Floch, and P. Thony, “Offset phase locking of Er, Yb:Glass laser eigenstates for RF photonics applications,” IEEE Photonics Technol. Lett. 13, 367–369 (2001).
[Crossref]

J. Appl. Phys. (1)

M. Reichling and H. Grönbeck, “Harmonic heat flow in isotropic layered systems and its use for thin film thermal conductivity measurements,” J. Appl. Phys. 75, 1914–1922 (1994).
[Crossref]

J. Light. Technol. (3)

S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili, F. Goldfarb, M. Alouini, I. Sagnes, and F. Bretenaker, “Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL,” J. Light. Technol. 32, 1307–1316 (2014).
[Crossref]

H. Liu, G. Gredat, G. Baili, F. Gutty, F. Goldfarb, I. Sagnes, and F. Bretenaker, “Noise investigation of a dual-frequency VECSEL for application to cesium clocks,” J. Light. Technol. 36, 3882–3891 (2018).
[Crossref]

P. Dumont, F. Camargo, J. M. . Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-noise dual-frequency laser for compact Cs atomic clocks,” J. Light. Technol. 32, 3817–3823 (2014).
[Crossref]

Nat. photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. photonics 1, 319–330 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Proc. SPIE (2)

P. Dumont, J. Danet, F. Camargo, D. Holleville, S. Guerandel, G. Baili, L. Morvan, G. Pillet, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Evaluation of the noise properties of a dual-frequency VECSEL for compact cs atomic clocks,” Proc. SPIE 9349, 9349 (2015).

F. A. Camargo, N. Girard, J. M. Danet, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guérandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm,” Proc. SPIE 8606, 8606S (2013).

Rev. Sci. Instruments (1)

B. François, C. Calosso, J. M. Danet, and R. Boudot, “A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock,” Rev. Sci. Instruments 85, 094709 (2014).
[Crossref]

Science (1)

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
[Crossref] [PubMed]

Other (1)

F. Tricot, “Analysis and reduction of the frequency instability noise sources in a compact CPT clock,” Ph.D. thesis, Sorbonne université (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental set-up for fully in-phase correlated pumping. The cross-polarized ordinary (o) wave and extraordinary (e) wave created by the birefringent crystal (BC) are separately pumped thanks to amplitude division of a multi–mode fibered laser diode.
Fig. 2
Fig. 2 Pump noise measurements. The thick (black) line in panel (a) shows the RIN spectrum of the beam pumping x-polarization while the thin (cyan) line stands for y-polarization. Panel (b) shows the correlation spectra between the two pump beams. The correlation amplitude is represented by open circles (in purple), the detection floor by thick lines (in black) and the correlation phase lies inside the devoted inset (green diamonds).
Fig. 3
Fig. 3 Intensity noise spectra of the dual–frequency VECSEL. The symbols stand for measurements and the solid lines stand for the model. Panel (a) shows the RIN of x – polarization (in blue) and the RIN of y–polarization (in orange). Panel (b) shows the RIN of the in-phase noise mechanism (in purple) and the RIN of the anti-phase noise (in green). The parameters used for the model are : τ = 1 ns, Ψ = 0, η = 0.98, rx = 1.38, ry = 1.23, C = 0.05, RINp = −133 dB/Hz, τx = 30 ns, τy = 17 ns.
Fig. 4
Fig. 4 Amplitude (a) and phase (b) of the correlation spectrum between the intensity noises of the two modes. The symbols stand for measurements and the solid lines stand for the model computed with the same parameters as in Fig. 3.
Fig. 5
Fig. 5 Beat note spectrum obtained with an electrical spectrum analyzer. The bottom light trace (in cyan) stands for the detection floor. The beat note spectra are plotted versus the frequency offset from the carrier. The wider spectrum (in blue) corresponds to the single pump spot scheme reported in [6] whereas the other one (in orange) corresponds to the two fully in–phase correlated pumps.
Fig. 6
Fig. 6 Power spectral density spectra of the beat note phase noise. The symbols are experimental measurements. The dots (in red) correspond to the pumping scheme with two beams fully in–phase correlated while the open squares (in light–blue) stand for the single pump–spot scheme reported in [6]. The open gray circles represent the detection floor. The total phase noise model with the two pumps is plotted with a solid line (in dark purple). The dashed line (in green) is the contribution of the phase-amplitude coupling. The dash–dotted line (in magenta) is the contribution of the thermal effects. They are computed with α = 5.2, Pp,x = 0.48 W, Pp,y = 0.45 W, RT = 40 K.W−1, τT = 30 μs, ΓT = 1.39 × 10−7 K−1 and the same other parameters as in Fig. 3.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ N ˜ 0 x ( f ) δ N ˜ 0 y * ( f ) = η RIN p ( f ) N ¯ 0 x N ¯ 0 y e i Ψ

Metrics