Abstract

Speckle-free imaging is attractive in laser-illuminated imaging systems. The evolutionary process of supercontinuum decoherence in extra-large mode area step-index multimode fiber is analyzed to provide high-quality broadband light source for speckle-free imaging. It is found that spectral bandwidth, number of spatial transverse modes, and decoherence among different modes all greatly contribute to speckle reduction. The combination of supercontinuum and extra-large mode area step-index multimode fiber can considerably increase the efficiency of decoherence process for speckle-free imaging. This work may enrich the research of speckle-free imaging and also provide guidance on speckle-free imaging using fiber-optics based light source.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power low spatial coherence random fiber laser

Rui Ma, Jia Qi Li, Jia Yu Guo, Han Wu, Hua Hui Zhang, Bo Hu, Yun Jiang Rao, and Wei Li Zhang
Opt. Express 27(6) 8738-8744 (2019)

Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging

Brandon Redding, Peyman Ahmadi, Vadim Mokan, Martin Seifert, Michael A. Choma, and Hui Cao
Opt. Lett. 40(20) 4607-4610 (2015)

IR microscopy utilizing intense supercontinuum light source

Sune Dupont, Christian Petersen, Jan Thøgersen, Christian Agger, Ole Bang, and Søren Rud Keiding
Opt. Express 20(5) 4887-4892 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, “Speckle phenomena in optics: theory and applications,” Roberts & Company, Englewood (2007).
  2. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
    [Crossref] [PubMed]
  3. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref] [PubMed]
  4. F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).
    [Crossref] [PubMed]
  5. D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
    [Crossref] [PubMed]
  6. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20(10), 11288–11315 (2012).
    [Crossref] [PubMed]
  7. B. Redding, P. Ahmadi, V. Mokan, M. Seifert, M. A. Choma, and H. Cao, “Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging,” Opt. Lett. 40(20), 4607–4610 (2015).
    [Crossref] [PubMed]
  8. Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056607 (2005).
    [Crossref] [PubMed]
  9. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19(9), 1794–1802 (2002).
    [Crossref] [PubMed]
  10. S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
    [Crossref] [PubMed]
  11. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref] [PubMed]
  12. B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
    [Crossref] [PubMed]
  13. B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
    [Crossref]
  14. R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, “Multimode random fiber laser for speckle-free imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 0900106 (2019).
    [Crossref]
  15. Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).
  16. H. Zhang, L. Huang, P. Zhou, X. Wang, J. Xu, and X. Xu, “More than 400 W random fiber laser with excellent beam quality,” Opt. Lett. 42(17), 3347–3350 (2017).
    [Crossref] [PubMed]
  17. S. Knitter, C. Liu, B. Redding, M. K. Khokha, M. A. Choma, and H. Cao, “Coherence switching of a degenerate VECSEL for multimodality imaging,” Optica 3(4), 403–406 (2016).
    [Crossref]
  18. H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
    [Crossref] [PubMed]
  19. J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
    [Crossref] [PubMed]
  20. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express 14(11), 4736–4745 (2006).
    [Crossref] [PubMed]
  21. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
    [Crossref] [PubMed]
  22. O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de la Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8, 15845 (2017).
    [Crossref] [PubMed]
  23. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  24. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  25. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010).
    [Crossref]
  26. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Y. Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20(13), 14400–14405 (2012).
    [Crossref] [PubMed]
  27. R. Ma, W. L. Zhang, S. S. Wang, X. Zeng, H. Wu, and Y. J. Rao, “Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure,” Laser Phys. Lett. 15(8), 085111 (2018).
    [Crossref]
  28. R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, Z. N. Wang, and X. P. Zeng, “Backward supercontinuum generation excited by random lasing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0901105 (2018).
    [Crossref]
  29. X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632–16645 (2008).
    [PubMed]
  30. A. H. Dhalla, J. V. Migacz, and J. A. Izatt, “Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources,” Opt. Lett. 35(13), 2305–2307 (2010).
    [Crossref] [PubMed]
  31. A. Efimov, “Spatial coherence at the output of multimode optical fibers,” Opt. Express 22(13), 15577–15588 (2014).
    [Crossref] [PubMed]
  32. S. Roelandt, Y. Meuret, A. Jacobs, K. Willaert, P. Janssens, H. Thienpont, and G. Verschaffelt, “Human speckle perception threshold for still images from a laser projection system,” Opt. Express 22(20), 23965–23979 (2014).
    [Crossref] [PubMed]

2019 (1)

R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, “Multimode random fiber laser for speckle-free imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 0900106 (2019).
[Crossref]

2018 (2)

R. Ma, W. L. Zhang, S. S. Wang, X. Zeng, H. Wu, and Y. J. Rao, “Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure,” Laser Phys. Lett. 15(8), 085111 (2018).
[Crossref]

R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, Z. N. Wang, and X. P. Zeng, “Backward supercontinuum generation excited by random lasing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0901105 (2018).
[Crossref]

2017 (4)

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de la Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8, 15845 (2017).
[Crossref] [PubMed]

H. Zhang, L. Huang, P. Zhou, X. Wang, J. Xu, and X. Xu, “More than 400 W random fiber laser with excellent beam quality,” Opt. Lett. 42(17), 3347–3350 (2017).
[Crossref] [PubMed]

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
[Crossref] [PubMed]

2016 (2)

S. Knitter, C. Liu, B. Redding, M. K. Khokha, M. A. Choma, and H. Cao, “Coherence switching of a degenerate VECSEL for multimodality imaging,” Optica 3(4), 403–406 (2016).
[Crossref]

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

2015 (3)

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

B. Redding, P. Ahmadi, V. Mokan, M. Seifert, M. A. Choma, and H. Cao, “Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging,” Opt. Lett. 40(20), 4607–4610 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

2012 (5)

2010 (3)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

A. H. Dhalla, J. V. Migacz, and J. A. Izatt, “Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources,” Opt. Lett. 35(13), 2305–2307 (2010).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

2008 (1)

2006 (2)

2005 (2)

Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056607 (2005).
[Crossref] [PubMed]

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

2002 (1)

2001 (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ahmadi, P.

Ania-Castañón, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Bixler, J. N.

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Boonruangkan, J.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Bouma, B. E.

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref] [PubMed]

Cai, Y.

F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).
[Crossref] [PubMed]

Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056607 (2005).
[Crossref] [PubMed]

Cao, H.

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

S. Knitter, C. Liu, B. Redding, M. K. Khokha, M. A. Choma, and H. Cao, “Coherence switching of a degenerate VECSEL for multimodality imaging,” Optica 3(4), 403–406 (2016).
[Crossref]

B. Redding, P. Ahmadi, V. Mokan, M. Seifert, M. A. Choma, and H. Cao, “Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging,” Opt. Lett. 40(20), 4607–4610 (2015).
[Crossref] [PubMed]

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Cerjan, A.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Choma, M. A.

S. Knitter, C. Liu, B. Redding, M. K. Khokha, M. A. Choma, and H. Cao, “Coherence switching of a degenerate VECSEL for multimodality imaging,” Optica 3(4), 403–406 (2016).
[Crossref]

B. Redding, P. Ahmadi, V. Mokan, M. Seifert, M. A. Choma, and H. Cao, “Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging,” Opt. Lett. 40(20), 4607–4610 (2015).
[Crossref] [PubMed]

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Chu, S.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de la Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8, 15845 (2017).
[Crossref] [PubMed]

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Davidson, F. M.

de la Zerda, A.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de la Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8, 15845 (2017).
[Crossref] [PubMed]

Desjardins, A. E.

Dhalla, A. H.

Dong, X.

R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, Z. N. Wang, and X. P. Zeng, “Backward supercontinuum generation excited by random lasing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0901105 (2018).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Dutta, R.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de la Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8, 15845 (2017).
[Crossref] [PubMed]

Dyer, P. N.

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

Efimov, A.

Elsäßer, W.

S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
[Crossref] [PubMed]

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Fan, M.

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

Farrokhi, H.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Goodman, J. W.

Gorczynska, I.

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Han, L.

Han, S.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Hartmann, S.

S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
[Crossref] [PubMed]

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hokr, B. H.

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

Hu, B.

R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, “Multimode random fiber laser for speckle-free imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 0900106 (2019).
[Crossref]

Huang, D.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, L.

Huang, X.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Izatt, J. A.

Jacobs, A.

Janssens, P.

Jia, X.

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

Jia, X. H.

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Khokha, M. K.

Kim, E.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

Kim, H.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Kim, J.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

Kim, S. W.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Kim, Y. J.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Knitter, S.

Kowalczyk, A.

Lee, M. L.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Lew, M. D.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de la Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8, 15845 (2017).
[Crossref] [PubMed]

Li, H.

Li, L.

Liba, O.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de la Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8, 15845 (2017).
[Crossref] [PubMed]

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, C.

Liu, X.

Ma, R.

R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, “Multimode random fiber laser for speckle-free imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 0900106 (2019).
[Crossref]

R. Ma, W. L. Zhang, S. S. Wang, X. Zeng, H. Wu, and Y. J. Rao, “Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure,” Laser Phys. Lett. 15(8), 085111 (2018).
[Crossref]

R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, Z. N. Wang, and X. P. Zeng, “Backward supercontinuum generation excited by random lasing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0901105 (2018).
[Crossref]

Manni, J. G.

Mehta, D. S.

Meuret, Y.

Migacz, J. V.

Miller, D. T.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

Milner, T. E.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

Mokan, V.

Moloney, J. V.

Moshfeghi, D. M.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de la Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8, 15845 (2017).
[Crossref] [PubMed]

Naik, D. N.

Noojin, G. D.

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

Oh, J.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

Oh, S.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

Peyghambarian, N.

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rao, Y.

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

Rao, Y. J.

R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, “Multimode random fiber laser for speckle-free imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 0900106 (2019).
[Crossref]

R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, Z. N. Wang, and X. P. Zeng, “Backward supercontinuum generation excited by random lasing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0901105 (2018).
[Crossref]

R. Ma, W. L. Zhang, S. S. Wang, X. Zeng, H. Wu, and Y. J. Rao, “Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure,” Laser Phys. Lett. 15(8), 085111 (2018).
[Crossref]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Y. Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20(13), 14400–14405 (2012).
[Crossref] [PubMed]

Redding, B.

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

S. Knitter, C. Liu, B. Redding, M. K. Khokha, M. A. Choma, and H. Cao, “Coherence switching of a degenerate VECSEL for multimodality imaging,” Optica 3(4), 403–406 (2016).
[Crossref]

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

B. Redding, P. Ahmadi, V. Mokan, M. Seifert, M. A. Choma, and H. Cao, “Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging,” Opt. Lett. 40(20), 4607–4610 (2015).
[Crossref] [PubMed]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Ricklin, J. C.

Rockwell, B. A.

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

Roelandt, S.

Rohith, T. M.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Schmidt, M. S.

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

Schülzgen, A.

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Scully, M. O.

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

Seifert, M.

Sen, D.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de la Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8, 15845 (2017).
[Crossref] [PubMed]

Singh, R. K.

SoRelle, E. D.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de la Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8, 15845 (2017).
[Crossref] [PubMed]

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stone, A. D.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sylwestrzak, M.

Szkulmowski, M.

Szlag, D.

Takeda, M.

Tearney, G. J.

Thienpont, H.

Thomas, R. J.

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Vakoc, B. J.

Verschaffelt, G.

Wang, F.

Wang, S. S.

R. Ma, W. L. Zhang, S. S. Wang, X. Zeng, H. Wu, and Y. J. Rao, “Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure,” Laser Phys. Lett. 15(8), 085111 (2018).
[Crossref]

Wang, X.

Wang, Z.

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

Wang, Z. N.

R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, Z. N. Wang, and X. P. Zeng, “Backward supercontinuum generation excited by random lasing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0901105 (2018).
[Crossref]

Wang, Z. X. Y. Z. N.

Willaert, K.

Wojtkowski, M.

Wu, H.

R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, Z. N. Wang, and X. P. Zeng, “Backward supercontinuum generation excited by random lasing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0901105 (2018).
[Crossref]

R. Ma, W. L. Zhang, S. S. Wang, X. Zeng, H. Wu, and Y. J. Rao, “Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure,” Laser Phys. Lett. 15(8), 085111 (2018).
[Crossref]

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

Xu, J.

Xu, X.

Yakovlev, V. V.

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

Yuan, Y.

Zeng, X.

R. Ma, W. L. Zhang, S. S. Wang, X. Zeng, H. Wu, and Y. J. Rao, “Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure,” Laser Phys. Lett. 15(8), 085111 (2018).
[Crossref]

R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, Z. N. Wang, and X. P. Zeng, “Backward supercontinuum generation excited by random lasing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0901105 (2018).
[Crossref]

Zeng, X. P.

R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, Z. N. Wang, and X. P. Zeng, “Backward supercontinuum generation excited by random lasing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0901105 (2018).
[Crossref]

Zhang, H.

Zhang, L.

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

Zhang, W.

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

Zhang, W. L.

R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, “Multimode random fiber laser for speckle-free imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 0900106 (2019).
[Crossref]

R. Ma, W. L. Zhang, S. S. Wang, X. Zeng, H. Wu, and Y. J. Rao, “Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure,” Laser Phys. Lett. 15(8), 085111 (2018).
[Crossref]

R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, Z. N. Wang, and X. P. Zeng, “Backward supercontinuum generation excited by random lasing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0901105 (2018).
[Crossref]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Y. Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20(13), 14400–14405 (2012).
[Crossref] [PubMed]

Zhou, P.

Zhu, J. M.

Zhu, S. Y.

Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056607 (2005).
[Crossref] [PubMed]

Zhu, X.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (3)

R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, “Multimode random fiber laser for speckle-free imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 0900106 (2019).
[Crossref]

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, Z. N. Wang, and X. P. Zeng, “Backward supercontinuum generation excited by random lasing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0901105 (2018).
[Crossref]

J. Biomed. Opt. (2)

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

J. Mod. Opt. (1)

B. H. Hokr, M. S. Schmidt, J. N. Bixler, P. N. Dyer, G. D. Noojin, B. Redding, R. J. Thomas, B. A. Rockwell, H. Cao, V. V. Yakovlev, and M. O. Scully, “A narrow-band speckle-free light source via random Raman lasing,” J. Mod. Opt. 63(1), 46–49 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Phys. Lett. (1)

R. Ma, W. L. Zhang, S. S. Wang, X. Zeng, H. Wu, and Y. J. Rao, “Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure,” Laser Phys. Lett. 15(8), 085111 (2018).
[Crossref]

Nat. Commun. (1)

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de la Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8, 15845 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Opt. Express (7)

J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20(10), 11288–11315 (2012).
[Crossref] [PubMed]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Y. Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20(13), 14400–14405 (2012).
[Crossref] [PubMed]

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express 14(11), 4736–4745 (2006).
[Crossref] [PubMed]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632–16645 (2008).
[PubMed]

A. Efimov, “Spatial coherence at the output of multimode optical fibers,” Opt. Express 22(13), 15577–15588 (2014).
[Crossref] [PubMed]

S. Roelandt, Y. Meuret, A. Jacobs, K. Willaert, P. Janssens, H. Thienpont, and G. Verschaffelt, “Human speckle perception threshold for still images from a laser projection system,” Opt. Express 22(20), 23965–23979 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Optica (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056607 (2005).
[Crossref] [PubMed]

Physiol. Meas. (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sci. Rep. (2)

S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
[Crossref] [PubMed]

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (1)

J. W. Goodman, “Speckle phenomena in optics: theory and applications,” Roberts & Company, Englewood (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of experimental setup. WDM, wavelength division multiplexer. FBG, Fiber Bragg grating. TW fiber, TrueWave fiber. ISO, isolator. VOA, variable optical attenuator. MMF, multimode fiber. GG, ground glass.
Fig. 2
Fig. 2 (a) Spectral variation with the increase of pump power. (b) The output power of the generated SC as a function of input pump power.
Fig. 3
Fig. 3 Mode field profiles of the outputs from SC (a-e) and RFL (f-j) after propagating through 0 cm (a, f), 28 cm (b, g), 153 cm (c, h), 282 cm (d, i) and 408 cm (e, j) MMF.
Fig. 4
Fig. 4 (a). Speckles formed after light passing through a ground glass diffuser for SC (a-e) and RFL (f-j) propagating through 0 cm (a, f), 28 cm (b, g), 153 cm (c, h), 282 cm (d, i) and 408 cm (e, j) MMF.
Fig. 5
Fig. 5 Speckle contrast of the SC and RFL as a function of the length of MMF.
Fig. 6
Fig. 6 (a). Mode field profiles (a, d). Speckles formed after passing through a ground glass diffuser (b, e) and images of the USAF resolution chart (c, f) for SC and RFL after propagating through 30 m MMF.

Metrics