Abstract

We propose a new programmable integrated photonic device, the Field Programmable Photonic Array, which follows a similar rationale as that of Field Programmable Gate Arrays and Field Programmable Analog Arrays in electronics. This high-level concept, basic photonic building blocks, design principles, and technology and physical implementation are discussed. Experimental evidence of its feasibility is also provided.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Development of a multitechnology field-programmable gate array suitable for photonic information processing

Prosenjit Mal, Jason F. Cantin, and Fred R. Beyette
Appl. Opt. 44(22) 4753-4760 (2005)

Programmable photonic signal processor chip for radiofrequency applications

Leimeng Zhuang, Chris G. H. Roeloffzen, Marcel Hoekman, Klaus-J. Boller, and Arthur J. Lowery
Optica 2(10) 854-859 (2015)

Scalable analysis for arbitrary photonic integrated waveguide meshes

Daniel Pérez and Jose Capmany
Optica 6(1) 19-27 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice mesh designs for programmable photonic processors,” Opt. Express 24(11), 12093–12106 (2016).
    [Crossref] [PubMed]
  2. L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2(10), 854–859 (2015).
    [Crossref]
  3. D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nature Comm.  8(636), 1–9 (2017).
  4. J. Capmany, I. Gasulla, and D. Perez, “The programmable processor,” Nat. Photonics 10(1), 6–8 (2016).
    [Crossref]
  5. D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
    [Crossref]
  6. D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res. 1(1), 1–15 (2013).
    [Crossref]
  7. D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express 21(5), 6360–6370 (2013).
    [Crossref] [PubMed]
  8. O. Graydon, “Birth of the programmable optical chip,” Nat. Photonics 10(1), 1 (2016).
  9. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
    [Crossref] [PubMed]
  10. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walsmley, “Optimal design for universal multiport interferometers,” Optica 3(12), 1460–1465 (2016).
    [Crossref]
  11. S. D. Brown, R. J. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays (Kluwer, 1992).
  12. S. Trimberger, Field-programmable Gate Array Technology (Springer, 1994).
  13. K. Lee and P. Gulak, “Field programmable analogue array based on MOSFET transconductor,” Electron. Lett. 28(1), 28–29 (1992).
    [Crossref]
  14. K. Lee and P. Gulak, “A transconductor-based field-programmable analog array,” in Proceedings of IEEE Int. Solid-Sate Conf., ed. (IEEE, 1995), pp. 198–199.
  15. T. S. Hall, C. M. Twigg, P. Hasler, and D. V. Anderson, “Developing large-scale field-programmable analog arrays for rapid prototyping,” in Proceedings of 18th International Parallel and Distributed Processing Symposium, ed. (IEEE, 1995), p. 142.
  16. T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, “Large-Scale Field-Programmable Analog Arrays for Analog Signal Processing,” IEEE Trans. Circuits Syst. I 52(11), 2298–2307 (2005).
    [Crossref]
  17. D. Pérez-López, E. Sánchez, and J. Capmany, “Programmable True Time Delay Lines Using Integrated Waveguide Meshes,” J. Lightwave Technol. 36(19), 4591–4601 (2018).
    [Crossref]
  18. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
    [Crossref]
  19. W. Bogaerts and L. Chrostowski, “Silicon Photonics Circuit Design: Methods, Tools and Challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
    [Crossref]
  20. L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).
  21. Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
    [Crossref]
  22. N. Harris, et al, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
  23. J. K. S. Poon and W. D. Sacher, “Multilayer silicon nitride-on-silicon photonic platforms for three-dimensional integrated photonic devices and circuits,” presented at 75th Annual Device Research Conference (DRC), South Bend, IN, 1–2 2017.

2018 (3)

D. Pérez-López, E. Sánchez, and J. Capmany, “Programmable True Time Delay Lines Using Integrated Waveguide Meshes,” J. Lightwave Technol. 36(19), 4591–4601 (2018).
[Crossref]

W. Bogaerts and L. Chrostowski, “Silicon Photonics Circuit Design: Methods, Tools and Challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

2017 (2)

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nature Comm.  8(636), 1–9 (2017).

D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
[Crossref]

2016 (6)

O. Graydon, “Birth of the programmable optical chip,” Nat. Photonics 10(1), 1 (2016).

J. Capmany, I. Gasulla, and D. Perez, “The programmable processor,” Nat. Photonics 10(1), 6–8 (2016).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice mesh designs for programmable photonic processors,” Opt. Express 24(11), 12093–12106 (2016).
[Crossref] [PubMed]

N. Harris, et al, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walsmley, “Optimal design for universal multiport interferometers,” Optica 3(12), 1460–1465 (2016).
[Crossref]

2015 (1)

2013 (2)

2011 (1)

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

2005 (1)

T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, “Large-Scale Field-Programmable Analog Arrays for Analog Signal Processing,” IEEE Trans. Circuits Syst. I 52(11), 2298–2307 (2005).
[Crossref]

1994 (1)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
[Crossref] [PubMed]

1992 (1)

K. Lee and P. Gulak, “Field programmable analogue array based on MOSFET transconductor,” Electron. Lett. 28(1), 28–29 (1992).
[Crossref]

Ambrosius, H.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Anderson, D. V.

T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, “Large-Scale Field-Programmable Analog Arrays for Analog Signal Processing,” IEEE Trans. Circuits Syst. I 52(11), 2298–2307 (2005).
[Crossref]

T. S. Hall, C. M. Twigg, P. Hasler, and D. V. Anderson, “Developing large-scale field-programmable analog arrays for rapid prototyping,” in Proceedings of 18th International Parallel and Distributed Processing Symposium, ed. (IEEE, 1995), p. 142.

Augustin, L. M.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Bakker, A.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Bernstein, H. J.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
[Crossref] [PubMed]

Bertani, P.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
[Crossref] [PubMed]

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Bogaerts, W.

W. Bogaerts and L. Chrostowski, “Silicon Photonics Circuit Design: Methods, Tools and Challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

Bolk, J.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Boller, K.-J.

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Cai, H.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Cao, W.

D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nature Comm.  8(636), 1–9 (2017).

Capmany, J.

D. Pérez-López, E. Sánchez, and J. Capmany, “Programmable True Time Delay Lines Using Integrated Waveguide Meshes,” J. Lightwave Technol. 36(19), 4591–4601 (2018).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nature Comm.  8(636), 1–9 (2017).

D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
[Crossref]

J. Capmany, I. Gasulla, and D. Perez, “The programmable processor,” Nat. Photonics 10(1), 6–8 (2016).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice mesh designs for programmable photonic processors,” Opt. Express 24(11), 12093–12106 (2016).
[Crossref] [PubMed]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Chrostowski, L.

W. Bogaerts and L. Chrostowski, “Silicon Photonics Circuit Design: Methods, Tools and Challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

Clements, W. R.

Crudgington, L.

D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nature Comm.  8(636), 1–9 (2017).

den Haan, E.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Fang, Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Fédéli, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Fraile, F. J.

D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
[Crossref]

Gasulla, I.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nature Comm.  8(636), 1–9 (2017).

D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
[Crossref]

J. Capmany, I. Gasulla, and D. Perez, “The programmable processor,” Nat. Photonics 10(1), 6–8 (2016).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice mesh designs for programmable photonic processors,” Opt. Express 24(11), 12093–12106 (2016).
[Crossref] [PubMed]

Gray, J. D.

T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, “Large-Scale Field-Programmable Analog Arrays for Analog Signal Processing,” IEEE Trans. Circuits Syst. I 52(11), 2298–2307 (2005).
[Crossref]

Graydon, O.

O. Graydon, “Birth of the programmable optical chip,” Nat. Photonics 10(1), 1 (2016).

Gulak, P.

K. Lee and P. Gulak, “Field programmable analogue array based on MOSFET transconductor,” Electron. Lett. 28(1), 28–29 (1992).
[Crossref]

K. Lee and P. Gulak, “A transconductor-based field-programmable analog array,” in Proceedings of IEEE Int. Solid-Sate Conf., ed. (IEEE, 1995), pp. 198–199.

Hall, T. S.

T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, “Large-Scale Field-Programmable Analog Arrays for Analog Signal Processing,” IEEE Trans. Circuits Syst. I 52(11), 2298–2307 (2005).
[Crossref]

T. S. Hall, C. M. Twigg, P. Hasler, and D. V. Anderson, “Developing large-scale field-programmable analog arrays for rapid prototyping,” in Proceedings of 18th International Parallel and Distributed Processing Symposium, ed. (IEEE, 1995), p. 142.

Harris, N.

N. Harris, et al, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).

Hartmann, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Hasler, P.

T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, “Large-Scale Field-Programmable Analog Arrays for Analog Signal Processing,” IEEE Trans. Circuits Syst. I 52(11), 2298–2307 (2005).
[Crossref]

T. S. Hall, C. M. Twigg, P. Hasler, and D. V. Anderson, “Developing large-scale field-programmable analog arrays for rapid prototyping,” in Proceedings of 18th International Parallel and Distributed Processing Symposium, ed. (IEEE, 1995), p. 142.

Hoekman, M.

Humphreys, P. C.

Khokhar, A. Z.

D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nature Comm.  8(636), 1–9 (2017).

Klejin, S.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Kolthammer, W. S.

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Korthorst, T.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Kwong, D.-L.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Latkowski, S.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Lee, K.

K. Lee and P. Gulak, “Field programmable analogue array based on MOSFET transconductor,” Electron. Lett. 28(1), 28–29 (1992).
[Crossref]

K. Lee and P. Gulak, “A transconductor-based field-programmable analog array,” in Proceedings of IEEE Int. Solid-Sate Conf., ed. (IEEE, 1995), pp. 198–199.

Li, K.

D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nature Comm.  8(636), 1–9 (2017).

Liow, T.-Y.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Lo, G. Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Lowery, A. J.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Mashanovich, G. Z.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nature Comm.  8(636), 1–9 (2017).

D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Metcalf, B. J.

Miller, D. A. B.

Mingaleev, S.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Perez, D.

D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
[Crossref]

J. Capmany, I. Gasulla, and D. Perez, “The programmable processor,” Nat. Photonics 10(1), 6–8 (2016).
[Crossref]

Pérez, D.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nature Comm.  8(636), 1–9 (2017).

D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice mesh designs for programmable photonic processors,” Opt. Express 24(11), 12093–12106 (2016).
[Crossref] [PubMed]

Pérez-López, D.

Reck, M.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
[Crossref] [PubMed]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Richter, A.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Roeloffzen, C. G. H.

Sánchez, E.

Santos, R.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Song, J. F.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Soref, R. A.

Thijs, P. J. A.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Thomson, D. J.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nature Comm.  8(636), 1–9 (2017).

D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
[Crossref]

Twigg, C. M.

T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, “Large-Scale Field-Programmable Analog Arrays for Analog Signal Processing,” IEEE Trans. Circuits Syst. I 52(11), 2298–2307 (2005).
[Crossref]

T. S. Hall, C. M. Twigg, P. Hasler, and D. V. Anderson, “Developing large-scale field-programmable analog arrays for rapid prototyping,” in Proceedings of 18th International Parallel and Distributed Processing Symposium, ed. (IEEE, 1995), p. 142.

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Walsmley, I. A.

Xu, D. X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Yao, W.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Yu, M. B.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Zeilinger, A.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
[Crossref] [PubMed]

Zhao, D.

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

Zhuang, L.

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Electron. Lett. (1)

K. Lee and P. Gulak, “Field programmable analogue array based on MOSFET transconductor,” Electron. Lett. 28(1), 28–29 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. M. Augustin, R. Santos, E. den Haan, S. Klejin, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–10 (2018).

IEEE Photonics Technol. Lett. (1)

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

IEEE Trans. Circuits Syst. I (1)

T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, “Large-Scale Field-Programmable Analog Arrays for Analog Signal Processing,” IEEE Trans. Circuits Syst. I 52(11), 2298–2307 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Laser Photonics Rev. (2)

W. Bogaerts and L. Chrostowski, “Silicon Photonics Circuit Design: Methods, Tools and Challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon Photonics Rectangular Universal Interferometer,” Laser Photonics Rev. 11(6), 1700219 (2017).
[Crossref]

Nanophotonics (1)

N. Harris, et al, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).

Nat. Photonics (2)

O. Graydon, “Birth of the programmable optical chip,” Nat. Photonics 10(1), 1 (2016).

J. Capmany, I. Gasulla, and D. Perez, “The programmable processor,” Nat. Photonics 10(1), 6–8 (2016).
[Crossref]

Nature Comm (1)

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nature Comm.  8(636), 1–9 (2017).

Opt. Express (2)

Optica (2)

Photon. Res. (1)

Phys. Rev. Lett. (1)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
[Crossref] [PubMed]

Other (5)

S. D. Brown, R. J. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays (Kluwer, 1992).

S. Trimberger, Field-programmable Gate Array Technology (Springer, 1994).

K. Lee and P. Gulak, “A transconductor-based field-programmable analog array,” in Proceedings of IEEE Int. Solid-Sate Conf., ed. (IEEE, 1995), pp. 198–199.

T. S. Hall, C. M. Twigg, P. Hasler, and D. V. Anderson, “Developing large-scale field-programmable analog arrays for rapid prototyping,” in Proceedings of 18th International Parallel and Distributed Processing Symposium, ed. (IEEE, 1995), p. 142.

J. K. S. Poon and W. D. Sacher, “Multilayer silicon nitride-on-silicon photonic platforms for three-dimensional integrated photonic devices and circuits,” presented at 75th Annual Device Research Conference (DRC), South Bend, IN, 1–2 2017.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Schematic diagram example of the proposed FPPA device. The zoom shows a detail of the Programmable Photonic Analog Block as it pertains to the left-up to right-bottom direction of propagation.
Fig. 2
Fig. 2 Four types of 2x2 PPAB units considered and their internal signal coupling layouts shown in broken lines.
Fig. 3
Fig. 3 Type A PPAB unit including the internal and external optical fields at its ports for the two directions of signal propagation.
Fig. 4
Fig. 4 Different functionality programming, resulting transmission matrices and associated code colors for a Type A PPAB.
Fig. 5
Fig. 5 Combined operation of a PPAB and an RPI for operation as a phase shifter.
Fig. 6
Fig. 6 (a) and (b) Layouts of class ABAB FPPAs. (c) Layout of a class ABCC FPPA. (d) Layout of a class ABDD FPPA.
Fig. 7
Fig. 7 (Left): main steps involved in the design flow of a FPPA device. (Right): FPPA soft and hard tiers and expanded layout including peripheral high-performance blocks.
Fig. 8
Fig. 8 Simultaneous implementation of a Ring cavity (green shaded area) a Mach-Zehnder Interferometer (orange shaded region) and a 3x3 multiple port interferometer (blue shaded region) using an ABAB FPPA. TC: Tunable Coupler.
Fig. 9
Fig. 9 Simultaneous implementation of a Ring cavity (green shaded area), a Mach-Zehnder Interferometer (orange shaded region) and a 3x3 multiple port interferometer (blue shaded region) using an ABCC FPPA. TC: Tunable Coupler.
Fig. 10
Fig. 10 Simultaneous implementation of a Ring cavity (green shaded area), a Mach-Zehnder Interferometer (orange shaded region) and a 3x3 multiple port interferometer (blue shaded region) using an ABDD FPPA. TC: Tunable Coupler.
Fig. 11
Fig. 11 Technology options for the implementation of the PPBA elements (upper), FPPA layouts (intermediate) and other FPPA possible configurations (lower).
Fig. 12
Fig. 12 Identification between the fundamental unit blocks employed to construct integrated waveguide meshes and the main RPI + PPAB blocks studied in this chapter. (a) Square waveguide mesh and ABAB block (b), (c) Hexagonal trilattices and the ABCC block. (d) Triangular waveguide mesh and the ABDD block.
Fig. 13
Fig. 13 (a) Layout of the ABCC class FPPA implemented by means of a 7-cell hexagonal waveguide mesh displayed in (b). Silicon (c) and Silicon Nitride (d) chips implementing the 7-cell hexagonal waveguide mesh.
Fig. 14
Fig. 14 Programming (a), equivalent circuit (b), as well as measured modulus (c) and phase (d) of the transfer function for an unbalanced (by 4x975 μm) Mach-Zehnder interferometer. The different curves in (c) and (d) correspond to different values of K1 and K2.
Fig. 15
Fig. 15 Programming (a), equivalent circuit (b) and measured modulus of the reflected (c) and transmitted (d) transfer functions for a double coupler ring resonator (cavity length = 6x975 μm). The different curves in (c) and (d) correspond to different values of K1 and K2.
Fig. 16
Fig. 16 Programming (a), equivalent circuits (b) and measured bar chart (@1580 nm) and modulus of the transfer functions of a (c) 2x2 MIMO interferometer implementing a Hadamard gate and (d) a 3x3 MIMO interferometer implementing a tritter operation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( b 3 b 4 )=j e j Δ PPAB ( sinθ cosθ cosθ sinθ )( b 1 b 2 ),
( b 1 b 2 )=j e j Δ PPAB ( sinθ cosθ cosθ sinθ )( b 3 b 4 ).
( b 1 b 2 )=( e j( ϕ+ Δ RPI ) 0 0 e j Δ RPI )( a 1 a 2 )= e j Δ RPI ( e jϕ 0 0 1 )( a 1 a 2 ).
( b 3 b 4 )=j e j( Δ PPAB + Δ RPI ) ( sinθ cosθ cosθ sinθ )( e jϕ 0 0 1 )( a 1 a 2 )= =j e jΔ ( e jϕ sinθ cosθ e jϕ cosθ sinθ )( a 1 a 2 ),
( a 3 a 4 )=j e j( Δ PPAB + Δ RPI ) ( e jϕ 0 0 1 )( sinθ cosθ cosθ sinθ )( b 1 b 2 )= =j e jΔ ( e jϕ sinθ e jϕ cosθ cosθ sinθ )( b 1 b 2 ).
U Hadamard = 1 2 ( 1 1 1 1 ), U Tritter = 1 3 ( 1 1 1 1 e i 2π 3 e i 4π 3 1 e i 4π 3 e i 8π 3 ).

Metrics