Abstract

Liquid crystal lasers have advantageous features, including continuous wavelength tuning at low cost. Although many potential applications have been highlighted, use of these lasers is not widespread, partially due to performance limitations. This paper presents a method of overcoming repetition rate limitations. A rapidly spinning stage is used to allow operation of a LC laser at 10 kHz: two orders of magnitude greater than possible with a static cell. Average power outputs of up to 3.5 mW are achieved along with an improvement in emission stability. Lastly, a mechanical wavelength-switching method is demonstrated. The spinning cell approach will enable research into the use of liquid crystal lasers in fluorescence imaging and display applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye

Ksenia Dolgaleva, Simon K. H. Wei, Svetlana G. Lukishova, Shaw H. Chen, Katie Schwertz, and Robert W. Boyd
J. Opt. Soc. Am. B 25(9) 1496-1504 (2008)

Small footprint cholesteric liquid crystal laser

Andrii Varanytsia, Tianyi Guo, and Peter Palffy-Muhoray
Appl. Opt. 58(4) 739-743 (2019)

Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector

Ying Zhou, Yuhua Huang, and Shin-Tson Wu
Opt. Express 14(9) 3906-3916 (2006)

References

  • View by:
  • |
  • |
  • |

  1. I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” Lett. J. Exp. Theor. Phys. 32, 24–27 (1980).
  2. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
    [Crossref]
  3. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
    [Crossref] [PubMed]
  4. P. Porov, V. S. Chandel, and R. Manohar, “Lasing characteristics of dye-doped cholesteric liquid crystal,” Trans. Electr. Electron. Mater. 16(3), 117–123 (2015).
    [Crossref]
  5. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
    [Crossref]
  6. C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett. 97(25), 251109 (2010).
    [Crossref]
  7. F. Araoka and H. Takezoe, “Towards highly-efficient liquid crystal microlasers,” Proc. SPIE 7935, 79350A (2011).
  8. G. Sanz-Enguita, J. Ortega, C. L. Folcia, I. Aramburu, and J. Etxebarria, “Role of the sample thickness on the performance of cholesteric liquid crystal lasers: Experimental, numerical, and analytical results,” J. Appl. Phys. 119(7), 073102 (2016).
    [Crossref]
  9. S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061709 (2006).
    [Crossref] [PubMed]
  10. P. J. W. Hands, C. A. Dobson, S. M. Morris, M. M. Qasim, D. J. Gardiner, T. D. Wilkinson, and H. J. Coles, ““Wavelength-tuneable liquid crystal lasers from the visible to the near-infrared,” Proc. SPIE 8114,” Liq. Cryst. XV, 81140T (2011).
  11. J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
    [Crossref]
  12. C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
    [Crossref]
  13. H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
    [Crossref]
  14. S. M. Wood, F. Castles, S. Elston, and S. M. Morris, “Wavelength tuneable laser emission from stretchable chiral nematic liquid crystal gels via in-situ photopolymerization,” RSC Advances 6(38), 31919–31924 (2016).
    [Crossref]
  15. K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous Shift of Lasing Wavelength with Temperature in Cholesteric Liquid Crystal,” Japanese J. Appl. Physics, Part 2 Lett 42, 7–10 (2003).
  16. Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
    [Crossref] [PubMed]
  17. S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp. 14(6), 565–573 (2006).
    [Crossref]
  18. C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
    [Crossref]
  19. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A, Pure Appl. Opt. 7(5), 215–223 (2005).
    [Crossref]
  20. A. Varanytsia and P. Palffy-Muhoray, “Thermal degradation of the distributed-feedback cavity in cholesteric liquid crystal lasers,” Proc. SPIE 8828. Liq. Cryst. XVII, 88281F (2013).
  21. J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
    [Crossref] [PubMed]
  22. A. Muñoz, M. E. McConney, T. Kosa, P. Luchette, L. Sukhomlinova, T. J. White, T. J. Bunning, and B. Taheri, “Continuous wave mirrorless lasing in cholesteric liquid crystals with a pitch gradient across the cell gap,” Opt. Lett. 37(14), 2904–2906 (2012).
    [Crossref] [PubMed]
  23. C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47(3), 649–657 (1975).
    [Crossref]
  24. L.-J. Chen, J.-D. Lin, and C.-R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4388–4394 (2014).
    [Crossref]
  25. A. L. Rodarte, Z. S. Nuno, B. H. Cao, R. J. Pandolfi, M. T. Quint, S. Ghosh, J. E. Hein, and L. S. Hirst, “Tuning quantum-dot organization in liquid crystals for robust photonic applications,” ChemPhysChem 15(7), 1413–1421 (2014).
    [Crossref] [PubMed]
  26. P. J. W. Hands, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Two-dimensional liquid crystal laser array,” Opt. Lett. 33(5), 515–517 (2008).
    [Crossref] [PubMed]
  27. S. M. Wood, T. K. Mavrogordatos, S. M. Morris, P. J. W. Hands, F. Castles, D. J. Gardiner, K. L. Atkinson, H. J. Coles, and T. D. Wilkinson, “Adaptive holographic pumping of thin-film organic lasers,” Opt. Lett. 38(21), 4483–4486 (2013).
    [Crossref] [PubMed]
  28. T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 8292, 1–7 (2016).
    [Crossref]
  29. G. K. Mishra, A. Kumar, S. K. Sharma, A. J. Singh, O. Prakash, P. K. Mukhopadhyay, K. S. Bindra, S. K. Dixit, and S. V. Nakhe, “Study of output power of very high pulse repetition rate (18 kHz) dye laser pumped by frequency doubled diode pumped Nd: YAG laser (λ ~ 532 nm),” Laser Phys. 25(5), 055001 (2015).
    [Crossref]
  30. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M. P. De Santo, and M. A. Matranga, “Enhancing cholesteric liquid crystal laser stability by cell rotation,” Opt. Express 14(21), 9939–9943 (2006).
    [Crossref] [PubMed]
  31. R. Bornemann, U. Lemmer, and E. Thiel, “Continuous-wave solid-state dye laser,” Opt. Lett. 31(11), 1669–1671 (2006).
    [Crossref] [PubMed]
  32. W. J. Marshall, “Two methods for measuring laser beam diameter,” J. Laser Appl. 22(4), 132–136 (2010).
    [Crossref]
  33. H. A. Montejano, F. Amat-Guerri, A. Costela, I. García-Moreno, M. Liras, and R. Sastre, “Triplet-state spectroscopy of dipyrromethene BF2 laser dyes,” J. Photochem. Photobiol. Chem. 181(2-3), 142–146 (2006).
    [Crossref]
  34. J. Ortega, C. L. Folcia, and J. Etxebarria, “Upgrading the performance of cholesteric liquid crystal lasers: Improvement margins and limitations,” Materials (Basel) 11(1), 5 (2017).
    [Crossref] [PubMed]

2018 (1)

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

2017 (1)

J. Ortega, C. L. Folcia, and J. Etxebarria, “Upgrading the performance of cholesteric liquid crystal lasers: Improvement margins and limitations,” Materials (Basel) 11(1), 5 (2017).
[Crossref] [PubMed]

2016 (3)

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 8292, 1–7 (2016).
[Crossref]

S. M. Wood, F. Castles, S. Elston, and S. M. Morris, “Wavelength tuneable laser emission from stretchable chiral nematic liquid crystal gels via in-situ photopolymerization,” RSC Advances 6(38), 31919–31924 (2016).
[Crossref]

G. Sanz-Enguita, J. Ortega, C. L. Folcia, I. Aramburu, and J. Etxebarria, “Role of the sample thickness on the performance of cholesteric liquid crystal lasers: Experimental, numerical, and analytical results,” J. Appl. Phys. 119(7), 073102 (2016).
[Crossref]

2015 (3)

P. Porov, V. S. Chandel, and R. Manohar, “Lasing characteristics of dye-doped cholesteric liquid crystal,” Trans. Electr. Electron. Mater. 16(3), 117–123 (2015).
[Crossref]

G. K. Mishra, A. Kumar, S. K. Sharma, A. J. Singh, O. Prakash, P. K. Mukhopadhyay, K. S. Bindra, S. K. Dixit, and S. V. Nakhe, “Study of output power of very high pulse repetition rate (18 kHz) dye laser pumped by frequency doubled diode pumped Nd: YAG laser (λ ~ 532 nm),” Laser Phys. 25(5), 055001 (2015).
[Crossref]

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

2014 (2)

L.-J. Chen, J.-D. Lin, and C.-R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4388–4394 (2014).
[Crossref]

A. L. Rodarte, Z. S. Nuno, B. H. Cao, R. J. Pandolfi, M. T. Quint, S. Ghosh, J. E. Hein, and L. S. Hirst, “Tuning quantum-dot organization in liquid crystals for robust photonic applications,” ChemPhysChem 15(7), 1413–1421 (2014).
[Crossref] [PubMed]

2013 (2)

A. Varanytsia and P. Palffy-Muhoray, “Thermal degradation of the distributed-feedback cavity in cholesteric liquid crystal lasers,” Proc. SPIE 8828. Liq. Cryst. XVII, 88281F (2013).

S. M. Wood, T. K. Mavrogordatos, S. M. Morris, P. J. W. Hands, F. Castles, D. J. Gardiner, K. L. Atkinson, H. J. Coles, and T. D. Wilkinson, “Adaptive holographic pumping of thin-film organic lasers,” Opt. Lett. 38(21), 4483–4486 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

P. J. W. Hands, C. A. Dobson, S. M. Morris, M. M. Qasim, D. J. Gardiner, T. D. Wilkinson, and H. J. Coles, ““Wavelength-tuneable liquid crystal lasers from the visible to the near-infrared,” Proc. SPIE 8114,” Liq. Cryst. XV, 81140T (2011).

F. Araoka and H. Takezoe, “Towards highly-efficient liquid crystal microlasers,” Proc. SPIE 7935, 79350A (2011).

2010 (4)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett. 97(25), 251109 (2010).
[Crossref]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

W. J. Marshall, “Two methods for measuring laser beam diameter,” J. Laser Appl. 22(4), 132–136 (2010).
[Crossref]

2008 (1)

2006 (6)

H. A. Montejano, F. Amat-Guerri, A. Costela, I. García-Moreno, M. Liras, and R. Sastre, “Triplet-state spectroscopy of dipyrromethene BF2 laser dyes,” J. Photochem. Photobiol. Chem. 181(2-3), 142–146 (2006).
[Crossref]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M. P. De Santo, and M. A. Matranga, “Enhancing cholesteric liquid crystal laser stability by cell rotation,” Opt. Express 14(21), 9939–9943 (2006).
[Crossref] [PubMed]

R. Bornemann, U. Lemmer, and E. Thiel, “Continuous-wave solid-state dye laser,” Opt. Lett. 31(11), 1669–1671 (2006).
[Crossref] [PubMed]

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061709 (2006).
[Crossref] [PubMed]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
[Crossref] [PubMed]

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp. 14(6), 565–573 (2006).
[Crossref]

2005 (1)

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A, Pure Appl. Opt. 7(5), 215–223 (2005).
[Crossref]

2003 (1)

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous Shift of Lasing Wavelength with Temperature in Cholesteric Liquid Crystal,” Japanese J. Appl. Physics, Part 2 Lett 42, 7–10 (2003).

2001 (1)

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

1998 (1)

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

1980 (1)

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” Lett. J. Exp. Theor. Phys. 32, 24–27 (1980).

1975 (1)

C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47(3), 649–657 (1975).
[Crossref]

Alaverdyan, R.

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 8292, 1–7 (2016).
[Crossref]

Amat-Guerri, F.

H. A. Montejano, F. Amat-Guerri, A. Costela, I. García-Moreno, M. Liras, and R. Sastre, “Triplet-state spectroscopy of dipyrromethene BF2 laser dyes,” J. Photochem. Photobiol. Chem. 181(2-3), 142–146 (2006).
[Crossref]

Aramburu, I.

G. Sanz-Enguita, J. Ortega, C. L. Folcia, I. Aramburu, and J. Etxebarria, “Role of the sample thickness on the performance of cholesteric liquid crystal lasers: Experimental, numerical, and analytical results,” J. Appl. Phys. 119(7), 073102 (2016).
[Crossref]

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

Araoka, F.

F. Araoka and H. Takezoe, “Towards highly-efficient liquid crystal microlasers,” Proc. SPIE 7935, 79350A (2011).

Atkinson, K. L.

Barberi, R.

Beeckman, J.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 8292, 1–7 (2016).
[Crossref]

Bindra, K. S.

G. K. Mishra, A. Kumar, S. K. Sharma, A. J. Singh, O. Prakash, P. K. Mukhopadhyay, K. S. Bindra, S. K. Dixit, and S. V. Nakhe, “Study of output power of very high pulse repetition rate (18 kHz) dye laser pumped by frequency doubled diode pumped Nd: YAG laser (λ ~ 532 nm),” Laser Phys. 25(5), 055001 (2015).
[Crossref]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Bornemann, R.

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Bunning, T. J.

Cao, B. H.

A. L. Rodarte, Z. S. Nuno, B. H. Cao, R. J. Pandolfi, M. T. Quint, S. Ghosh, J. E. Hein, and L. S. Hirst, “Tuning quantum-dot organization in liquid crystals for robust photonic applications,” ChemPhysChem 15(7), 1413–1421 (2014).
[Crossref] [PubMed]

Castles, F.

S. M. Wood, F. Castles, S. Elston, and S. M. Morris, “Wavelength tuneable laser emission from stretchable chiral nematic liquid crystal gels via in-situ photopolymerization,” RSC Advances 6(38), 31919–31924 (2016).
[Crossref]

S. M. Wood, T. K. Mavrogordatos, S. M. Morris, P. J. W. Hands, F. Castles, D. J. Gardiner, K. L. Atkinson, H. J. Coles, and T. D. Wilkinson, “Adaptive holographic pumping of thin-film organic lasers,” Opt. Lett. 38(21), 4483–4486 (2013).
[Crossref] [PubMed]

Chandel, V. S.

P. Porov, V. S. Chandel, and R. Manohar, “Lasing characteristics of dye-doped cholesteric liquid crystal,” Trans. Electr. Electron. Mater. 16(3), 117–123 (2015).
[Crossref]

Chanishvili, A.

Chen, C. W.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

Chen, L.-J.

L.-J. Chen, J.-D. Lin, and C.-R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4388–4394 (2014).
[Crossref]

Chilaya, G.

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Coles, H. J.

S. M. Wood, T. K. Mavrogordatos, S. M. Morris, P. J. W. Hands, F. Castles, D. J. Gardiner, K. L. Atkinson, H. J. Coles, and T. D. Wilkinson, “Adaptive holographic pumping of thin-film organic lasers,” Opt. Lett. 38(21), 4483–4486 (2013).
[Crossref] [PubMed]

P. J. W. Hands, C. A. Dobson, S. M. Morris, M. M. Qasim, D. J. Gardiner, T. D. Wilkinson, and H. J. Coles, ““Wavelength-tuneable liquid crystal lasers from the visible to the near-infrared,” Proc. SPIE 8114,” Liq. Cryst. XV, 81140T (2011).

C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett. 97(25), 251109 (2010).
[Crossref]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

P. J. W. Hands, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Two-dimensional liquid crystal laser array,” Opt. Lett. 33(5), 515–517 (2008).
[Crossref] [PubMed]

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp. 14(6), 565–573 (2006).
[Crossref]

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061709 (2006).
[Crossref] [PubMed]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A, Pure Appl. Opt. 7(5), 215–223 (2005).
[Crossref]

Costela, A.

H. A. Montejano, F. Amat-Guerri, A. Costela, I. García-Moreno, M. Liras, and R. Sastre, “Triplet-state spectroscopy of dipyrromethene BF2 laser dyes,” J. Photochem. Photobiol. Chem. 181(2-3), 142–146 (2006).
[Crossref]

Dadalyan, T.

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 8292, 1–7 (2016).
[Crossref]

De Santo, M. P.

Dixit, S. K.

G. K. Mishra, A. Kumar, S. K. Sharma, A. J. Singh, O. Prakash, P. K. Mukhopadhyay, K. S. Bindra, S. K. Dixit, and S. V. Nakhe, “Study of output power of very high pulse repetition rate (18 kHz) dye laser pumped by frequency doubled diode pumped Nd: YAG laser (λ ~ 532 nm),” Laser Phys. 25(5), 055001 (2015).
[Crossref]

Dobson, C. A.

P. J. W. Hands, C. A. Dobson, S. M. Morris, M. M. Qasim, D. J. Gardiner, T. D. Wilkinson, and H. J. Coles, ““Wavelength-tuneable liquid crystal lasers from the visible to the near-infrared,” Proc. SPIE 8114,” Liq. Cryst. XV, 81140T (2011).

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Doyle, C.

Elston, S.

S. M. Wood, F. Castles, S. Elston, and S. M. Morris, “Wavelength tuneable laser emission from stretchable chiral nematic liquid crystal gels via in-situ photopolymerization,” RSC Advances 6(38), 31919–31924 (2016).
[Crossref]

Etxebarria, J.

J. Ortega, C. L. Folcia, and J. Etxebarria, “Upgrading the performance of cholesteric liquid crystal lasers: Improvement margins and limitations,” Materials (Basel) 11(1), 5 (2017).
[Crossref] [PubMed]

G. Sanz-Enguita, J. Ortega, C. L. Folcia, I. Aramburu, and J. Etxebarria, “Role of the sample thickness on the performance of cholesteric liquid crystal lasers: Experimental, numerical, and analytical results,” J. Appl. Phys. 119(7), 073102 (2016).
[Crossref]

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

Fan, B.

Finkelmann, H.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Folcia, C. L.

J. Ortega, C. L. Folcia, and J. Etxebarria, “Upgrading the performance of cholesteric liquid crystal lasers: Improvement margins and limitations,” Materials (Basel) 11(1), 5 (2017).
[Crossref] [PubMed]

G. Sanz-Enguita, J. Ortega, C. L. Folcia, I. Aramburu, and J. Etxebarria, “Role of the sample thickness on the performance of cholesteric liquid crystal lasers: Experimental, numerical, and analytical results,” J. Appl. Phys. 119(7), 073102 (2016).
[Crossref]

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

Ford, A. D.

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061709 (2006).
[Crossref] [PubMed]

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp. 14(6), 565–573 (2006).
[Crossref]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A, Pure Appl. Opt. 7(5), 215–223 (2005).
[Crossref]

Friend, R. H.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

Funamoto, K.

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous Shift of Lasing Wavelength with Temperature in Cholesteric Liquid Crystal,” Japanese J. Appl. Physics, Part 2 Lett 42, 7–10 (2003).

García-Moreno, I.

H. A. Montejano, F. Amat-Guerri, A. Costela, I. García-Moreno, M. Liras, and R. Sastre, “Triplet-state spectroscopy of dipyrromethene BF2 laser dyes,” J. Photochem. Photobiol. Chem. 181(2-3), 142–146 (2006).
[Crossref]

Gardiner, D. J.

S. M. Wood, T. K. Mavrogordatos, S. M. Morris, P. J. W. Hands, F. Castles, D. J. Gardiner, K. L. Atkinson, H. J. Coles, and T. D. Wilkinson, “Adaptive holographic pumping of thin-film organic lasers,” Opt. Lett. 38(21), 4483–4486 (2013).
[Crossref] [PubMed]

P. J. W. Hands, C. A. Dobson, S. M. Morris, M. M. Qasim, D. J. Gardiner, T. D. Wilkinson, and H. J. Coles, ““Wavelength-tuneable liquid crystal lasers from the visible to the near-infrared,” Proc. SPIE 8114,” Liq. Cryst. XV, 81140T (2011).

Genack, A. Z.

Ghosh, S.

A. L. Rodarte, Z. S. Nuno, B. H. Cao, R. J. Pandolfi, M. T. Quint, S. Ghosh, J. E. Hein, and L. S. Hirst, “Tuning quantum-dot organization in liquid crystals for robust photonic applications,” ChemPhysChem 15(7), 1413–1421 (2014).
[Crossref] [PubMed]

Gillespie, C.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp. 14(6), 565–573 (2006).
[Crossref]

Hadeler, O.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp. 14(6), 565–573 (2006).
[Crossref]

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061709 (2006).
[Crossref] [PubMed]

Hands, P. J. W.

Hein, J. E.

A. L. Rodarte, Z. S. Nuno, B. H. Cao, R. J. Pandolfi, M. T. Quint, S. Ghosh, J. E. Hein, and L. S. Hirst, “Tuning quantum-dot organization in liquid crystals for robust photonic applications,” ChemPhysChem 15(7), 1413–1421 (2014).
[Crossref] [PubMed]

Hirst, L. S.

A. L. Rodarte, Z. S. Nuno, B. H. Cao, R. J. Pandolfi, M. T. Quint, S. Ghosh, J. E. Hein, and L. S. Hirst, “Tuning quantum-dot organization in liquid crystals for robust photonic applications,” ChemPhysChem 15(7), 1413–1421 (2014).
[Crossref] [PubMed]

Huang, Y.

Ilchishin, I. P.

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” Lett. J. Exp. Theor. Phys. 32, 24–27 (1980).

Jünnemann, G.

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Keuker-Baumann, S.

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Kim, S. T.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Kitzerow, H.

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Kopp, V. I.

Kosa, T.

Kumar, A.

G. K. Mishra, A. Kumar, S. K. Sharma, A. J. Singh, O. Prakash, P. K. Mukhopadhyay, K. S. Bindra, S. K. Dixit, and S. V. Nakhe, “Study of output power of very high pulse repetition rate (18 kHz) dye laser pumped by frequency doubled diode pumped Nd: YAG laser (λ ~ 532 nm),” Laser Phys. 25(5), 055001 (2015).
[Crossref]

Lee, C.-R.

L.-J. Chen, J.-D. Lin, and C.-R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4388–4394 (2014).
[Crossref]

Lemmer, U.

Li, C. C.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

Lin, J.-D.

L.-J. Chen, J.-D. Lin, and C.-R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4388–4394 (2014).
[Crossref]

Lin, T. H.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

Liras, M.

H. A. Montejano, F. Amat-Guerri, A. Costela, I. García-Moreno, M. Liras, and R. Sastre, “Triplet-state spectroscopy of dipyrromethene BF2 laser dyes,” J. Photochem. Photobiol. Chem. 181(2-3), 142–146 (2006).
[Crossref]

Luchette, P.

Manohar, R.

P. Porov, V. S. Chandel, and R. Manohar, “Lasing characteristics of dye-doped cholesteric liquid crystal,” Trans. Electr. Electron. Mater. 16(3), 117–123 (2015).
[Crossref]

Marshall, W. J.

W. J. Marshall, “Two methods for measuring laser beam diameter,” J. Laser Appl. 22(4), 132–136 (2010).
[Crossref]

Matranga, M. A.

Mavrogordatos, T. K.

McConney, M. E.

Mishra, G. K.

G. K. Mishra, A. Kumar, S. K. Sharma, A. J. Singh, O. Prakash, P. K. Mukhopadhyay, K. S. Bindra, S. K. Dixit, and S. V. Nakhe, “Study of output power of very high pulse repetition rate (18 kHz) dye laser pumped by frequency doubled diode pumped Nd: YAG laser (λ ~ 532 nm),” Laser Phys. 25(5), 055001 (2015).
[Crossref]

Montejano, H. A.

H. A. Montejano, F. Amat-Guerri, A. Costela, I. García-Moreno, M. Liras, and R. Sastre, “Triplet-state spectroscopy of dipyrromethene BF2 laser dyes,” J. Photochem. Photobiol. Chem. 181(2-3), 142–146 (2006).
[Crossref]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Morris, S. M.

S. M. Wood, F. Castles, S. Elston, and S. M. Morris, “Wavelength tuneable laser emission from stretchable chiral nematic liquid crystal gels via in-situ photopolymerization,” RSC Advances 6(38), 31919–31924 (2016).
[Crossref]

S. M. Wood, T. K. Mavrogordatos, S. M. Morris, P. J. W. Hands, F. Castles, D. J. Gardiner, K. L. Atkinson, H. J. Coles, and T. D. Wilkinson, “Adaptive holographic pumping of thin-film organic lasers,” Opt. Lett. 38(21), 4483–4486 (2013).
[Crossref] [PubMed]

P. J. W. Hands, C. A. Dobson, S. M. Morris, M. M. Qasim, D. J. Gardiner, T. D. Wilkinson, and H. J. Coles, ““Wavelength-tuneable liquid crystal lasers from the visible to the near-infrared,” Proc. SPIE 8114,” Liq. Cryst. XV, 81140T (2011).

C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett. 97(25), 251109 (2010).
[Crossref]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

P. J. W. Hands, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Two-dimensional liquid crystal laser array,” Opt. Lett. 33(5), 515–517 (2008).
[Crossref] [PubMed]

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp. 14(6), 565–573 (2006).
[Crossref]

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061709 (2006).
[Crossref] [PubMed]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A, Pure Appl. Opt. 7(5), 215–223 (2005).
[Crossref]

Mowatt, C.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett. 97(25), 251109 (2010).
[Crossref]

Mukhopadhyay, P. K.

G. K. Mishra, A. Kumar, S. K. Sharma, A. J. Singh, O. Prakash, P. K. Mukhopadhyay, K. S. Bindra, S. K. Dixit, and S. V. Nakhe, “Study of output power of very high pulse repetition rate (18 kHz) dye laser pumped by frequency doubled diode pumped Nd: YAG laser (λ ~ 532 nm),” Laser Phys. 25(5), 055001 (2015).
[Crossref]

Muñoz, A.

Nakhe, S. V.

G. K. Mishra, A. Kumar, S. K. Sharma, A. J. Singh, O. Prakash, P. K. Mukhopadhyay, K. S. Bindra, S. K. Dixit, and S. V. Nakhe, “Study of output power of very high pulse repetition rate (18 kHz) dye laser pumped by frequency doubled diode pumped Nd: YAG laser (λ ~ 532 nm),” Laser Phys. 25(5), 055001 (2015).
[Crossref]

Neyts, K.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 8292, 1–7 (2016).
[Crossref]

Ninoyan, Z.

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 8292, 1–7 (2016).
[Crossref]

Nuno, Z. S.

A. L. Rodarte, Z. S. Nuno, B. H. Cao, R. J. Pandolfi, M. T. Quint, S. Ghosh, J. E. Hein, and L. S. Hirst, “Tuning quantum-dot organization in liquid crystals for robust photonic applications,” ChemPhysChem 15(7), 1413–1421 (2014).
[Crossref] [PubMed]

Nys, I.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 8292, 1–7 (2016).
[Crossref]

Ortega, J.

J. Ortega, C. L. Folcia, and J. Etxebarria, “Upgrading the performance of cholesteric liquid crystal lasers: Improvement margins and limitations,” Materials (Basel) 11(1), 5 (2017).
[Crossref] [PubMed]

G. Sanz-Enguita, J. Ortega, C. L. Folcia, I. Aramburu, and J. Etxebarria, “Role of the sample thickness on the performance of cholesteric liquid crystal lasers: Experimental, numerical, and analytical results,” J. Appl. Phys. 119(7), 073102 (2016).
[Crossref]

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

Ozaki, M.

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous Shift of Lasing Wavelength with Temperature in Cholesteric Liquid Crystal,” Japanese J. Appl. Physics, Part 2 Lett 42, 7–10 (2003).

Palffy-Muhoray, P.

A. Varanytsia and P. Palffy-Muhoray, “Thermal degradation of the distributed-feedback cavity in cholesteric liquid crystal lasers,” Proc. SPIE 8828. Liq. Cryst. XVII, 88281F (2013).

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Pandolfi, R. J.

A. L. Rodarte, Z. S. Nuno, B. H. Cao, R. J. Pandolfi, M. T. Quint, S. Ghosh, J. E. Hein, and L. S. Hirst, “Tuning quantum-dot organization in liquid crystals for robust photonic applications,” ChemPhysChem 15(7), 1413–1421 (2014).
[Crossref] [PubMed]

Petriashvili, G.

Pivnenko, M. N.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp. 14(6), 565–573 (2006).
[Crossref]

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061709 (2006).
[Crossref] [PubMed]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A, Pure Appl. Opt. 7(5), 215–223 (2005).
[Crossref]

Porov, P.

P. Porov, V. S. Chandel, and R. Manohar, “Lasing characteristics of dye-doped cholesteric liquid crystal,” Trans. Electr. Electron. Mater. 16(3), 117–123 (2015).
[Crossref]

Prakash, O.

G. K. Mishra, A. Kumar, S. K. Sharma, A. J. Singh, O. Prakash, P. K. Mukhopadhyay, K. S. Bindra, S. K. Dixit, and S. V. Nakhe, “Study of output power of very high pulse repetition rate (18 kHz) dye laser pumped by frequency doubled diode pumped Nd: YAG laser (λ ~ 532 nm),” Laser Phys. 25(5), 055001 (2015).
[Crossref]

Qasim, M. M.

P. J. W. Hands, C. A. Dobson, S. M. Morris, M. M. Qasim, D. J. Gardiner, T. D. Wilkinson, and H. J. Coles, ““Wavelength-tuneable liquid crystal lasers from the visible to the near-infrared,” Proc. SPIE 8114,” Liq. Cryst. XV, 81140T (2011).

Quint, M. T.

A. L. Rodarte, Z. S. Nuno, B. H. Cao, R. J. Pandolfi, M. T. Quint, S. Ghosh, J. E. Hein, and L. S. Hirst, “Tuning quantum-dot organization in liquid crystals for robust photonic applications,” ChemPhysChem 15(7), 1413–1421 (2014).
[Crossref] [PubMed]

Rodarte, A. L.

A. L. Rodarte, Z. S. Nuno, B. H. Cao, R. J. Pandolfi, M. T. Quint, S. Ghosh, J. E. Hein, and L. S. Hirst, “Tuning quantum-dot organization in liquid crystals for robust photonic applications,” ChemPhysChem 15(7), 1413–1421 (2014).
[Crossref] [PubMed]

Sanz-Enguita, G.

G. Sanz-Enguita, J. Ortega, C. L. Folcia, I. Aramburu, and J. Etxebarria, “Role of the sample thickness on the performance of cholesteric liquid crystal lasers: Experimental, numerical, and analytical results,” J. Appl. Phys. 119(7), 073102 (2016).
[Crossref]

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

Sastre, R.

H. A. Montejano, F. Amat-Guerri, A. Costela, I. García-Moreno, M. Liras, and R. Sastre, “Triplet-state spectroscopy of dipyrromethene BF2 laser dyes,” J. Photochem. Photobiol. Chem. 181(2-3), 142–146 (2006).
[Crossref]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Schmidtke, J.

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Shank, C. V.

C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47(3), 649–657 (1975).
[Crossref]

Sharma, S. K.

G. K. Mishra, A. Kumar, S. K. Sharma, A. J. Singh, O. Prakash, P. K. Mukhopadhyay, K. S. Bindra, S. K. Dixit, and S. V. Nakhe, “Study of output power of very high pulse repetition rate (18 kHz) dye laser pumped by frequency doubled diode pumped Nd: YAG laser (λ ~ 532 nm),” Laser Phys. 25(5), 055001 (2015).
[Crossref]

Shpak, M. T.

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” Lett. J. Exp. Theor. Phys. 32, 24–27 (1980).

Singh, A. J.

G. K. Mishra, A. Kumar, S. K. Sharma, A. J. Singh, O. Prakash, P. K. Mukhopadhyay, K. S. Bindra, S. K. Dixit, and S. V. Nakhe, “Study of output power of very high pulse repetition rate (18 kHz) dye laser pumped by frequency doubled diode pumped Nd: YAG laser (λ ~ 532 nm),” Laser Phys. 25(5), 055001 (2015).
[Crossref]

Song, M. H.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

Sukhomlinova, L.

Taheri, B.

Takezoe, H.

F. Araoka and H. Takezoe, “Towards highly-efficient liquid crystal microlasers,” Proc. SPIE 7935, 79350A (2011).

Thiel, E.

Tikhonov, E. A.

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” Lett. J. Exp. Theor. Phys. 32, 24–27 (1980).

Tishchenko, V. G.

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” Lett. J. Exp. Theor. Phys. 32, 24–27 (1980).

Varanytsia, A.

A. Varanytsia and P. Palffy-Muhoray, “Thermal degradation of the distributed-feedback cavity in cholesteric liquid crystal lasers,” Proc. SPIE 8828. Liq. Cryst. XVII, 88281F (2013).

Vithana, H. K. M.

Wang, C. T.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

White, T. J.

Wilkinson, T. D.

S. M. Wood, T. K. Mavrogordatos, S. M. Morris, P. J. W. Hands, F. Castles, D. J. Gardiner, K. L. Atkinson, H. J. Coles, and T. D. Wilkinson, “Adaptive holographic pumping of thin-film organic lasers,” Opt. Lett. 38(21), 4483–4486 (2013).
[Crossref] [PubMed]

P. J. W. Hands, C. A. Dobson, S. M. Morris, M. M. Qasim, D. J. Gardiner, T. D. Wilkinson, and H. J. Coles, ““Wavelength-tuneable liquid crystal lasers from the visible to the near-infrared,” Proc. SPIE 8114,” Liq. Cryst. XV, 81140T (2011).

C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett. 97(25), 251109 (2010).
[Crossref]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

P. J. W. Hands, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Two-dimensional liquid crystal laser array,” Opt. Lett. 33(5), 515–517 (2008).
[Crossref] [PubMed]

Willekens, O.

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 8292, 1–7 (2016).
[Crossref]

Wood, S. M.

S. M. Wood, F. Castles, S. Elston, and S. M. Morris, “Wavelength tuneable laser emission from stretchable chiral nematic liquid crystal gels via in-situ photopolymerization,” RSC Advances 6(38), 31919–31924 (2016).
[Crossref]

S. M. Wood, T. K. Mavrogordatos, S. M. Morris, P. J. W. Hands, F. Castles, D. J. Gardiner, K. L. Atkinson, H. J. Coles, and T. D. Wilkinson, “Adaptive holographic pumping of thin-film organic lasers,” Opt. Lett. 38(21), 4483–4486 (2013).
[Crossref] [PubMed]

Wu, S.-T.

Yang, T. H.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

Yoshino, K.

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous Shift of Lasing Wavelength with Temperature in Cholesteric Liquid Crystal,” Japanese J. Appl. Physics, Part 2 Lett 42, 7–10 (2003).

Zhou, Y.

Adv. Mater. (1)

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Appl. Phys. Lett. (3)

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett. 97(25), 251109 (2010).
[Crossref]

ChemPhysChem (1)

A. L. Rodarte, Z. S. Nuno, B. H. Cao, R. J. Pandolfi, M. T. Quint, S. Ghosh, J. E. Hein, and L. S. Hirst, “Tuning quantum-dot organization in liquid crystals for robust photonic applications,” ChemPhysChem 15(7), 1413–1421 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (3)

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

G. Sanz-Enguita, J. Ortega, C. L. Folcia, I. Aramburu, and J. Etxebarria, “Role of the sample thickness on the performance of cholesteric liquid crystal lasers: Experimental, numerical, and analytical results,” J. Appl. Phys. 119(7), 073102 (2016).
[Crossref]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

J. Laser Appl. (1)

W. J. Marshall, “Two methods for measuring laser beam diameter,” J. Laser Appl. 22(4), 132–136 (2010).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

L.-J. Chen, J.-D. Lin, and C.-R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4388–4394 (2014).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A, Pure Appl. Opt. 7(5), 215–223 (2005).
[Crossref]

J. Photochem. Photobiol. Chem. (1)

H. A. Montejano, F. Amat-Guerri, A. Costela, I. García-Moreno, M. Liras, and R. Sastre, “Triplet-state spectroscopy of dipyrromethene BF2 laser dyes,” J. Photochem. Photobiol. Chem. 181(2-3), 142–146 (2006).
[Crossref]

J. Soc. Inf. Disp. (1)

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp. 14(6), 565–573 (2006).
[Crossref]

Japanese J. Appl. Physics, Part 2 Lett (1)

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous Shift of Lasing Wavelength with Temperature in Cholesteric Liquid Crystal,” Japanese J. Appl. Physics, Part 2 Lett 42, 7–10 (2003).

Laser Phys. (1)

G. K. Mishra, A. Kumar, S. K. Sharma, A. J. Singh, O. Prakash, P. K. Mukhopadhyay, K. S. Bindra, S. K. Dixit, and S. V. Nakhe, “Study of output power of very high pulse repetition rate (18 kHz) dye laser pumped by frequency doubled diode pumped Nd: YAG laser (λ ~ 532 nm),” Laser Phys. 25(5), 055001 (2015).
[Crossref]

Lett. J. Exp. Theor. Phys. (1)

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” Lett. J. Exp. Theor. Phys. 32, 24–27 (1980).

Liq. Cryst. (2)

P. J. W. Hands, C. A. Dobson, S. M. Morris, M. M. Qasim, D. J. Gardiner, T. D. Wilkinson, and H. J. Coles, ““Wavelength-tuneable liquid crystal lasers from the visible to the near-infrared,” Proc. SPIE 8114,” Liq. Cryst. XV, 81140T (2011).

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 8292, 1–7 (2016).
[Crossref]

Materials (Basel) (1)

J. Ortega, C. L. Folcia, and J. Etxebarria, “Upgrading the performance of cholesteric liquid crystal lasers: Improvement margins and limitations,” Materials (Basel) 11(1), 5 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061709 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

F. Araoka and H. Takezoe, “Towards highly-efficient liquid crystal microlasers,” Proc. SPIE 7935, 79350A (2011).

Proc. SPIE 8828. Liq. Cryst. (1)

A. Varanytsia and P. Palffy-Muhoray, “Thermal degradation of the distributed-feedback cavity in cholesteric liquid crystal lasers,” Proc. SPIE 8828. Liq. Cryst. XVII, 88281F (2013).

Rev. Mod. Phys. (1)

C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47(3), 649–657 (1975).
[Crossref]

RSC Advances (1)

S. M. Wood, F. Castles, S. Elston, and S. M. Morris, “Wavelength tuneable laser emission from stretchable chiral nematic liquid crystal gels via in-situ photopolymerization,” RSC Advances 6(38), 31919–31924 (2016).
[Crossref]

Trans. Electr. Electron. Mater. (1)

P. Porov, V. S. Chandel, and R. Manohar, “Lasing characteristics of dye-doped cholesteric liquid crystal,” Trans. Electr. Electron. Mater. 16(3), 117–123 (2015).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       A video showing a liquid crystal laser operating at a pulse frequency of 10 kHz using a cell mounted on a spinning disk. A mechanical wavelength-switching method is also demonstrated using the spinning cell approach.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The optical arrangement for lasing. A cross-section of a LC laser cell is illustrated in the inset (top left) and shows the focused pump laser beam (green) and diverging LC laser emission (red). (b) A photograph of a spinning cell with a green pump and red emission.
Fig. 2
Fig. 2 A comparison between the emission from cell A (a) when static and (b) when spinning, with different pump pulse frequencies, input energy E1 and Dring = 3 mm. The emission energy was normalized to the mean of the first ten data points recorded and down-sampled before plotting for clarity. (c) The slope efficiency when static compared to slowly spinning and spinning at 10 kHz (Dring = 3 mm). Error bars show the standard deviation on the mean energy output. Note that spinning the cell had no detrimental effect on its efficiency. (d) Emission from cell B at 10 kHz over 2 hours for two different pump ring diameters. In the case of non-overlapping pump spots, the data show similar stability to a static cell at 0.02 kHz (i.e. the same effective pump frequency).
Fig. 3
Fig. 3 (a) Illustration of a pump ring with diameter large enough to prevent consecutive pump spots from overlapping. (b) A smaller pump ring with overlapping pump spots.
Fig. 4
Fig. 4 An emission spectra from a static LC cell (black, solid line) and the sum of all 500 emission spectra recorded during a single rotation of the spinning LC cell system at Dring = 3 mm (purple, short-dash line) and Dring = 6 mm (grey, long-dash line).
Fig. 5
Fig. 5 The average power output of cell A with different pump frequencies, over a period of 60 s. Results from experiments with input pulse energies are shown (E1 = squares, E2 = circles, E3 = triangles). Error bars show the standard deviation in the output power over this period. The use of high energy input pulses was seen to damage the cell. A maximum average power of 3.5 mW was recorded.
Fig. 6
Fig. 6 A demonstration of a wavelength switching technique using 3 cells (B = orange square, C = purple circle and D = pink triangle) mounted on the spinning disk. The cells had different active areas, resulting in slightly different output characteristics. A diagram of the path of the pump ring over the cells shown to the right of the graph.

Tables (1)

Tables Icon

Table 1 The composition of the LC laser mixture in each of the four cells.

Metrics