Abstract

To date, near-perfect light absorbers at visible frequency are still severely impeded by the complicated architecture design and time-consuming costly fabrication procedures. In this work, we design and fabricate a new cost-effective near-perfect absorber at visible frequency based on homogenous meta-surface nickel (Ni) with a two-dimension cylinder array. The simulated and measured average absorption at normal incidence are beyond 94% and 92% over the entire visible wavelength band from 400 nm to 700 nm, respectively. Additionally, the absorbance property was well retained, and the absorptivity still remained beyond 70% when the incident angles vary from 0° to 60°. Our theoretically and experimentally results indicate that the broadband wide-angular absorption can be ascribed to the Rayleigh-Wood anomaly combined with slot modes induced by excited surface plasmon polaritons. Moreover, the low-cost double-beam interference lithography followed by soft nano-imprinting and electroforming technology, which are directly compatible with the cost-effective and high volume manufacturing requirements, are employed to fabricate the proposed absorber. The proposed approach is simple and inexpensive and the obtained ultrathin homogenous meta-surface nickel absorber can be rolled or folded on the surface of various optoelectronics, such as solar system and radiation thermal devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime

Minghui Luo, Su Shen, Lei Zhou, Shangliang Wu, Yun Zhou, and Linsen Chen
Opt. Express 25(14) 16715-16724 (2017)

Solar thermal absorber based on dielectric filled two-dimensional nickel grating

Qiuqun Liang, Huigao Duan, Xupeng Zhu, Xuandong Chen, and XiongPing Xia
Opt. Mater. Express 9(8) 3193-3203 (2019)

High-performance and cost-effective absorber for visible and near-infrared spectrum based on a spherical multilayered dielectric–metal structure

Zihao Zhang, Yunjie Mo, Hong Wang, Yuhang Zhao, and Shaoji Jiang
Appl. Opt. 58(16) 4467-4473 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
    [Crossref]
  3. P. Rufangura and C. Sabah, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
    [Crossref]
  4. S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
    [Crossref] [PubMed]
  5. P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
    [Crossref]
  6. P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
    [Crossref]
  7. H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” In Emerging Technologies (ICET), 2016 International Conference on. IEEE 1–5 (2016).
  8. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  9. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
    [Crossref]
  10. Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32T01 (2016).
  11. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
    [Crossref]
  12. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
    [Crossref] [PubMed]
  13. M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single photon detectors implemented as coherent perfect absorbers,” Nat. Commun. 6, 8233 (2014).
    [Crossref] [PubMed]
  14. B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
    [Crossref]
  15. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  16. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref] [PubMed]
  17. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B Condens. Matter 79(3), 3101 (2008).
  18. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  19. B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method,” Phys. Rev. B Condens. Matter Mater. Phys. 87(11), 1214–1222 (2013).
    [Crossref]
  20. Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
    [Crossref] [PubMed]
  21. P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 051105 (2012).
    [Crossref]
  22. K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108, 59 (2016).
  23. T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
    [PubMed]
  24. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref] [PubMed]
  25. Q. Qian, Y. Yan, and C. Wang, “Flexible metasurface black nickel with stepped nanopillars,” Opt. Lett. 43(6), 1231–1234 (2018).
    [Crossref] [PubMed]
  26. L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).
    [Crossref]
  27. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [Crossref]
  28. J. Zhang, S. Shen, X. X. Dong, and L. S. Chen, “Low-cost fabrication of large area sub-wavelength anti-reflective structures on polymer film using a soft PUA mold,” Opt. Express 22(2), 1842–1851 (2014).
    [Crossref] [PubMed]
  29. N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
    [Crossref]
  30. S. Shen, W. Qiao, Y. Ye, Y. Zhou, and L. Chen, “Dielectric-based subwavelength metallic meanders for wide-angle band absorbers,” Opt. Express 23(2), 963–970 (2015).
    [Crossref] [PubMed]
  31. M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
    [Crossref] [PubMed]
  32. N. Ahmad, J. Stokes, and M. J. Cryan, “Solar absorbers using 1D and 2D periodic nanostructured nickel films,” J. Opt. 16(12), 125003 (2014).
    [Crossref]

2018 (1)

2017 (1)

2016 (6)

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).
[Crossref]

N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108, 59 (2016).

P. Rufangura and C. Sabah, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32T01 (2016).

2015 (5)

P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
[Crossref]

S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
[Crossref] [PubMed]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

S. Shen, W. Qiao, Y. Ye, Y. Zhou, and L. Chen, “Dielectric-based subwavelength metallic meanders for wide-angle band absorbers,” Opt. Express 23(2), 963–970 (2015).
[Crossref] [PubMed]

2014 (5)

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

J. Zhang, S. Shen, X. X. Dong, and L. S. Chen, “Low-cost fabrication of large area sub-wavelength anti-reflective structures on polymer film using a soft PUA mold,” Opt. Express 22(2), 1842–1851 (2014).
[Crossref] [PubMed]

N. Ahmad, J. Stokes, and M. J. Cryan, “Solar absorbers using 1D and 2D periodic nanostructured nickel films,” J. Opt. 16(12), 125003 (2014).
[Crossref]

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single photon detectors implemented as coherent perfect absorbers,” Nat. Commun. 6, 8233 (2014).
[Crossref] [PubMed]

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

2013 (1)

B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method,” Phys. Rev. B Condens. Matter Mater. Phys. 87(11), 1214–1222 (2013).
[Crossref]

2012 (2)

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 051105 (2012).
[Crossref]

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

2011 (3)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

2010 (2)

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B Condens. Matter 79(3), 3101 (2008).

2007 (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

1996 (1)

Ahmad, N.

N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

N. Ahmad, J. Stokes, and M. J. Cryan, “Solar absorbers using 1D and 2D periodic nanostructured nickel films,” J. Opt. 16(12), 125003 (2014).
[Crossref]

Akgol, O.

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

Akhlaghi, M. K.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single photon detectors implemented as coherent perfect absorbers,” Nat. Commun. 6, 8233 (2014).
[Crossref] [PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Cao, T.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

Chen, L.

Chen, L. S.

Chen, L. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Chen, X.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Cong, L.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Cryan, M. J.

N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

N. Ahmad, J. Stokes, and M. J. Cryan, “Solar absorbers using 1D and 2D periodic nanostructured nickel films,” J. Opt. 16(12), 125003 (2014).
[Crossref]

Deng, H.

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32T01 (2016).

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B Condens. Matter 79(3), 3101 (2008).

Dincer, F.

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

Dong, X.

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).
[Crossref]

Dong, X. X.

Fan, S.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Gao, L.

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).
[Crossref]

Garcíaripoll, J. J.

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Garnett, E. C.

S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
[Crossref] [PubMed]

Gawarikar, A. S.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Guo, L. J.

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108, 59 (2016).

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Ho, K. M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Jay Guo, L.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 051105 (2012).
[Crossref]

Ji, C.

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108, 59 (2016).

Johansson, G.

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Karaaslan, M.

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Konstantatos, G.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B Condens. Matter 79(3), 3101 (2008).

Lalanne, P.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, K. T.

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108, 59 (2016).

Li, Y.

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32T01 (2016).

Liang, W.

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32T01 (2016).

Liu, B.

B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method,” Phys. Rev. B Condens. Matter Mater. Phys. 87(11), 1214–1222 (2013).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Long, Y.

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32T01 (2016).

Lu, M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Luo, M.

Mann, S. A.

S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mock, D. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Morris, G. M.

Núñez-Sánchez, S.

N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Peropadre, B.

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Pugh, J.

N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

Qian, Q.

Qiao, W.

Rephaeli, E.

Romero, G.

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Rufangura, P.

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
[Crossref]

Sabah, C.

P. Rufangura and C. Sabah, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
[Crossref]

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sargent, E. H.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Schelew, E.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single photon detectors implemented as coherent perfect absorbers,” Nat. Commun. 6, 8233 (2014).
[Crossref] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Shea, R. P.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Shen, L.

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32T01 (2016).

Shen, S.

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).
[Crossref]

S. Shen, W. Qiao, Y. Ye, Y. Zhou, and L. Chen, “Dielectric-based subwavelength metallic meanders for wide-angle band absorbers,” Opt. Express 23(2), 963–970 (2015).
[Crossref] [PubMed]

J. Zhang, S. Shen, X. X. Dong, and L. S. Chen, “Low-cost fabrication of large area sub-wavelength anti-reflective structures on polymer film using a soft PUA mold,” Opt. Express 22(2), 1842–1851 (2014).
[Crossref] [PubMed]

B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method,” Phys. Rev. B Condens. Matter Mater. Phys. 87(11), 1214–1222 (2013).
[Crossref]

Simpson, R. E.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

Singh, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Solano, E.

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B Condens. Matter 79(3), 3101 (2008).

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Stokes, J.

N. Ahmad, J. Stokes, and M. J. Cryan, “Solar absorbers using 1D and 2D periodic nanostructured nickel films,” J. Opt. 16(12), 125003 (2014).
[Crossref]

Talghader, J. J.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Tan, S.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Ünal, E.

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

Wang, C.

Wang, C. Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Wang, S. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Wang, Z.

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).
[Crossref]

Wang, Z. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Wei, C. W.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wilson, C. M.

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Wu, S.

Xu, H.

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32T01 (2016).

Yahiaoui, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Yan, F.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Yan, Y.

Ye, Y.

Ye, Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Young, J. F.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single photon detectors implemented as coherent perfect absorbers,” Nat. Commun. 6, 8233 (2014).
[Crossref] [PubMed]

Zhang, J.

Zhang, L.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

Zhang, R. J.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Zhang, W.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Zheng, Y. X.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Zhou, L.

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).
[Crossref]

Zhou, Y.

Zhu, F.

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).
[Crossref]

Zhu, P.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 051105 (2012).
[Crossref]

ACS Photonics (1)

S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 051105 (2012).
[Crossref]

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108, 59 (2016).

J. Alloys Compd. (2)

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

L. Zhou, Y. Zhou, F. Zhu, X. Dong, L. Gao, Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).
[Crossref]

J. Opt. (2)

N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

N. Ahmad, J. Stokes, and M. J. Cryan, “Solar absorbers using 1D and 2D periodic nanostructured nickel films,” J. Opt. 16(12), 125003 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32T01 (2016).

Light Sci. Appl. (1)

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Commun. (2)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single photon detectors implemented as coherent perfect absorbers,” Nat. Commun. 6, 8233 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (1)

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Phys. Rev. B Condens. Matter (1)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B Condens. Matter 79(3), 3101 (2008).

Phys. Rev. B Condens. Matter Mater. Phys. (1)

B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method,” Phys. Rev. B Condens. Matter Mater. Phys. 87(11), 1214–1222 (2013).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

Sci. Rep. (2)

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

Vacuum (1)

P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
[Crossref]

Other (1)

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” In Emerging Technologies (ICET), 2016 International Conference on. IEEE 1–5 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The schematic architecture of the designed MA.
Fig. 2
Fig. 2 The simulated absorption (black), reflection (red) and transmission (blue) properties of the proposed MA at normal incidence.
Fig. 3
Fig. 3 Absorption spectra with different metals.
Fig. 4
Fig. 4 The magnetic and electric near-field distributions for the proposed MA at the specific wavelengths at normal incidence.
Fig. 5
Fig. 5 The simulated Poynting vector distributions excited by the specific resonant wavelength of (a) 450 nm, and (b) 580 nm. The arrows depict the direction of the light energy flow and the white lines display the interface of the cylinder arrays.
Fig. 6
Fig. 6 Simulated angular absorptions of the MA in Fig. 1 for TM- and TE- polarized light. The incident angle is varied from 0° to 60° in 15° steps.
Fig. 7
Fig. 7 Calculated absorption characteristics as function of the wavelength for the parameter of (a) height h, and (b) duty cycle f.
Fig. 8
Fig. 8 Schematic of the fabrication processes of the proposed MA with nano-cylinder arrays.
Fig. 9
Fig. 9 SEM images of the proposed MA with different scales (a-c) and the side-view of the sample (d).
Fig. 10
Fig. 10 The measured incident angle resolved spectrum response of the MA for (a) TM and (b) TE polarization, respectively. (c) The optical images of the fabricated MA taken with indoor ambient light at different incidence of 0°, 30° and 60°. (d) The MA rolled on the surface of the ballpoint pen.

Metrics