Abstract

For the see-through and near-to-eye displays, light throughput and uniformity of luminance over the field of view are improved by employing an optical image guide with discretely depth-varying surface relief holographic gratings. In the design process, a newly developed mathematical model, in conjunction with rigorous coupled wave analysis of diffraction efficiency, eliminates massive and time consuming iteration of non-sequential ray tracing but rapidly identifies the depth-varying structure and optimum optical performance. The depth-varying grating based approach achieved a 1.37x improvement in light throughput compared to the conventional depth un-varying design, 315 cd/m2/lm, along with improved uniformity over the field of view of 35 (H) x 20 (V) degrees with an eye box size of 17 (H) x 14 (V) mm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical see-through holographic near-eye-display with eyebox steering and depth of field control

Jae-Hyeung Park and Seong-Bok Kim
Opt. Express 26(21) 27076-27088 (2018)

On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle

Jiasheng Xiao, Juan Liu, Zhenlv Lv, Xueliang Shi, and Jian Han
Opt. Express 27(2) 1683-1692 (2019)

Design of see-through near-eye display for presbyopia

Yishi Wu, Chao Ping Chen, Lei Zhou, Yang Li, Bing Yu, and Huayi Jin
Opt. Express 25(8) 8937-8949 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Lee, “Mobile AR in your pocket with google tango,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2017), pp. 17–18.
  2. D. Diakopoulos and A. K. Bhowmik, “Project alloy: an all-in-one virtual and merged reality platform,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2017), pp. 19–22.
  3. M. Popovich and S. Sagan, “Application specific integrated lensed for displays,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2000), pp. 1060–1063.
  4. T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
    [Crossref]
  5. T. Levola and P. Laakkonen, “Replicated slanted gratings with a high refractive index material for in and outcoupling of light,” Opt. Express 15(5), 2067–2074 (2007).
    [Crossref] [PubMed]
  6. B. C. Kress and W. J. Cummings, “Towards the ultimate mixed reality experience: HoloLens display architecture choices,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2017), pp. 127–131.
  7. D. Grey and S. Talukdar, “Exit pupil expanding diffractive optical waveguide device,” International Patent WO 2016/020643.
  8. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [Crossref]
  9. T. Shiono, K. Setsune, O. Yamazaki, and K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5(1), 33–36 (1987).
    [Crossref]
  10. G. J. Swason and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
  11. T. D. Milster, “OptiScan Simulation Program,” (University of Arizona), https://wp.optics.arizona.edu/milster/resources/optiscan-simulation-program/
  12. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  13. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72(10), 1385–1392 (1982).
    [Crossref]
  14. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73(9), 1105–1112 (1983).
    [Crossref]
  15. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. 12(5), 1068–1076 (1995).
    [Crossref]
  16. OSRAM Opto Semiconductors GmbH, “OSRAM OSTAR Projection cube datasheet,” https://dammedia.osram.info/media/resource/hires/osram-dam-2494336/LCG%20H9RM.pdf
  17. OSRAM Opto Semiconductors GmbH, “OSRAM OSTAR Projection compact,” https://dammedia.osram.info/media/resource/hires/osram-dam-2494127/LE%20BR%20Q7WM_EN.pdf
  18. L. S. Lesdon, A. D. Waren, A. Jein, and M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming” Tech. Report SOL. (Stanford University), 76-3 (1976)
  19. Synopsys, Inc., Code V reference manual, available as a part of CodeV (2014).
  20. Y. Takashima and L. Hesselink, “Design and tolerance of NA 0.8 objective lenses for page-based holographic data storage systems,” Jap. J. Appl. Phys. 48, 03A004 (2009).
  21. T. Nakamura, and Y. Takashima, “Physical and geometrical hybrid design of two-layer and depth-chirped holographic image guide for see-through glass type head mounted display,” presented at Optical Data Storage 2018: Industrial Optical Devices and Systems, San Diego, USA, 19–20 Aug. 2018.
  22. T. Levola, “Novel diffractive optical components for near to eye displays,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2006), pp. 64–67.
  23. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
    [Crossref]
  24. M. Nogia, K. Handa, A. N. Nakagaito, and H. Yano, “Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix,” Appl. Phys. Lett. 87(24), 243110 (2005).
    [Crossref]
  25. Mitsui Chemicals, inc., “MR lens,” https://www.mitsuichem.com/sites/default/files/media/document/2018/mr_brochure_en.pdf
  26. H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
    [Crossref] [PubMed]
  27. H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Mic. Eng. 143, 74–80 (2015).
    [Crossref]
  28. L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Micr. Eng. 161, 104–108 (2016).
    [Crossref]

2016 (1)

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Micr. Eng. 161, 104–108 (2016).
[Crossref]

2015 (1)

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Mic. Eng. 143, 74–80 (2015).
[Crossref]

2011 (1)

2009 (2)

Y. Takashima and L. Hesselink, “Design and tolerance of NA 0.8 objective lenses for page-based holographic data storage systems,” Jap. J. Appl. Phys. 48, 03A004 (2009).

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

2007 (1)

2006 (1)

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

2005 (1)

M. Nogia, K. Handa, A. N. Nakagaito, and H. Yano, “Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix,” Appl. Phys. Lett. 87(24), 243110 (2005).
[Crossref]

1997 (1)

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

1995 (1)

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. 12(5), 1068–1076 (1995).
[Crossref]

1989 (1)

G. J. Swason and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

1987 (1)

T. Shiono, K. Setsune, O. Yamazaki, and K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5(1), 33–36 (1987).
[Crossref]

1983 (1)

1982 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Bhowmik, A. K.

D. Diakopoulos and A. K. Bhowmik, “Project alloy: an all-in-one virtual and merged reality platform,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2017), pp. 19–22.

Chou, S. Y.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

Clube, F.

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Micr. Eng. 161, 104–108 (2016).
[Crossref]

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Mic. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

Cummings, W. J.

B. C. Kress and W. J. Cummings, “Towards the ultimate mixed reality experience: HoloLens display architecture choices,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2017), pp. 127–131.

Dais, C.

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Micr. Eng. 161, 104–108 (2016).
[Crossref]

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Mic. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

Diakopoulos, D.

D. Diakopoulos and A. K. Bhowmik, “Project alloy: an all-in-one virtual and merged reality platform,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2017), pp. 19–22.

Gaylord, T. K.

Gobrecht, J.

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Micr. Eng. 161, 104–108 (2016).
[Crossref]

Grann, E. B.

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. 12(5), 1068–1076 (1995).
[Crossref]

Guo, L.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

Handa, K.

M. Nogia, K. Handa, A. N. Nakagaito, and H. Yano, “Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix,” Appl. Phys. Lett. 87(24), 243110 (2005).
[Crossref]

Hesselink, L.

Y. Takashima and L. Hesselink, “Design and tolerance of NA 0.8 objective lenses for page-based holographic data storage systems,” Jap. J. Appl. Phys. 48, 03A004 (2009).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

Kress, B. C.

B. C. Kress and W. J. Cummings, “Towards the ultimate mixed reality experience: HoloLens display architecture choices,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2017), pp. 127–131.

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Laakkonen, P.

Lee, J.

J. Lee, “Mobile AR in your pocket with google tango,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2017), pp. 17–18.

Levola, T.

T. Levola and P. Laakkonen, “Replicated slanted gratings with a high refractive index material for in and outcoupling of light,” Opt. Express 15(5), 2067–2074 (2007).
[Crossref] [PubMed]

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

T. Levola, “Novel diffractive optical components for near to eye displays,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2006), pp. 64–67.

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Moharam, M. G.

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nakagaito, A. N.

M. Nogia, K. Handa, A. N. Nakagaito, and H. Yano, “Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix,” Appl. Phys. Lett. 87(24), 243110 (2005).
[Crossref]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nogia, M.

M. Nogia, K. Handa, A. N. Nakagaito, and H. Yano, “Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix,” Appl. Phys. Lett. 87(24), 243110 (2005).
[Crossref]

Pommet, D. A.

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. 12(5), 1068–1076 (1995).
[Crossref]

Popovich, M.

M. Popovich and S. Sagan, “Application specific integrated lensed for displays,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2000), pp. 1060–1063.

Sagan, S.

M. Popovich and S. Sagan, “Application specific integrated lensed for displays,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2000), pp. 1060–1063.

Setsune, K.

T. Shiono, K. Setsune, O. Yamazaki, and K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5(1), 33–36 (1987).
[Crossref]

Shiono, T.

T. Shiono, K. Setsune, O. Yamazaki, and K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5(1), 33–36 (1987).
[Crossref]

Solak, H. H.

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Micr. Eng. 161, 104–108 (2016).
[Crossref]

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Mic. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

Swason, G. J.

G. J. Swason and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

Takashima, Y.

Y. Takashima and L. Hesselink, “Design and tolerance of NA 0.8 objective lenses for page-based holographic data storage systems,” Jap. J. Appl. Phys. 48, 03A004 (2009).

Veldkamp, W. B.

G. J. Swason and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

Wang, L.

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Micr. Eng. 161, 104–108 (2016).
[Crossref]

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Mic. Eng. 143, 74–80 (2015).
[Crossref]

Wasa, K.

T. Shiono, K. Setsune, O. Yamazaki, and K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5(1), 33–36 (1987).
[Crossref]

Yamazaki, O.

T. Shiono, K. Setsune, O. Yamazaki, and K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5(1), 33–36 (1987).
[Crossref]

Yano, H.

M. Nogia, K. Handa, A. N. Nakagaito, and H. Yano, “Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix,” Appl. Phys. Lett. 87(24), 243110 (2005).
[Crossref]

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Zhang, W.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

Zhuang, L.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

Appl. Phys. Lett. (1)

M. Nogia, K. Handa, A. N. Nakagaito, and H. Yano, “Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix,” Appl. Phys. Lett. 87(24), 243110 (2005).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

J. Opt. Soc. Am. (3)

J. Soc. Inf. Disp. (2)

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

J. Vac. Sci. Technol. B (2)

T. Shiono, K. Setsune, O. Yamazaki, and K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5(1), 33–36 (1987).
[Crossref]

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

Jap. J. Appl. Phys. (1)

Y. Takashima and L. Hesselink, “Design and tolerance of NA 0.8 objective lenses for page-based holographic data storage systems,” Jap. J. Appl. Phys. 48, 03A004 (2009).

Mic. Eng. (1)

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Mic. Eng. 143, 74–80 (2015).
[Crossref]

Micr. Eng. (1)

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Micr. Eng. 161, 104–108 (2016).
[Crossref]

Opt. Eng. (1)

G. J. Swason and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

Opt. Express (2)

Other (13)

T. D. Milster, “OptiScan Simulation Program,” (University of Arizona), https://wp.optics.arizona.edu/milster/resources/optiscan-simulation-program/

OSRAM Opto Semiconductors GmbH, “OSRAM OSTAR Projection cube datasheet,” https://dammedia.osram.info/media/resource/hires/osram-dam-2494336/LCG%20H9RM.pdf

OSRAM Opto Semiconductors GmbH, “OSRAM OSTAR Projection compact,” https://dammedia.osram.info/media/resource/hires/osram-dam-2494127/LE%20BR%20Q7WM_EN.pdf

L. S. Lesdon, A. D. Waren, A. Jein, and M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming” Tech. Report SOL. (Stanford University), 76-3 (1976)

Synopsys, Inc., Code V reference manual, available as a part of CodeV (2014).

T. Nakamura, and Y. Takashima, “Physical and geometrical hybrid design of two-layer and depth-chirped holographic image guide for see-through glass type head mounted display,” presented at Optical Data Storage 2018: Industrial Optical Devices and Systems, San Diego, USA, 19–20 Aug. 2018.

T. Levola, “Novel diffractive optical components for near to eye displays,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2006), pp. 64–67.

B. C. Kress and W. J. Cummings, “Towards the ultimate mixed reality experience: HoloLens display architecture choices,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2017), pp. 127–131.

D. Grey and S. Talukdar, “Exit pupil expanding diffractive optical waveguide device,” International Patent WO 2016/020643.

Mitsui Chemicals, inc., “MR lens,” https://www.mitsuichem.com/sites/default/files/media/document/2018/mr_brochure_en.pdf

J. Lee, “Mobile AR in your pocket with google tango,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2017), pp. 17–18.

D. Diakopoulos and A. K. Bhowmik, “Project alloy: an all-in-one virtual and merged reality platform,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2017), pp. 19–22.

M. Popovich and S. Sagan, “Application specific integrated lensed for displays,” in SID International Symposium Digest of Technical Papers (The Society for Information Display, 2000), pp. 1060–1063.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic of image guide; (b) Throughput optical system of HMD using image guide, and solid color lines represent optical ray from micro-display, which are colored corresponded to each signal color from micro-display.
Fig. 2
Fig. 2 Propagation angle in image guide (a) single image guide; (b) designed for Image guide-1; (c) designed for Image guide-2.
Fig. 3
Fig. 3 Ray propagation process of signal light forming (a) left side image; (b) right side image.
Fig. 4
Fig. 4 Schematic of depth-varying image guide.
Fig. 5
Fig. 5 Schematic of (a) light loss caused diffraction at back side Input hologram; (b) footprint of re-incident light at Input hologram; (c) fill factor of emitting ray from Output hologram.
Fig. 6
Fig. 6 (color online). Schematic of (a) light loss caused Input hologram of multi-layer structure; (b) light loss caused Input hologram of multi-layer structure.
Fig. 7
Fig. 7 Evaluation point on the virtual image.
Fig. 8
Fig. 8 Simulation results of un-varying image guide. Luminance distribution of virtual image on (a) blue LED; (b) green LED; (c) red LED; Relative luminance of each evaluation point based on image center (position #5) on (d) blue LED; (e) green LED; and (f) red LED.
Fig. 9
Fig. 9 Simulation results of depth-varying image guide. Luminance distribution of virtual image on (a) blue LED; (b) green LED; (c) red LED; Relative luminance of each evaluation point based on image center (position #5) on (d) blue LED; (e) green LED; and (f) red LED.
Fig. 10
Fig. 10 Simulation results of depth-varying image guide incorporated ideal grating. Luminance distribution of virtual image on (a) blue LED; (b) green LED; (c) red LED; Relative luminance of each evaluation point based on image center (position #5) on (d) blue LED; (e) green LED; and (f) red LED.

Tables (1)

Tables Icon

Table 1 Optimized results of grating depth

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f IG1 = η Input1 ( d,λ,θ,ϕ,T, 1 st )( 1β ) * i=1 n η VE1 ( d i ,λ,θ,ϕ,R, 0 th ) ( m VE1,i 1) η VE1 ( d k VE ,λ,θ,ϕ,R, 1 st ) i=1 n η Output1 ( d i ,λ,θ,ϕ,R, 0 th ) ( m Out1,i 1) η Output1 ( d k Outout ,λ,θ,ϕ,T, 1 st ) ρ λ,IG1
η NameofGrating ( d i ,λ,θ,ϕ,Mode,DiffOrder ),
β= i'=1 n [ ( 1 2 1 π sin 1 2( S i' L) D 2 πD ( S i' L )cos( sin 1 2( S i' L) D ) )( η Input ( d,λ,θ,ϕ,R, 0 th ) i'1 η Input ( d,λ,θ,ϕ,R, 0 th ) i' ) ]
m Name of grating, i ,
ρ λ,Layer = m m n n [ 2 D 2 cos 1 ( d mn 2D ) 1 2 d mn 4 D 2 d mn 2 ]
f IG2 = η Input2 ( d,λ,θ,ϕ,T, 0 th )* η Input2 ( d,λ,θ,ϕ,T, 1 st )( 1β ) * i=1 n η VE2 ( d i ,λ,θ,ϕ,R, 0 th ) ( m VE2,i 1) η VE2 ( d k VE ,λ,θ,ϕ,R, 1 st ) i=1 n η Output2 ( d i ,λ,θ,ϕ,R, 0 th ) ( m Output2,i 1) η Output2 ( d k Output ,λ,θ,ϕ,T, 1 st ) η Output1 ( d k Output ,λ,θ,ϕ,T, 0 th ) ρ λ,IG2
f IG = f IG1 ( λ )+ f IG2 ( λ ),
f m = α 1 [ ( ϕ B4 ϕ B5 )+( ϕ B6 ϕ B5 ) ]+ α 2 [ ( ϕ G4 ϕ G5 )+( ϕ G6 ϕ G5 ) ]+ α 3 [ ( ϕ R4 ϕ R5 )+( ϕ R6 ϕ R5 ) ] + α 4 [ ( ϕ B2 ϕ B5 )+( ϕ B8 ϕ B5 ) ]+ α 5 [ ( ϕ G2 ϕ G5 )+( ϕ G8 ϕ G5 ) ]+ α 6 [ ( ϕ R2 ϕ R5 )+( ϕ R8 ϕ R5 ) ], + α 7 [ ( ϕ B4 ϕ B6 ) ]+ α 8 [ ( ϕ G4 ϕ G6 ) ]+ α 9 [ ( ϕ R4 ϕ R6 ) ] + α 10 [ ( ϕ B2 ϕ B8 ) ]+ α 11 [ ( ϕ G2 ϕ G8 ) ]+ α 12 [ ( ϕ R2 ϕ R8 ) ]

Metrics