Abstract

Spectrally selective materials are of great interest for optoelectronic devices in which wavelength-selectivity of the photoactive material is necessary for applications such as multi-junction solar cells, narrow-band photodetectors, transparent photovoltaics, and tailored emission sources. Achieving controlled transparency or opacity within multiple wavelength bands in the absorption, reflection, and transmission spectra are difficult to achieve in traditional semiconductors that typically absorb at all energies above their electronic band gap and is generally realized by the use of external bandpass filters. Here, we propose an alternate method for achieving spectral selectivity in optoelectronic thin films: the use of photonic band engineering within the absorbing region of a semiconductor in which resonant photonic bands are strongly coupled to the external reflectivity and transmission spectra. As a first step, we use optical simulations to systematically study the effect of material absorption on the properties of the photonic bands in a photonic crystal slab structure. We find that adding a weak loss to the materials model does not appreciably change the frequencies of the photonic bands but does reduce the quality factor of the associated photonic modes. Critically, the radiating photonic bands induce strong Fano resonance features in the transmission and reflection spectra, even in the presence of material absorption, due to coupling between the bands and external electromagnetic plane waves. These resonances can be tuned by adjusting the photonic crystal structural properties to induce spectral selectivity in the absorbing region of semiconductors. Lastly, we demonstrate this tuning method experimentally by fabricating a proof-of-principle photonic structure consisting of a self-assembled polystyrene bead monolayer infiltrated with PbS CQDs that displays both near-infrared absorption enhancement and visible transparency enhancement over a homogeneous control film, qualitatively matching predictions and showing promise for optoelectronic applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference

Ebuka S. Arinze, Botong Qiu, Nathan Palmquist, Yan Cheng, Yida Lin, Gabrielle Nyirjesy, Gary Qian, and Susanna M. Thon
Opt. Express 25(4) A101-A112 (2017)

High performance infrared photodetectors up to 2.8 µm wavelength based on lead selenide colloidal quantum dots

M. Thambidurai, Youngjin Jang, Arthur Shapiro, Gao Yuan, Hu Xiaonan, Yu Xuechao, Qi Jie Wang, Efrat Lifshitz, Hilmi Volkan Demir, and Cuong Dang
Opt. Mater. Express 7(7) 2326-2335 (2017)

Spectral control of near-field thermal radiation via photonic band engineering of two-dimensional photonic crystal slabs

Takuya Inoue, Takashi Asano, and Susumu Noda
Opt. Express 26(24) 32074-32082 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Dworkin and T. J. Nye, “Image processing for machine vision measurement of hot formed parts,” J. Mater. Process. Technol. 174(1-3), 1–6 (2006).
    [Crossref]
  2. D. Bračun, G. Škulj, and M. Kadiš, “Spectral selective and difference imaging laser triangulation measurement system for on line measurement of large hot workpieces in precision open die forging,” Int. J. Adv. Manuf. Technol. 90(1-4), 917–926 (2017).
    [Crossref]
  3. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
    [Crossref]
  4. J. A. Ratches, R. H. Vollmerhausen, and R. G. Driggers, “Target acquisition performance modeling of infrared imaging systems: past, present, and future,” IEEE Sens. J. 1(1), 31–40 (2001).
    [Crossref]
  5. H. Hara, N. Kishi, M. Noro, H. Iwaoka, and K. Suzuki, “Fabry-Perot filter, wavelength-selective infrared detector and infrared gas analyzer using the filter and detector,” United States patent US6590710B2 (July 8, 2003).
  6. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
    [Crossref]
  7. C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Pror. Energy Combust. Sci. 60, 132–176 (2017).
    [Crossref]
  8. A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. Appl. Phys. 13(5), 839–846 (1980).
    [Crossref]
  9. E. H. Sargent, “Infrared photovoltaics made by solution processing,” Nat. Photonics 3(6), 325–331 (2009).
    [Crossref]
  10. F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
    [Crossref]
  11. D. M. Trotter and A. J. Sievers, “Spectral selectivity of high-temperature solar absorbers,” Appl. Opt. 19(5), 711–728 (1980).
    [Crossref] [PubMed]
  12. H. Kim, H.-S. Kim, J. Ha, N.-G. Park, and S. Yoo, “Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality,” Adv. Energy Mater. 6(14), 1502466 (2016).
    [Crossref]
  13. E. Radziemska, “The effect of temperature on the power drop in crystalline silicon solar cells,” Renew. Energy 28(1), 1–12 (2003).
    [Crossref]
  14. A. Makki, S. Omer, and H. Sabir, “Advancements in hybrid photovoltaic systems for enhanced solar cells performance,” Renew. Sustain. Energy Rev. 41, 658–684 (2015).
    [Crossref]
  15. B. J. Huang, P. E. Yang, Y. P. Lin, B. Y. Lin, H. J. Chen, R. C. Lai, and J. S. Cheng, “Solar cell junction temperature measurement of PV module,” Sol. Energy 85(2), 388–392 (2011).
    [Crossref]
  16. K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
    [Crossref]
  17. X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
    [Crossref]
  18. M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovolt. Res. Appl. 26(1), 3–12 (2018).
    [Crossref]
  19. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref] [PubMed]
  20. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
    [Crossref] [PubMed]
  21. P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  22. E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
    [Crossref]
  23. M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
    [Crossref]
  24. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref] [PubMed]
  25. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
    [Crossref]
  26. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light - Second Edition (Princeton University, 2011).
  27. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
    [Crossref] [PubMed]
  28. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
    [Crossref] [PubMed]
  29. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
    [Crossref] [PubMed]
  30. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
    [Crossref] [PubMed]
  31. A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
    [Crossref] [PubMed]
  32. V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
    [Crossref] [PubMed]
  33. J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
    [Crossref] [PubMed]
  34. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [Crossref]
  35. Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B Condens. Matter Mater. Phys. 64(11), 113108 (2001).
    [Crossref]
  36. K. Xingze Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy Environ. Sci. 7(8), 2725–2738 (2014).
    [Crossref]
  37. A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express 17(11), 8871–8878 (2009).
    [Crossref] [PubMed]
  38. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
    [Crossref]
  39. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
    [Crossref] [PubMed]
  40. R. B. Withrow and L. Price, “Filters for the Isolation of Narrow Regions in the Visible and Near-Visible Spectrum,” Plant Physiol. 28(1), 105–114 (1953).
    [Crossref] [PubMed]
  41. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
    [Crossref] [PubMed]
  42. A. Mishra and P. Bäuerle, “Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology,” Angew. Chem. Int. Ed. Engl. 51(9), 2020–2067 (2012).
    [Crossref] [PubMed]
  43. K. F. Renk and L. Genzel, “Interference Filters and Fabry-Perot Interferometers for the Far Infrared,” Appl. Opt. 1(5), 643–648 (1962).
    [Crossref]
  44. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758 (1997).
    [Crossref]
  45. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024 (1996).
    [Crossref]
  46. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870 (1996).
    [Crossref]
  47. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer Science & Business Media, 2005).
  48. I. A. Sukhoivanov and I. V. Guryev, Photonic Crystals: Physics and Practical Modeling Springer Series in Optical Sciences (Springer-Verlag, 2009).
  49. E. D. Palik, “- Gallium Arsenide (GaAs),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1997), pp. 429–443.
  50. H. A. Haus, Waves and Fields In Optoelectronics (Prentice Hall, Englewood Cliffs, 1984).
  51. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref] [PubMed]
  52. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
    [Crossref]
  53. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 65(23), 235112 (2002).
    [Crossref]
  54. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
    [Crossref] [PubMed]
  55. X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
    [Crossref]
  56. G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal Quantum Dot Solar Cells,” Chem. Rev. 115(23), 12732–12763 (2015).
    [Crossref] [PubMed]
  57. E. S. Arinze, B. Qiu, N. Palmquist, Y. Cheng, Y. Lin, G. Nyirjesy, G. Qian, and S. M. Thon, “Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference,” Opt. Express 25(4), A101–A112 (2017).
    [Crossref] [PubMed]
  58. M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3(1), 2928 (2013).
    [Crossref] [PubMed]
  59. C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
    [Crossref]
  60. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
    [Crossref] [PubMed]

2018 (1)

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovolt. Res. Appl. 26(1), 3–12 (2018).
[Crossref]

2017 (4)

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

D. Bračun, G. Škulj, and M. Kadiš, “Spectral selective and difference imaging laser triangulation measurement system for on line measurement of large hot workpieces in precision open die forging,” Int. J. Adv. Manuf. Technol. 90(1-4), 917–926 (2017).
[Crossref]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Pror. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

E. S. Arinze, B. Qiu, N. Palmquist, Y. Cheng, Y. Lin, G. Nyirjesy, G. Qian, and S. M. Thon, “Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference,” Opt. Express 25(4), A101–A112 (2017).
[Crossref] [PubMed]

2016 (2)

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

H. Kim, H.-S. Kim, J. Ha, N.-G. Park, and S. Yoo, “Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality,” Adv. Energy Mater. 6(14), 1502466 (2016).
[Crossref]

2015 (2)

A. Makki, S. Omer, and H. Sabir, “Advancements in hybrid photovoltaic systems for enhanced solar cells performance,” Renew. Sustain. Energy Rev. 41, 658–684 (2015).
[Crossref]

G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal Quantum Dot Solar Cells,” Chem. Rev. 115(23), 12732–12763 (2015).
[Crossref] [PubMed]

2014 (4)

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
[Crossref]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

K. Xingze Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy Environ. Sci. 7(8), 2725–2738 (2014).
[Crossref]

2013 (2)

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3(1), 2928 (2013).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
[Crossref] [PubMed]

2012 (4)

A. Mishra and P. Bäuerle, “Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology,” Angew. Chem. Int. Ed. Engl. 51(9), 2020–2067 (2012).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

2011 (2)

B. J. Huang, P. E. Yang, Y. P. Lin, B. Y. Lin, H. J. Chen, R. C. Lai, and J. S. Cheng, “Solar cell junction temperature measurement of PV module,” Sol. Energy 85(2), 388–392 (2011).
[Crossref]

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

2010 (1)

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[Crossref]

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (5)

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[Crossref]

S. B. Dworkin and T. J. Nye, “Image processing for machine vision measurement of hot formed parts,” J. Mater. Process. Technol. 174(1-3), 1–6 (2006).
[Crossref]

C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
[Crossref]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

2005 (2)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

2004 (2)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

2003 (2)

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

E. Radziemska, “The effect of temperature on the power drop in crystalline silicon solar cells,” Renew. Energy 28(1), 1–12 (2003).
[Crossref]

2002 (2)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 65(23), 235112 (2002).
[Crossref]

2001 (2)

J. A. Ratches, R. H. Vollmerhausen, and R. G. Driggers, “Target acquisition performance modeling of infrared imaging systems: past, present, and future,” IEEE Sens. J. 1(1), 31–40 (2001).
[Crossref]

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B Condens. Matter Mater. Phys. 64(11), 113108 (2001).
[Crossref]

1997 (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758 (1997).
[Crossref]

1996 (4)

1980 (2)

D. M. Trotter and A. J. Sievers, “Spectral selectivity of high-temperature solar absorbers,” Appl. Opt. 19(5), 711–728 (1980).
[Crossref] [PubMed]

A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

1962 (1)

1953 (1)

R. B. Withrow and L. Price, “Filters for the Isolation of Narrow Regions in the Visible and Near-Visible Spectrum,” Plant Physiol. 28(1), 105–114 (1953).
[Crossref] [PubMed]

Abdelhady, A. L.

G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal Quantum Dot Solar Cells,” Chem. Rev. 115(23), 12732–12763 (2015).
[Crossref] [PubMed]

Abdolvand, A.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Adachi, M. M.

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3(1), 2928 (2013).
[Crossref] [PubMed]

Adinolfi, V.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Amassian, A.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Arinze, E. S.

Atatüre, M.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Atkin, D. M.

Badolato, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Bailie, C. D.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Bakr, O. M.

G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal Quantum Dot Solar Cells,” Chem. Rev. 115(23), 12732–12763 (2015).
[Crossref] [PubMed]

Barkhouse, D. A. R.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Bartl, M. H.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

Bäuerle, P.

A. Mishra and P. Bäuerle, “Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology,” Angew. Chem. Int. Ed. Engl. 51(9), 2020–2067 (2012).
[Crossref] [PubMed]

Beauregard, E.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Bent, S. F.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Bermel, P.

Birks, T. A.

Boccard, M.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Bracun, D.

D. Bračun, G. Škulj, and M. Kadiš, “Spectral selective and difference imaging laser triangulation measurement system for on line measurement of large hot workpieces in precision open die forging,” Int. J. Adv. Manuf. Technol. 90(1-4), 917–926 (2017).
[Crossref]

Brzozowski, L.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Buonassisi, T.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Bush, K. A.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Cao, F.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
[Crossref]

Carey, G. H.

G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal Quantum Dot Solar Cells,” Chem. Rev. 115(23), 12732–12763 (2015).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

Cha, J. N.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

Champion, T. F. M.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Chan, C. T.

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B Condens. Matter Mater. Phys. 64(11), 113108 (2001).
[Crossref]

Cheacharoen, R.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Chen, G.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
[Crossref]

Chen, H. J.

B. J. Huang, P. E. Yang, Y. P. Lin, B. Y. Lin, H. J. Chen, R. C. Lai, and J. S. Cheng, “Solar cell junction temperature measurement of PV module,” Sol. Energy 85(2), 388–392 (2011).
[Crossref]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Cheng, J. S.

B. J. Huang, P. E. Yang, Y. P. Lin, B. Y. Lin, H. J. Chen, R. C. Lai, and J. S. Cheng, “Solar cell junction temperature measurement of PV module,” Sol. Energy 85(2), 388–392 (2011).
[Crossref]

Cheng, Y.

Cheung, C. L.

C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
[Crossref]

Choi, Y.-S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Chou, K. W.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

Chutinan, A.

A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express 17(11), 8871–8878 (2009).
[Crossref] [PubMed]

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[Crossref]

Clifford, J.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Comin, R.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Cui, Y.

K. Xingze Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy Environ. Sci. 7(8), 2725–2738 (2014).
[Crossref]

Debnath, R.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Dreiser, J.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Driggers, R. G.

J. A. Ratches, R. H. Vollmerhausen, and R. G. Driggers, “Target acquisition performance modeling of infrared imaging systems: past, present, and future,” IEEE Sens. J. 1(1), 31–40 (2001).
[Crossref]

Dufresne, E. R.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Dunlop, E. D.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovolt. Res. Appl. 26(1), 3–12 (2018).
[Crossref]

Dworkin, S. B.

S. B. Dworkin and T. J. Nye, “Image processing for machine vision measurement of hot formed parts,” J. Mater. Process. Technol. 174(1-3), 1–6 (2006).
[Crossref]

England, D. G.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Fan, S.

K. Xingze Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy Environ. Sci. 7(8), 2725–2738 (2014).
[Crossref]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 65(23), 235112 (2002).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Fischer, A.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Galusha, J. W.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

Gardner, J. S.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

Gawarikar, A. S.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Genzel, L.

Goldenstein, C. S.

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Pror. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

Gong, X.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Green, M. A.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovolt. Res. Appl. 26(1), 3–12 (2018).
[Crossref]

Ha, J.

H. Kim, H.-S. Kim, J. Ha, N.-G. Park, and S. Yoo, “Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality,” Adv. Energy Mater. 6(14), 1502466 (2016).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Hanson, R. K.

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Pror. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

Harwood, D.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Hennessy, K. J.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Hishikawa, Y.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovolt. Res. Appl. 26(1), 3–12 (2018).
[Crossref]

Ho-Baillie, A. W. Y.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovolt. Res. Appl. 26(1), 3–12 (2018).
[Crossref]

Hohl-Ebinger, J.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovolt. Res. Appl. 26(1), 3–12 (2018).
[Crossref]

Holman, Z. C.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Hoogland, S.

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3(1), 2928 (2013).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Howard, I.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Hoye, R. L. Z.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Hu, E.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Hu, E. L.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Huang, B. J.

B. J. Huang, P. E. Yang, Y. P. Lin, B. Y. Lin, H. J. Chen, R. C. Lai, and J. S. Cheng, “Solar cell junction temperature measurement of PV module,” Sol. Energy 85(2), 388–392 (2011).
[Crossref]

Imamoglu, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Ip, A. H.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Jeffries, J. B.

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Pror. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

Jin, X.-M.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Joannopoulos, J. D.

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[Crossref] [PubMed]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 65(23), 235112 (2002).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

John, S.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[Crossref]

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kadiš, M.

D. Bračun, G. Škulj, and M. Kadiš, “Spectral selective and difference imaging laser triangulation measurement system for on line measurement of large hot workpieces in precision open die forging,” Int. J. Adv. Manuf. Technol. 90(1-4), 917–926 (2017).
[Crossref]

Kemp, K. W.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

Kherani, N. P.

Kim, H.

H. Kim, H.-S. Kim, J. Ha, N.-G. Park, and S. Yoo, “Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality,” Adv. Energy Mater. 6(14), 1502466 (2016).
[Crossref]

Kim, H.-S.

H. Kim, H.-S. Kim, J. Ha, N.-G. Park, and S. Yoo, “Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality,” Adv. Energy Mater. 6(14), 1502466 (2016).
[Crossref]

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kim, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kimerling, L. C.

Klem, E.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Knight, J. C.

Ko, D.-H.

Koleilat, G. I.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Kolthammer, W. S.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Konstantatos, G.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Kramer, I. J.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Kuramochi, E.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Labelle, A. J.

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3(1), 2928 (2013).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

Lai, R. C.

B. J. Huang, P. E. Yang, Y. P. Lin, B. Y. Lin, H. J. Chen, R. C. Lai, and J. S. Cheng, “Solar cell junction temperature measurement of PV module,” Sol. Energy 85(2), 388–392 (2011).
[Crossref]

Lan, X.

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3(1), 2928 (2013).
[Crossref] [PubMed]

Lee, Y.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Leijtens, T.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Levi, D. H.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovolt. Res. Appl. 26(1), 3–12 (2018).
[Crossref]

Levina, L.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Li, L.

Lin, B. Y.

B. J. Huang, P. E. Yang, Y. P. Lin, B. Y. Lin, H. J. Chen, R. C. Lai, and J. S. Cheng, “Solar cell junction temperature measurement of PV module,” Sol. Energy 85(2), 388–392 (2011).
[Crossref]

Lin, Y.

Lin, Y. P.

B. J. Huang, P. E. Yang, Y. P. Lin, B. Y. Lin, H. J. Chen, R. C. Lai, and J. S. Cheng, “Solar cell junction temperature measurement of PV module,” Sol. Energy 85(2), 388–392 (2011).
[Crossref]

Liu, H.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Liu, V.

K. Xingze Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy Environ. Sci. 7(8), 2725–2738 (2014).
[Crossref]

Lopez, R.

Luo, C.

Ma, W.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Mailoa, J. P.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Makki, A.

A. Makki, S. Omer, and H. Sabir, “Advancements in hybrid photovoltaic systems for enhanced solar cells performance,” Renew. Sustain. Energy Rev. 41, 658–684 (2015).
[Crossref]

Matsuo, S.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

McEnaney, K.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
[Crossref]

McGehee, M. D.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

McMeekin, D. P.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Michelberger, P. S.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Ming, N.

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B Condens. Matter Mater. Phys. 64(11), 113108 (2001).
[Crossref]

Minichetti, M. C.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Mishra, A.

A. Mishra and P. Bäuerle, “Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology,” Angew. Chem. Int. Ed. Engl. 51(9), 2020–2067 (2012).
[Crossref] [PubMed]

Mochrie, S. G. J.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Moghadam, F.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Narayanan, S.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Nikolic, R. J.

C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
[Crossref]

Ning, Z.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal Quantum Dot Solar Cells,” Chem. Rev. 115(23), 12732–12763 (2015).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

Noh, H.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Notomi, M.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Nozaki, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Nunn, J.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Nye, T. J.

S. B. Dworkin and T. J. Nye, “Image processing for machine vision measurement of hot formed parts,” J. Mater. Process. Technol. 174(1-3), 1–6 (2006).
[Crossref]

Nyirjesy, G.

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Omer, S.

A. Makki, S. Omer, and H. Sabir, “Advancements in hybrid photovoltaic systems for enhanced solar cells performance,” Renew. Sustain. Energy Rev. 41, 658–684 (2015).
[Crossref]

Osuji, C. O.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Palmquist, N.

Palmstrom, A. F.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Park, H.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Park, N.-G.

H. Kim, H.-S. Kim, J. Ha, N.-G. Park, and S. Yoo, “Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality,” Adv. Energy Mater. 6(14), 1502466 (2016).
[Crossref]

Parker, A. R.

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[Crossref] [PubMed]

Peters, I. M.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Prasanna, R.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Price, L.

R. B. Withrow and L. Price, “Filters for the Isolation of Narrow Regions in the Visible and Near-Visible Spectrum,” Plant Physiol. 28(1), 105–114 (1953).
[Crossref] [PubMed]

Prum, R. O.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Qian, G.

Qiu, B.

Radziemska, E.

E. Radziemska, “The effect of temperature on the power drop in crystalline silicon solar cells,” Renew. Energy 28(1), 1–12 (2003).
[Crossref]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Raman, A.

K. Xingze Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy Environ. Sci. 7(8), 2725–2738 (2014).
[Crossref]

Ratches, J. A.

J. A. Ratches, R. H. Vollmerhausen, and R. G. Driggers, “Target acquisition performance modeling of infrared imaging systems: past, present, and future,” IEEE Sens. J. 1(1), 31–40 (2001).
[Crossref]

Reinhard, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Reinhardt, C. E.

C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
[Crossref]

Ren, Z.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
[Crossref]

Renk, K. F.

Richey, L. R.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

Rollny, L. R.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

Rolston, N.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Russell, P. S. J.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[Crossref]

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[Crossref] [PubMed]

Sabir, H.

A. Makki, S. Omer, and H. Sabir, “Advancements in hybrid photovoltaic systems for enhanced solar cells performance,” Renew. Sustain. Energy Rev. 41, 658–684 (2015).
[Crossref]

Samulski, E. T.

Sandy, A.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Saranathan, V.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Sargent, E. H.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal Quantum Dot Solar Cells,” Chem. Rev. 115(23), 12732–12763 (2015).
[Crossref] [PubMed]

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3(1), 2928 (2013).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

E. H. Sargent, “Infrared photovoltaics made by solution processing,” Nat. Photonics 3(6), 325–331 (2009).
[Crossref]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Sato, T.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Shea, R. P.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Sheng, P.

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B Condens. Matter Mater. Phys. 64(11), 113108 (2001).
[Crossref]

Shinya, A.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Sievers, A. J.

Škulj, G.

D. Bračun, G. Škulj, and M. Kadiš, “Spectral selective and difference imaging laser triangulation measurement system for on line measurement of large hot workpieces in precision open die forging,” Int. J. Adv. Manuf. Technol. 90(1-4), 917–926 (2017).
[Crossref]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Snaith, H. J.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Sofia, S.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Spearrin, R. M.

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Pror. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

Sprague, M. R.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Suh, W.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

Sumikura, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Takeda, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Talghader, J. J.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Tang, J.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Taniyama, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Thon, S. M.

E. S. Arinze, B. Qiu, N. Palmquist, Y. Cheng, Y. Lin, G. Nyirjesy, G. Qian, and S. M. Thon, “Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference,” Opt. Express 25(4), A101–A112 (2017).
[Crossref] [PubMed]

G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal Quantum Dot Solar Cells,” Chem. Rev. 115(23), 12732–12763 (2015).
[Crossref] [PubMed]

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3(1), 2928 (2013).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

Townley, H. E.

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[Crossref] [PubMed]

Trotter, D. M.

Tumbleston, J. R.

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Vollmerhausen, R. H.

J. A. Ratches, R. H. Vollmerhausen, and R. G. Driggers, “Target acquisition performance modeling of infrared imaging systems: past, present, and future,” IEEE Sens. J. 1(1), 31–40 (2001).
[Crossref]

Volz, T.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Vos, A. D.

A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

Voznyy, O.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

Walmsley, I. A.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Walters, G.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Wang, H.

Wang, L.

Wang, T. F.

C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
[Crossref]

Wang, X.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Wang, Z.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B Condens. Matter Mater. Phys. 64(11), 113108 (2001).
[Crossref]

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Winger, M.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Withrow, R. B.

R. B. Withrow and L. Price, “Filters for the Isolation of Narrow Regions in the Visible and Near-Visible Spectrum,” Plant Physiol. 28(1), 105–114 (1953).
[Crossref] [PubMed]

Xingze Wang, K.

K. Xingze Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy Environ. Sci. 7(8), 2725–2738 (2014).
[Crossref]

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Yang, P. E.

B. J. Huang, P. E. Yang, Y. P. Lin, B. Y. Lin, H. J. Chen, R. C. Lai, and J. S. Cheng, “Solar cell junction temperature measurement of PV module,” Sol. Energy 85(2), 388–392 (2011).
[Crossref]

Yang, Z.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Yoo, S.

H. Kim, H.-S. Kim, J. Ha, N.-G. Park, and S. Yoo, “Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality,” Adv. Energy Mater. 6(14), 1502466 (2016).
[Crossref]

Yu, Z.

K. Xingze Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy Environ. Sci. 7(8), 2725–2738 (2014).
[Crossref]

Yu, Z. J.

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Zeng, L.

Zhang, W.

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B Condens. Matter Mater. Phys. 64(11), 113108 (2001).
[Crossref]

Zhitomirsky, D.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

Zukotynski, S.

Adv. Energy Mater. (1)

H. Kim, H.-S. Kim, J. Ha, N.-G. Park, and S. Yoo, “Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality,” Adv. Energy Mater. 6(14), 1502466 (2016).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

A. Mishra and P. Bäuerle, “Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology,” Angew. Chem. Int. Ed. Engl. 51(9), 2020–2067 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

Chem. Rev. (1)

G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal Quantum Dot Solar Cells,” Chem. Rev. 115(23), 12732–12763 (2015).
[Crossref] [PubMed]

Energy Environ. Sci. (2)

K. Xingze Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy Environ. Sci. 7(8), 2725–2738 (2014).
[Crossref]

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

IEEE Sens. J. (1)

J. A. Ratches, R. H. Vollmerhausen, and R. G. Driggers, “Target acquisition performance modeling of infrared imaging systems: past, present, and future,” IEEE Sens. J. 1(1), 31–40 (2001).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

D. Bračun, G. Škulj, and M. Kadiš, “Spectral selective and difference imaging laser triangulation measurement system for on line measurement of large hot workpieces in precision open die forging,” Int. J. Adv. Manuf. Technol. 90(1-4), 917–926 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Process. Technol. (1)

S. B. Dworkin and T. J. Nye, “Image processing for machine vision measurement of hot formed parts,” J. Mater. Process. Technol. 174(1-3), 1–6 (2006).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Phys. Appl. Phys. (1)

A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

Light Sci. Appl. (1)

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Nanotechnology (1)

C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
[Crossref]

Nat. Energy (1)

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, “23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability,” Nat. Energy 2(4), 17009 (2017).
[Crossref]

Nat. Nanotechnol. (2)

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7(9), 577–582 (2012).
[Crossref] [PubMed]

Nat. Photonics (6)

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

E. H. Sargent, “Infrared photovoltaics made by solution processing,” Nat. Photonics 3(6), 325–331 (2009).
[Crossref]

Nature (3)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Opt. Express (5)

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B Condens. Matter Mater. Phys. 64(11), 113108 (2001).
[Crossref]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 65(23), 235112 (2002).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Plant Physiol. (1)

R. B. Withrow and L. Price, “Filters for the Isolation of Narrow Regions in the Visible and Near-Visible Spectrum,” Plant Physiol. 28(1), 105–114 (1953).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovolt. Res. Appl. 26(1), 3–12 (2018).
[Crossref]

Pror. Energy Combust. Sci. (1)

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Pror. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

Renew. Energy (1)

E. Radziemska, “The effect of temperature on the power drop in crystalline silicon solar cells,” Renew. Energy 28(1), 1–12 (2003).
[Crossref]

Renew. Sustain. Energy Rev. (1)

A. Makki, S. Omer, and H. Sabir, “Advancements in hybrid photovoltaic systems for enhanced solar cells performance,” Renew. Sustain. Energy Rev. 41, 658–684 (2015).
[Crossref]

Sci. Rep. (1)

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3(1), 2928 (2013).
[Crossref] [PubMed]

Science (2)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Sol. Energy (1)

B. J. Huang, P. E. Yang, Y. P. Lin, B. Y. Lin, H. J. Chen, R. C. Lai, and J. S. Cheng, “Solar cell junction temperature measurement of PV module,” Sol. Energy 85(2), 388–392 (2011).
[Crossref]

Other (6)

H. Hara, N. Kishi, M. Noro, H. Iwaoka, and K. Suzuki, “Fabry-Perot filter, wavelength-selective infrared detector and infrared gas analyzer using the filter and detector,” United States patent US6590710B2 (July 8, 2003).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light - Second Edition (Princeton University, 2011).

V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer Science & Business Media, 2005).

I. A. Sukhoivanov and I. V. Guryev, Photonic Crystals: Physics and Practical Modeling Springer Series in Optical Sciences (Springer-Verlag, 2009).

E. D. Palik, “- Gallium Arsenide (GaAs),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1997), pp. 429–443.

H. A. Haus, Waves and Fields In Optoelectronics (Prentice Hall, Englewood Cliffs, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of a generic 2D slab photonic crystal illustrating the spectral tuning concept (left). The “in-plane” photonic band structure is used to generate spectrally-selective reflectivity, transmissivity and absorption for target optoelectronic applications. Broadband light (white in color) is incident on the slab, with specific frequency components strongly coupled to the resonance modes of the slab (yellow), resulting in spectrally-selective transmission (blue) and reflection (red). A hypothetical photonic band diagram for the generic slab structure (photonic bands are shown in yellow; the light line is shown in blue in the center panel) and “out-of-plane” transmittance (blue) and reflectance (red) spectra at normal incidence are sketched on the right side of the Fig. 1. The green stripes show direct correlations (coupling) between the sharp resonance features in the transmittance and reflectance spectra and the photonic band states at the γ-point. A Brillouin Zone diagram for the hypothetical structure is shown above the photonic band diagram sketch.
Fig. 2
Fig. 2 (a) FDTD-calculated photonic band diagrams for the structure shown in (c) with media loss (absorption) varying from ϵ I =0 to ϵ I =3.61 and constant ϵ R = 13, with corresponding imaginary part of the refractive index also indicated. The light lines are plotted in blue. The color scale is in arbitrary logarithmic units corresponding to the field intensity. (b) FDTD-calculated photonic band diagram for the same structure for a GaAs slab medium (the dielectric constant includes dispersion in this case). (c) Quality factor for 5 selected modes, indicated by the blue markings at the γ point in the top left panel of (a), as a function of loss in the material. Inset: model of the simulated structure, a triangular lattice of air holes in a semiconductor slab with 120 nm diameter, 250 nm lattice constant, and 125 nm slab thickness.
Fig. 3
Fig. 3 FMM-calculated transmission (solid lines) and reflection (dashed lines) spectra (bottom) for a triangular lattice slab photonic crystal with r = 0.24a, t = 0.5a and ϵ=13 (blue and yellow spectra) and ϵ=13+0.3i (red and purple spectra). The incident field is perpendicular to the slab structure. The corresponding FDTD-calculated band structure for the ϵ=13 case is shown in the top panel (light line plotted in white). The resonance regions are highlighted and associated with the modes at the γ point in the band structure.
Fig. 4
Fig. 4 (a) FDTD-calculated transmittance for a control CQD film and a PC-CQD film. The inset is the PC-CQD structure: a triangular lattice monolayer of polystyrene beads infiltrated with PbS CQDs. The control CQD film is 200 nm thick on average, and the PC-CQD film consists of 250 nm diameter beads in a triangular array with a lattice constant of 250 nm; the space around the beads is filled with CQDs to form a 250 nm thick film on average. The spectra are averaged over several thicknesses to simulate roughness. The PC-CQD film shows a slight enhancement in visible transparency compared to the control CQD film. (b) UV-Vis-NIR spectrophotometric transmittance spectra of the PC-CQD film and the control CQD film, showing qualitative agreement with the FDTD calculations. Absolute difference in transmittance can be attributed to large-area non-uniformities in the films. Inset: Top-view SEM image of the PC-CQD structure consisting of mildly-etched self-assembled polystyrene beads infiltrated with PbS CQDs. (c) FDTD-calculated cross-section of the spatial electric field profile at the transmittance peak (d) valley. (e) Top-view SEM image of the etched bead array before CQD infiltration. The inset is a photo of the 1 inch x 1 inch bead array on a glass substrate before CQD infiltration. Large-scale order can be inferred from the strong iridescence of the structure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a i = gs i(ω ω 0 )+ Γ rad,i + Γ abs,i .
P abs Γ abs | a i | 2 = Γ abs | g | 2 | s | 2 (ω ω 0 ) 2 + ( Γ rad,i + Γ abs,i ) 2 .

Metrics