Abstract

We propose an enhanced quantitative three-dimensional measurement system using wavelength-multiplexed digital holography. To simplify the configuration, a dual-peak quantum dot wavelength converter, combined with a blue LED, is adapted as a single low-coherence light source. Rather than a conventional dual-wavelength method, which records and reconstruct the object wave for each wavelength, the proposed system can capture the holograms of two wavelengths simultaneously with fewer acquisitions, simple setup, and low noise. To verify the system’s performance, the measurements of the step height sample are presented.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-wavelength digital holography with a single low-coherence light source

Sungbin Jeon, Janghyun Cho, Ji-nan Jin, No-Cheol Park, and Young-Pil Park
Opt. Express 24(16) 18408-18416 (2016)

Dual-wavelength off-axis digital holography using a single light-emitting diode

Janghyun Cho, Jinsang Lim, Sungbin Jeon, Guk-Jong Choi, Hyungbae Moon, No-Cheol Park, and Young-Pil Park
Opt. Express 26(2) 2123-2131 (2018)

Dual-wavelength digital holography with a low-coherence light source based on a quantum dot film

Jae-Yong Lee, Sungbin Jeon, Jin-Sang Lim, Se-Hwan Jang, No-Cheol Park, and Young-Joo Kim
Opt. Lett. 42(24) 5082-5085 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [Crossref] [PubMed]
  2. I. Yamaguchi, S. Ohta, and J. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001).
    [Crossref]
  3. M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital Holography, a metrological tool for quantitative analysis: Trends and future applications,” Opt. Lasers Eng. 104, 32–47 (2018).
    [Crossref]
  4. F. Yi, I. Moon, B. Javidi, D. Boss, and P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 26006 (2013).
    [Crossref] [PubMed]
  5. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
    [Crossref] [PubMed]
  6. C. Falldorf, M. Agour, and R. B. Bergmann, “Digital holography and quantitative phase contrast imaging using computational shear interferometry,” Opt. Eng. 54(2), 024110 (2015).
    [Crossref]
  7. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006).
    [Crossref] [PubMed]
  8. V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices,” Lab Chip 16(2), 326–333 (2016).
    [Crossref] [PubMed]
  9. T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84(5), 765–781 (1996).
    [Crossref]
  10. M. N. Akram, V. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35(3), 444–446 (2010).
    [Crossref] [PubMed]
  11. J. M. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Graph Cuts,” IEEE Trans. Image Process. 16(3), 698–709 (2007).
    [Crossref] [PubMed]
  12. H. Zhong, J. Tang, and S. Zhang, “Phase quality map based on local multi-unwrapped results for two-dimensional phase unwrapping,” Appl. Opt. 54(4), 739–745 (2015).
    [Crossref] [PubMed]
  13. X. Xie and G. Dai, “Unscented information filtering phase unwrapping algorithm for interferometric fringe patterns,” Appl. Opt. 56(34), 9423–9434 (2017).
    [Crossref] [PubMed]
  14. P. Bergström, D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holography: single-shot shape evaluation using speckle displacements and regularization,” Appl. Opt. 53(1), 123–131 (2014).
    [Crossref] [PubMed]
  15. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
    [Crossref] [PubMed]
  16. M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39(10), 2908–2911 (2014).
    [Crossref] [PubMed]
  17. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29(10), 1132–1134 (2004).
    [Crossref] [PubMed]
  18. B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R (2009).
    [Crossref]
  19. K. Choi, J. Yim, and S.-W. Min, “Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens,” Opt. Express 26(13), 16212–16225 (2018).
    [Crossref] [PubMed]
  20. P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
    [Crossref] [PubMed]
  21. J. Cho, J. Lim, S. Jeon, G.-J. Choi, H. Moon, N.-C. Park, and Y.-P. Park, “Dual-wavelength off-axis digital holography using a single light-emitting diode,” Opt. Express 26(2), 2123–2131 (2018).
    [Crossref] [PubMed]
  22. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
    [Crossref] [PubMed]
  23. D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45(3), 451–459 (2006).
    [Crossref] [PubMed]
  24. Y. Awatsuji, Y. Lee, Y. Ito, T. Tahara, P. Xia, K. Nishio, and O. Matoba, “Single-shot 3D measurement by multi-wavelength parallel phase-shifting digital holography,” in 2015 14th Workshop on Information Optics (WIO) (IEEE, 2015), pp. 1–3.
  25. S. Jeon, J. Cho, J. N. Jin, N.-C. Park, and Y.-P. Park, “Dual-wavelength digital holography with a single low-coherence light source,” Opt. Express 24(16), 18408–18416 (2016).
    [Crossref] [PubMed]
  26. J.-Y. Lee, S. Jeon, J.-S. Lim, S.-H. Jang, N.-C. Park, and Y.-J. Kim, “Dual-wavelength digital holography with a low-coherence light source based on a quantum dot film,” Opt. Lett. 42(24), 5082–5085 (2017).
    [Crossref] [PubMed]
  27. T. Tahara, R. Otani, K. Omae, T. Gotohda, Y. Arai, and Y. Takaki, “Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts,” Opt. Express 25(10), 11157–11172 (2017).
    [Crossref] [PubMed]
  28. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites,” Adv. Mater. 12(15), 1102–1105 (2000).
    [Crossref]
  29. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
    [Crossref]
  30. X. Wang, X. Yan, W. Li, and K. Sun, “Doped Quantum Dots for White-Light-Emitting Diodes Without Reabsorption of Multiphase Phosphors,” Adv. Mater. 24(20), 2742–2747 (2012).
    [Crossref] [PubMed]
  31. K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R.-J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiALON ceramic phosphor,” Opt. Lett. 29(17), 2001–2003 (2004).
    [Crossref] [PubMed]
  32. H.-G. Hong, M.-H. Shin, H.-J. Kim, J. Shin, and Y.-J. Kim, “High Luminescence White LEDs Prepared with 2D Island-Pattern of Quantum Dots Dispersed Photopolymer Films,” J. Nanomater. 2015, 1–7 (2015).
    [Crossref]
  33. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38(10), 1724–1726 (2013).
    [Crossref] [PubMed]
  34. T. Nguyen, V. Bui, V. Lam, C. B. Raub, L.-C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25(13), 15043–15057 (2017).
    [Crossref] [PubMed]
  35. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
    [Crossref] [PubMed]
  36. S. Durand and J. Froment, “Reconstruction of Wavelet Coefficients Using Total Variation Minimization,” SIAM J. Sci. Comput. 24(5), 1754–1767 (2003).
    [Crossref]
  37. T. Matsuura, S. Okagaki, Y. Oshikane, H. Inoue, M. Nakano, and T. Kataoka, “Numerical reconstruction of wavefront in phase-shifting point diffraction interferometer by digital holography,” Surf. Interface Anal. 40(6-7), 1028–1032 (2008).
    [Crossref]
  38. A. Webster and F. Vollmer, “Interference of conically scattered light in surface plasmon resonance,” Opt. Lett. 38(3), 244–246 (2013).
    [Crossref] [PubMed]
  39. R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
    [Crossref]

2018 (3)

2017 (4)

2016 (2)

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref] [PubMed]

S. Jeon, J. Cho, J. N. Jin, N.-C. Park, and Y.-P. Park, “Dual-wavelength digital holography with a single low-coherence light source,” Opt. Express 24(16), 18408–18416 (2016).
[Crossref] [PubMed]

2015 (3)

C. Falldorf, M. Agour, and R. B. Bergmann, “Digital holography and quantitative phase contrast imaging using computational shear interferometry,” Opt. Eng. 54(2), 024110 (2015).
[Crossref]

H.-G. Hong, M.-H. Shin, H.-J. Kim, J. Shin, and Y.-J. Kim, “High Luminescence White LEDs Prepared with 2D Island-Pattern of Quantum Dots Dispersed Photopolymer Films,” J. Nanomater. 2015, 1–7 (2015).
[Crossref]

H. Zhong, J. Tang, and S. Zhang, “Phase quality map based on local multi-unwrapped results for two-dimensional phase unwrapping,” Appl. Opt. 54(4), 739–745 (2015).
[Crossref] [PubMed]

2014 (4)

P. Bergström, D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holography: single-shot shape evaluation using speckle displacements and regularization,” Appl. Opt. 53(1), 123–131 (2014).
[Crossref] [PubMed]

M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39(10), 2908–2911 (2014).
[Crossref] [PubMed]

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (1)

X. Wang, X. Yan, W. Li, and K. Sun, “Doped Quantum Dots for White-Light-Emitting Diodes Without Reabsorption of Multiphase Phosphors,” Adv. Mater. 24(20), 2742–2747 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (1)

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R (2009).
[Crossref]

2008 (1)

T. Matsuura, S. Okagaki, Y. Oshikane, H. Inoue, M. Nakano, and T. Kataoka, “Numerical reconstruction of wavefront in phase-shifting point diffraction interferometer by digital holography,” Surf. Interface Anal. 40(6-7), 1028–1032 (2008).
[Crossref]

2007 (1)

J. M. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Graph Cuts,” IEEE Trans. Image Process. 16(3), 698–709 (2007).
[Crossref] [PubMed]

2006 (3)

2004 (2)

2003 (2)

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
[Crossref] [PubMed]

S. Durand and J. Froment, “Reconstruction of Wavelet Coefficients Using Total Variation Minimization,” SIAM J. Sci. Comput. 24(5), 1754–1767 (2003).
[Crossref]

2001 (1)

I. Yamaguchi, S. Ohta, and J. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001).
[Crossref]

2000 (1)

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites,” Adv. Mater. 12(15), 1102–1105 (2000).
[Crossref]

1999 (2)

1996 (1)

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84(5), 765–781 (1996).
[Crossref]

Agour, M.

C. Falldorf, M. Agour, and R. B. Bergmann, “Digital holography and quantitative phase contrast imaging using computational shear interferometry,” Opt. Eng. 54(2), 024110 (2015).
[Crossref]

Akram, M. N.

Arai, Y.

Asakura, T.

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84(5), 765–781 (1996).
[Crossref]

Aspert, N.

Asundi, A.

Bawendi, M. G.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites,” Adv. Mater. 12(15), 1102–1105 (2000).
[Crossref]

Bergmann, R. B.

C. Falldorf, M. Agour, and R. B. Bergmann, “Digital holography and quantitative phase contrast imaging using computational shear interferometry,” Opt. Eng. 54(2), 024110 (2015).
[Crossref]

Bergström, P.

Bevilacqua, F.

Bianco, V.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital Holography, a metrological tool for quantitative analysis: Trends and future applications,” Opt. Lasers Eng. 104, 32–47 (2018).
[Crossref]

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref] [PubMed]

Bioucas-Dias, J. M.

J. M. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Graph Cuts,” IEEE Trans. Image Process. 16(3), 698–709 (2007).
[Crossref] [PubMed]

Boss, D.

F. Yi, I. Moon, B. Javidi, D. Boss, and P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 26006 (2013).
[Crossref] [PubMed]

Bourquin, S.

Bui, V.

Bulovic, V.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Chang, L.-C.

Charrière, F.

Chen, Q.

Cho, J.

Choi, G.-J.

Choi, K.

Colomb, T.

Coppola, S.

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref] [PubMed]

Cuche, E.

Dai, G.

Dakoff, A.

Dan, D.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Depeursinge, C.

Doblas, A.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Dubois, F.

Durand, S.

S. Durand and J. Froment, “Reconstruction of Wavelet Coefficients Using Total Variation Minimization,” SIAM J. Sci. Comput. 24(5), 1754–1767 (2003).
[Crossref]

Emery, Y.

Falldorf, C.

C. Falldorf, M. Agour, and R. B. Bergmann, “Digital holography and quantitative phase contrast imaging using computational shear interferometry,” Opt. Eng. 54(2), 024110 (2015).
[Crossref]

Ferraro, P.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital Holography, a metrological tool for quantitative analysis: Trends and future applications,” Opt. Lasers Eng. 104, 32–47 (2018).
[Crossref]

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref] [PubMed]

Froment, J.

S. Durand and J. Froment, “Reconstruction of Wavelet Coefficients Using Total Variation Minimization,” SIAM J. Sci. Comput. 24(5), 1754–1767 (2003).
[Crossref]

Garcia-Sucerquia, J.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Gass, J.

Girshovitz, P.

Gotohda, T.

Grilli, S.

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref] [PubMed]

Guo, R.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Hällstig, E.

Heine, J. R.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites,” Adv. Mater. 12(15), 1102–1105 (2000).
[Crossref]

Hirosaki, N.

Hong, H.-G.

H.-G. Hong, M.-H. Shin, H.-J. Kim, J. Shin, and Y.-J. Kim, “High Luminescence White LEDs Prepared with 2D Island-Pattern of Quantum Dots Dispersed Photopolymer Films,” J. Nanomater. 2015, 1–7 (2015).
[Crossref]

Inoue, H.

T. Matsuura, S. Okagaki, Y. Oshikane, H. Inoue, M. Nakano, and T. Kataoka, “Numerical reconstruction of wavefront in phase-shifting point diffraction interferometer by digital holography,” Surf. Interface Anal. 40(6-7), 1028–1032 (2008).
[Crossref]

Iwai, T.

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84(5), 765–781 (1996).
[Crossref]

Jafarfard, M. R.

Jang, S.-H.

Javidi, B.

F. Yi, I. Moon, B. Javidi, D. Boss, and P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 26006 (2013).
[Crossref] [PubMed]

Jensen, K. F.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites,” Adv. Mater. 12(15), 1102–1105 (2000).
[Crossref]

Jeon, S.

Jin, J. N.

Joannes, L.

Kartashov, V.

Kataoka, T.

T. Matsuura, S. Okagaki, Y. Oshikane, H. Inoue, M. Nakano, and T. Kataoka, “Numerical reconstruction of wavefront in phase-shifting point diffraction interferometer by digital holography,” Surf. Interface Anal. 40(6-7), 1028–1032 (2008).
[Crossref]

Kato, J.

I. Yamaguchi, S. Ohta, and J. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001).
[Crossref]

Kemper, B.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R (2009).
[Crossref]

Khodadad, D.

Kim, D. Y.

Kim, H.-J.

H.-G. Hong, M.-H. Shin, H.-J. Kim, J. Shin, and Y.-J. Kim, “High Luminescence White LEDs Prepared with 2D Island-Pattern of Quantum Dots Dispersed Photopolymer Films,” J. Nanomater. 2015, 1–7 (2015).
[Crossref]

Kim, M. K.

Kim, Y.-J.

J.-Y. Lee, S. Jeon, J.-S. Lim, S.-H. Jang, N.-C. Park, and Y.-J. Kim, “Dual-wavelength digital holography with a low-coherence light source based on a quantum dot film,” Opt. Lett. 42(24), 5082–5085 (2017).
[Crossref] [PubMed]

H.-G. Hong, M.-H. Shin, H.-J. Kim, J. Shin, and Y.-J. Kim, “High Luminescence White LEDs Prepared with 2D Island-Pattern of Quantum Dots Dispersed Photopolymer Films,” J. Nanomater. 2015, 1–7 (2015).
[Crossref]

Kimura, N.

Kosmeier, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R (2009).
[Crossref]

Kühn, J.

Lam, V.

Langehanenberg, P.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R (2009).
[Crossref]

Lee, J.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites,” Adv. Mater. 12(15), 1102–1105 (2000).
[Crossref]

Lee, J.-Y.

Legros, J.-C.

Lei, M.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Li, W.

X. Wang, X. Yan, W. Li, and K. Sun, “Doped Quantum Dots for White-Light-Emitting Diodes Without Reabsorption of Multiphase Phosphors,” Adv. Mater. 24(20), 2742–2747 (2012).
[Crossref] [PubMed]

Lim, J.

Lim, J.-S.

Marian, A.

Marquet, P.

Martínez-Corral, M.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Matsuura, T.

T. Matsuura, S. Okagaki, Y. Oshikane, H. Inoue, M. Nakano, and T. Kataoka, “Numerical reconstruction of wavefront in phase-shifting point diffraction interferometer by digital holography,” Surf. Interface Anal. 40(6-7), 1028–1032 (2008).
[Crossref]

Memmolo, P.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital Holography, a metrological tool for quantitative analysis: Trends and future applications,” Opt. Lasers Eng. 104, 32–47 (2018).
[Crossref]

Merola, F.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital Holography, a metrological tool for quantitative analysis: Trends and future applications,” Opt. Lasers Eng. 104, 32–47 (2018).
[Crossref]

Miccio, L.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital Holography, a metrological tool for quantitative analysis: Trends and future applications,” Opt. Lasers Eng. 104, 32–47 (2018).
[Crossref]

Min, J.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Min, S.-W.

Montfort, F.

Moon, H.

Moon, I.

F. Yi, I. Moon, B. Javidi, D. Boss, and P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 26006 (2013).
[Crossref] [PubMed]

Moon, S.

Nakano, M.

T. Matsuura, S. Okagaki, Y. Oshikane, H. Inoue, M. Nakano, and T. Kataoka, “Numerical reconstruction of wavefront in phase-shifting point diffraction interferometer by digital holography,” Surf. Interface Anal. 40(6-7), 1028–1032 (2008).
[Crossref]

Nehmetallah, G.

Nguyen, T.

Ohashi, M.

Ohta, S.

I. Yamaguchi, S. Ohta, and J. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001).
[Crossref]

Okagaki, S.

T. Matsuura, S. Okagaki, Y. Oshikane, H. Inoue, M. Nakano, and T. Kataoka, “Numerical reconstruction of wavefront in phase-shifting point diffraction interferometer by digital holography,” Surf. Interface Anal. 40(6-7), 1028–1032 (2008).
[Crossref]

Omae, K.

Omichi, K.

Oshikane, Y.

T. Matsuura, S. Okagaki, Y. Oshikane, H. Inoue, M. Nakano, and T. Kataoka, “Numerical reconstruction of wavefront in phase-shifting point diffraction interferometer by digital holography,” Surf. Interface Anal. 40(6-7), 1028–1032 (2008).
[Crossref]

Otani, R.

Pagliarulo, V.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital Holography, a metrological tool for quantitative analysis: Trends and future applications,” Opt. Lasers Eng. 104, 32–47 (2018).
[Crossref]

Park, N.-C.

Park, Y.-P.

Parshall, D.

Paturzo, M.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital Holography, a metrological tool for quantitative analysis: Trends and future applications,” Opt. Lasers Eng. 104, 32–47 (2018).
[Crossref]

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref] [PubMed]

Piano, E.

Pontiggia, C.

Przibilla, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R (2009).
[Crossref]

Qu, W.

Raub, C. B.

Remmersmann, C.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R (2009).
[Crossref]

Repetto, L.

Saavedra, G.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Sakuma, K.

Sánchez-Ortiga, E.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Shaked, N. T.

Shin, J.

H.-G. Hong, M.-H. Shin, H.-J. Kim, J. Shin, and Y.-J. Kim, “High Luminescence White LEDs Prepared with 2D Island-Pattern of Quantum Dots Dispersed Photopolymer Films,” J. Nanomater. 2015, 1–7 (2015).
[Crossref]

Shin, M.-H.

H.-G. Hong, M.-H. Shin, H.-J. Kim, J. Shin, and Y.-J. Kim, “High Luminescence White LEDs Prepared with 2D Island-Pattern of Quantum Dots Dispersed Photopolymer Films,” J. Nanomater. 2015, 1–7 (2015).
[Crossref]

Shirasaki, Y.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Sjödahl, M.

Stürwald, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R (2009).
[Crossref]

Suehiro, T.

Sun, K.

X. Wang, X. Yan, W. Li, and K. Sun, “Doped Quantum Dots for White-Light-Emitting Diodes Without Reabsorption of Multiphase Phosphors,” Adv. Mater. 24(20), 2742–2747 (2012).
[Crossref] [PubMed]

Sundar, V. C.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites,” Adv. Mater. 12(15), 1102–1105 (2000).
[Crossref]

Supran, G. J.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Tahara, T.

Takaki, Y.

Tanaka, D.

Tang, J.

Tayebi, B.

Todino, M.

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref] [PubMed]

Tong, Z.

Valadão, G.

J. M. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Graph Cuts,” IEEE Trans. Image Process. 16(3), 698–709 (2007).
[Crossref] [PubMed]

Vespini, V.

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref] [PubMed]

Vollmer, F.

von Bally, G.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R (2009).
[Crossref]

Wang, X.

X. Wang, X. Yan, W. Li, and K. Sun, “Doped Quantum Dots for White-Light-Emitting Diodes Without Reabsorption of Multiphase Phosphors,” Adv. Mater. 24(20), 2742–2747 (2012).
[Crossref] [PubMed]

Webster, A.

Weible, K.

Xie, R.-J.

Xie, X.

Yamaguchi, I.

I. Yamaguchi, S. Ohta, and J. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001).
[Crossref]

Yamamoto, Y.

Yan, S.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Yan, X.

X. Wang, X. Yan, W. Li, and K. Sun, “Doped Quantum Dots for White-Light-Emitting Diodes Without Reabsorption of Multiphase Phosphors,” Adv. Mater. 24(20), 2742–2747 (2012).
[Crossref] [PubMed]

Yang, Y.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Yao, B.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Yi, F.

F. Yi, I. Moon, B. Javidi, D. Boss, and P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 26006 (2013).
[Crossref] [PubMed]

Yim, J.

Yu, X.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Zhang, S.

Zhong, H.

Zhou, M.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Zuo, C.

Adv. Mater. (2)

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites,” Adv. Mater. 12(15), 1102–1105 (2000).
[Crossref]

X. Wang, X. Yan, W. Li, and K. Sun, “Doped Quantum Dots for White-Light-Emitting Diodes Without Reabsorption of Multiphase Phosphors,” Adv. Mater. 24(20), 2742–2747 (2012).
[Crossref] [PubMed]

Appl. Opt. (6)

IEEE Trans. Image Process. (1)

J. M. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Graph Cuts,” IEEE Trans. Image Process. 16(3), 698–709 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

F. Yi, I. Moon, B. Javidi, D. Boss, and P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 26006 (2013).
[Crossref] [PubMed]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

J. Nanomater. (1)

H.-G. Hong, M.-H. Shin, H.-J. Kim, J. Shin, and Y.-J. Kim, “High Luminescence White LEDs Prepared with 2D Island-Pattern of Quantum Dots Dispersed Photopolymer Films,” J. Nanomater. 2015, 1–7 (2015).
[Crossref]

J. Opt. (1)

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Lab Chip (1)

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Opt. Eng. (1)

C. Falldorf, M. Agour, and R. B. Bergmann, “Digital holography and quantitative phase contrast imaging using computational shear interferometry,” Opt. Eng. 54(2), 024110 (2015).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (2)

I. Yamaguchi, S. Ohta, and J. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001).
[Crossref]

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital Holography, a metrological tool for quantitative analysis: Trends and future applications,” Opt. Lasers Eng. 104, 32–47 (2018).
[Crossref]

Opt. Lett. (9)

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref] [PubMed]

M. N. Akram, V. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35(3), 444–446 (2010).
[Crossref] [PubMed]

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
[Crossref] [PubMed]

M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39(10), 2908–2911 (2014).
[Crossref] [PubMed]

L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29(10), 1132–1134 (2004).
[Crossref] [PubMed]

A. Webster and F. Vollmer, “Interference of conically scattered light in surface plasmon resonance,” Opt. Lett. 38(3), 244–246 (2013).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38(10), 1724–1726 (2013).
[Crossref] [PubMed]

K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R.-J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiALON ceramic phosphor,” Opt. Lett. 29(17), 2001–2003 (2004).
[Crossref] [PubMed]

J.-Y. Lee, S. Jeon, J.-S. Lim, S.-H. Jang, N.-C. Park, and Y.-J. Kim, “Dual-wavelength digital holography with a low-coherence light source based on a quantum dot film,” Opt. Lett. 42(24), 5082–5085 (2017).
[Crossref] [PubMed]

Proc. IEEE (1)

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84(5), 765–781 (1996).
[Crossref]

Proc. SPIE (1)

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R (2009).
[Crossref]

SIAM J. Sci. Comput. (1)

S. Durand and J. Froment, “Reconstruction of Wavelet Coefficients Using Total Variation Minimization,” SIAM J. Sci. Comput. 24(5), 1754–1767 (2003).
[Crossref]

Surf. Interface Anal. (1)

T. Matsuura, S. Okagaki, Y. Oshikane, H. Inoue, M. Nakano, and T. Kataoka, “Numerical reconstruction of wavefront in phase-shifting point diffraction interferometer by digital holography,” Surf. Interface Anal. 40(6-7), 1028–1032 (2008).
[Crossref]

Other (1)

Y. Awatsuji, Y. Lee, Y. Ito, T. Tahara, P. Xia, K. Nishio, and O. Matoba, “Single-shot 3D measurement by multi-wavelength parallel phase-shifting digital holography,” in 2015 14th Workshop on Information Optics (WIO) (IEEE, 2015), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Optical configuration of the proposed setup. LED, light emitting diode; PZT, piezo-electronic transducer; CCD, charge-coupled device; PC, personal computer.
Fig. 2
Fig. 2 Normalized spectral distributions of the fabricated dual-peak QD film with different mixture ratios. The inset means the relative mixture ratio of 580 and 630nm QDs in the QD film.
Fig. 3
Fig. 3 Results of the proposed technique: (a) one of the acquired wavelength-multiplexed holograms. Reconstructed and separated phase profiles of (b) 590 nm and (c) 635 nm wavelength emitted from both QDs. (d) Combined dual-wavelength phase profile from (b) and (c). (e) Cross-section profiles of 590 nm (top) and 635 nm (bottom) QDs. (f)-(i) Cross-section profiles of the region marked on (d), with line width (e) 1 mm, (f) 200 μm, (g) 100 μm, and (h) 50 μm respectively. (j) Detailed measurement result of the profile from the dashed area of Fig. 3(f), compared with the commercial probe profilometer.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(x,y; ϕ R 1 , ϕ R 2 )= I 0 (x,y)+2| O 1 (x,y) || R 1 (x,y) |cos( ϕ O 1 ϕ R 1 ) +2| O 2 (x,y) || R 2 (x,y) |cos( ϕ O 2 ϕ R 2 ),
( I(x,y;0,0) I(x,y;α,β) I(x,y;2α,2β) I(x,y;3α,3β) I(x,y;4α,4β) )=( 1 1 0 1 0 1 cosα sinα cosβ sinβ 1 cos2α sin2α cos2β sin2β 1 cos3α sin3α cos3β sin3β 1 cos4α sin4α cos4β sin4β )×( I 0 (x,y) 2| R 1 (x,y) |Re( O 1 (x,y)) 2| R 1 (x,y) |Im( O 1 (x,y)) 2| R 2 (x,y) |Re( O 2 (x,y)) 2| R 2 (x,y) |Im( O 2 (x,y)) ),
O 1 = 1 2| R 1 (x,y) | { ( 2| R 1 (x,y) |Re( O 1 (x,y)) )+i( 2| R 1 (x,y) |Im( O 1 (x,y)) ) }, O 2 = 1 2| R 2 (x,y) | { ( 2| R 2 (x,y) |Re( O 2 (x,y)) )+i( 2| R 2 (x,y) |Im( O 2 (x,y)) ) }.
ϕ O1 (x,y)= tan 1 { 2| R 1 (x,y) |Re( O 1 (x,y)) 2| R 1 (x,y) |Im( O 1 (x,y)) }, ϕ O2 (x,y)= tan 1 { 2| R 2 (x,y) |Re( O 2 (x,y)) 2| R 2 (x,y) |Im( O 2 (x,y)) }.
h= ϕ O1 ϕ O2 4π Λ,

Metrics