Abstract

The sensitivity of an optical system to assembly errors can greatly affect the actual image quality. The system design must be changed if its tolerance for assembly errors is too tight. In this paper, we present an automated design method for initial systems of freeform reflective optical systems that are insensitive to assembly errors. By this method, an assembly-insensitive initial system comprised of surfaces with different types (sphere, aspheric, freeform) can be obtained directly without human interaction. To illustrate the design process, an assembly-insensitive off-axis optical system that has two freeform surfaces and one spherical surface is designed, which shows the effectiveness of the proposed method.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Manufacturing-constrained optical design methodology for cylindrical freeform reflective imaging system

Xin Zheng, Zexiao Li, Xiaodong Zhang, and Fengzhou Fang
Opt. Express 26(17) 22547-22562 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. I. G. Bloor and M. J. Wilson, “Using partial differential equations to generate free-form surfaces,” Comput. Aided Des. 22(4), 202–212 (1990).
    [Crossref]
  2. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
    [Crossref] [PubMed]
  3. J. C. Miñano, P. Benítez, W. Lin, J. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express 17(26), 24036–24044 (2009).
    [Crossref] [PubMed]
  4. P. Benítez, J. C. Mi Ano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
    [Crossref]
  5. T. Yang, J. Zhu, X. Wu, and G. Jin, “Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method,” Opt. Express 23(8), 10233–10246 (2015).
    [Crossref] [PubMed]
  6. T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).
    [Crossref] [PubMed]
  7. T. Yang, J. Zhu, and G. Jin, “Starting configuration design method of freeform imaging and afocal systems with a real exit pupil,” Appl. Opt. 55(2), 345–353 (2016).
    [Crossref] [PubMed]
  8. R. Wu, S. Chang, Z. Zheng, L. Zhao, and X. Liu, “Formulating the design of two freeform lens surfaces for point-like light sources,” Opt. Lett. 43(7), 1619–1622 (2018).
    [Crossref] [PubMed]
  9. Z. Zhu, D. Ma, Q. Hu, Y. Tang, and R. Liang, “Catadioptric freeform optical system design for LED off-axis road illumination applications,” Opt. Express 26(2), A54–A65 (2018).
    [Crossref] [PubMed]
  10. V. Oliker, “Optical design of freeform two-mirror beam-shaping systems,” J. Opt. Soc. Am. A 24(12), 3741–3752 (2007).
    [Crossref] [PubMed]
  11. R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).
    [Crossref] [PubMed]
  12. J. W. Pan, C. Che-Wen, K. D. Huang, and C. Y. Wu, “Demonstration of a broad band spectral head-mounted display with freeform mirrors,” Opt. Express 22(11), 12785–12798 (2014).
    [Crossref] [PubMed]
  13. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [Crossref] [PubMed]
  14. J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
    [Crossref] [PubMed]
  15. A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).
    [Crossref] [PubMed]
  16. M. Beier, J. Hartung, T. Peschel, C. Damm, A. Gebhardt, S. Scheiding, D. Stumpf, U. D. Zeitner, S. Risse, R. Eberhardt, and A. Tünnermann, “Development, fabrication, and testing of an anamorphic imaging snap-together freeform telescope,” Appl. Opt. 54(12), 3530–3542 (2015).
    [Crossref]
  17. T. Yang, J. Zhu, and G. Jin, “Compact freeform off-axis three-mirror imaging system based on the integration of primary and tertiary mirrors on one single surface,” Chin. Opt. Lett. 14(6), 26–30 (2016).
  18. Q. Meng, W. Wang, H. Ma, and J. Dong, “Easy-aligned off-axis three-mirror system with wide field of view using freeform surface based on integration of primary and tertiary mirror,” Appl. Opt. 53(14), 3028–3034 (2014).
    [Crossref] [PubMed]
  19. G. Moretto, M. P. Langlois, and M. Ferrari, “Suitable off-axis space-based telescope designs,” Proc. SPIE 5487, 1111–1119 (2004).
    [Crossref]
  20. Q. Meng, H. Wang, K. Wang, Y. Wang, Z. Ji, and D. Wang, “Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror,” Appl. Opt. 55(32), 8962–8970 (2016).
    [Crossref] [PubMed]
  21. K. P. Thompson, E. Schiesser, and J. P. Rolland, “Why are freeform telescopes less alignment sensitive than a traditional unobscured TMA?” Proc. SPIE 9633, 963317 (2015).
    [Crossref]
  22. T. Yang, J. Zhu, W. Hou, and G. Jin, “Design method of freeform off-axis reflective imaging systems with a direct construction process,” Opt. Express 22(8), 9193–9205 (2014).
    [Crossref] [PubMed]
  23. T. Gong, G. Jin, and J. Zhu, “Point-by-point design method for mixed-surface-type off-axis reflective imaging systems with spherical, aspheric, and freeform surfaces,” Opt. Express 25(9), 10663–10676 (2017).
    [Crossref] [PubMed]
  24. K. P. Thompson, T. Schmid, and J. P. Rolland, “The misalignment induced aberrations of TMA telescopes,” Opt. Express 16(25), 20345–20353 (2008).
    [Crossref] [PubMed]
  25. K. P. Thompson, T. Schmid, O. Cakmakci, and J. P. Rolland, “Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry,” J. Opt. Soc. Am. A 26(6), 1503–1517 (2009).
    [Crossref] [PubMed]
  26. A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays,” Opt. Express 22(11), 13155–13163 (2014).
    [Crossref] [PubMed]
  27. A. Bauer and J. P. Rolland, “Design of a freeform electronic viewfinder coupled to aberration fields of freeform optics,” Opt. Express 23(22), 28141–28153 (2015).
    [Crossref] [PubMed]
  28. K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
    [Crossref]
  29. K. Fuerschbach, G. E. Davis, K. P. Thompson, and J. P. Rolland, “Assembly of a freeform off-axis optical system employing three φ-polynomial Zernike mirrors,” Opt. Lett. 39(10), 2896–2899 (2014).
    [Crossref] [PubMed]
  30. Q. Meng, H. Wang, W. Wang, and Z. Yan, “Desensitization design method of unobscured three-mirror anastigmatic optical systems with an adjustment-optimization-evaluation process,” Appl. Opt. 57(6), 1472–1481 (2018).
    [Crossref] [PubMed]
  31. J. Zhu, X. Wu, T. Yang, and G. Jin, “Generating optical freeform surfaces considering both coordinates and normals of discrete data points,” J. Opt. Soc. Am. A 31(11), 2401–2408 (2014).
    [Crossref] [PubMed]
  32. Code V Reference Manual, Synopsys Inc. (2012).
  33. X. Wu, J. Zhu, T. Yang, and G. Jin, “Transverse image translation using an optical freeform single lens,” Appl. Opt. 54(28), E55–E62 (2015).
    [Crossref] [PubMed]

2018 (4)

2017 (3)

T. Gong, G. Jin, and J. Zhu, “Point-by-point design method for mixed-surface-type off-axis reflective imaging systems with spherical, aspheric, and freeform surfaces,” Opt. Express 25(9), 10663–10676 (2017).
[Crossref] [PubMed]

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (5)

2014 (6)

2013 (1)

2011 (1)

K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
[Crossref]

2009 (3)

2008 (2)

2007 (1)

2004 (2)

P. Benítez, J. C. Mi Ano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

G. Moretto, M. P. Langlois, and M. Ferrari, “Suitable off-axis space-based telescope designs,” Proc. SPIE 5487, 1111–1119 (2004).
[Crossref]

1990 (1)

M. I. G. Bloor and M. J. Wilson, “Using partial differential equations to generate free-form surfaces,” Comput. Aided Des. 22(4), 202–212 (1990).
[Crossref]

Ahn, K. B.

K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
[Crossref]

Bauer, A.

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).
[Crossref] [PubMed]

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

A. Bauer and J. P. Rolland, “Design of a freeform electronic viewfinder coupled to aberration fields of freeform optics,” Opt. Express 23(22), 28141–28153 (2015).
[Crossref] [PubMed]

A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays,” Opt. Express 22(11), 13155–13163 (2014).
[Crossref] [PubMed]

Beier, M.

Benítez, P.

J. C. Miñano, P. Benítez, W. Lin, J. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express 17(26), 24036–24044 (2009).
[Crossref] [PubMed]

P. Benítez, J. C. Mi Ano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Blen, J.

P. Benítez, J. C. Mi Ano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Bloor, M. I. G.

M. I. G. Bloor and M. J. Wilson, “Using partial differential equations to generate free-form surfaces,” Comput. Aided Des. 22(4), 202–212 (1990).
[Crossref]

Cakmakci, O.

Chan, P.

K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
[Crossref]

Chang, S.

Chaves, J.

P. Benítez, J. C. Mi Ano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Cheng, D.

Che-Wen, C.

Chun, M. Y.

K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
[Crossref]

Damm, C.

Davis, G. E.

Ding, Y.

Dong, J.

Dross, O.

P. Benítez, J. C. Mi Ano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Eberhardt, R.

Falicoff, W.

P. Benítez, J. C. Mi Ano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Ferrari, M.

G. Moretto, M. P. Langlois, and M. Ferrari, “Suitable off-axis space-based telescope designs,” Proc. SPIE 5487, 1111–1119 (2004).
[Crossref]

Fuerschbach, K.

Gebhardt, A.

Gong, T.

Gu, P. F.

Hartung, J.

Hernández, M.

P. Benítez, J. C. Mi Ano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Hou, W.

Hu, Q.

Hua, H.

Huang, K. D.

Infante, J.

Ji, Z.

Jin, G.

Jin, G. F.

T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).
[Crossref] [PubMed]

Kim, Y. S.

K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
[Crossref]

Kyeong, J.

K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
[Crossref]

Langlois, M. P.

G. Moretto, M. P. Langlois, and M. Ferrari, “Suitable off-axis space-based telescope designs,” Proc. SPIE 5487, 1111–1119 (2004).
[Crossref]

Lee, S.

K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
[Crossref]

Li, H.

Liang, R.

Lin, W.

Liu, P.

Liu, X.

Lyo, A. R.

K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
[Crossref]

Ma, D.

Ma, H.

Meng, Q.

Mi Ano, J. C.

P. Benítez, J. C. Mi Ano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Miñano, J. C.

Mohedano, R.

P. Benítez, J. C. Mi Ano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Moretto, G.

G. Moretto, M. P. Langlois, and M. Ferrari, “Suitable off-axis space-based telescope designs,” Proc. SPIE 5487, 1111–1119 (2004).
[Crossref]

Muñoz, F.

Oliker, V.

Pan, J. W.

Park, B. G.

K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
[Crossref]

Park, K.

K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
[Crossref]

Peschel, T.

Reimers, J.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

Risse, S.

Rolland, J. P.

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).
[Crossref] [PubMed]

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

K. P. Thompson, E. Schiesser, and J. P. Rolland, “Why are freeform telescopes less alignment sensitive than a traditional unobscured TMA?” Proc. SPIE 9633, 963317 (2015).
[Crossref]

A. Bauer and J. P. Rolland, “Design of a freeform electronic viewfinder coupled to aberration fields of freeform optics,” Opt. Express 23(22), 28141–28153 (2015).
[Crossref] [PubMed]

K. Fuerschbach, G. E. Davis, K. P. Thompson, and J. P. Rolland, “Assembly of a freeform off-axis optical system employing three φ-polynomial Zernike mirrors,” Opt. Lett. 39(10), 2896–2899 (2014).
[Crossref] [PubMed]

A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays,” Opt. Express 22(11), 13155–13163 (2014).
[Crossref] [PubMed]

K. P. Thompson, T. Schmid, O. Cakmakci, and J. P. Rolland, “Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry,” J. Opt. Soc. Am. A 26(6), 1503–1517 (2009).
[Crossref] [PubMed]

K. P. Thompson, T. Schmid, and J. P. Rolland, “The misalignment induced aberrations of TMA telescopes,” Opt. Express 16(25), 20345–20353 (2008).
[Crossref] [PubMed]

Santamaría, A.

Scheiding, S.

Schiesser, E.

K. P. Thompson, E. Schiesser, and J. P. Rolland, “Why are freeform telescopes less alignment sensitive than a traditional unobscured TMA?” Proc. SPIE 9633, 963317 (2015).
[Crossref]

Schiesser, E. M.

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).
[Crossref] [PubMed]

Schmid, T.

Stumpf, D.

Talha, M. M.

Tang, Y.

Thompson, K. P.

Tünnermann, A.

Wang, D.

Wang, H.

Wang, K.

Wang, W.

Wang, Y.

Wilson, M. J.

M. I. G. Bloor and M. J. Wilson, “Using partial differential equations to generate free-form surfaces,” Comput. Aided Des. 22(4), 202–212 (1990).
[Crossref]

Wu, C. Y.

Wu, R.

Wu, X.

Yan, Z.

Yang, T.

Yuk, I. S.

K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
[Crossref]

Zeitner, U. D.

Zhang, Y.

Zhao, L.

Zheng, Z.

Zheng, Z. R.

Zhu, J.

T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).
[Crossref] [PubMed]

T. Gong, G. Jin, and J. Zhu, “Point-by-point design method for mixed-surface-type off-axis reflective imaging systems with spherical, aspheric, and freeform surfaces,” Opt. Express 25(9), 10663–10676 (2017).
[Crossref] [PubMed]

T. Yang, J. Zhu, and G. Jin, “Starting configuration design method of freeform imaging and afocal systems with a real exit pupil,” Appl. Opt. 55(2), 345–353 (2016).
[Crossref] [PubMed]

T. Yang, J. Zhu, and G. Jin, “Compact freeform off-axis three-mirror imaging system based on the integration of primary and tertiary mirrors on one single surface,” Chin. Opt. Lett. 14(6), 26–30 (2016).

T. Yang, J. Zhu, X. Wu, and G. Jin, “Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method,” Opt. Express 23(8), 10233–10246 (2015).
[Crossref] [PubMed]

X. Wu, J. Zhu, T. Yang, and G. Jin, “Transverse image translation using an optical freeform single lens,” Appl. Opt. 54(28), E55–E62 (2015).
[Crossref] [PubMed]

J. Zhu, X. Wu, T. Yang, and G. Jin, “Generating optical freeform surfaces considering both coordinates and normals of discrete data points,” J. Opt. Soc. Am. A 31(11), 2401–2408 (2014).
[Crossref] [PubMed]

T. Yang, J. Zhu, W. Hou, and G. Jin, “Design method of freeform off-axis reflective imaging systems with a direct construction process,” Opt. Express 22(8), 9193–9205 (2014).
[Crossref] [PubMed]

Zhu, Z.

Adv. Space Res. (1)

K. B. Ahn, Y. S. Kim, S. Lee, K. Park, J. Kyeong, B. G. Park, P. Chan, A. R. Lyo, I. S. Yuk, and M. Y. Chun, “Sensitivity analysis of test methods for aspheric off-axis mirrors,” Adv. Space Res. 47(11), 1905–1911 (2011).
[Crossref]

Appl. Opt. (7)

Q. Meng, H. Wang, K. Wang, Y. Wang, Z. Ji, and D. Wang, “Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror,” Appl. Opt. 55(32), 8962–8970 (2016).
[Crossref] [PubMed]

Q. Meng, H. Wang, W. Wang, and Z. Yan, “Desensitization design method of unobscured three-mirror anastigmatic optical systems with an adjustment-optimization-evaluation process,” Appl. Opt. 57(6), 1472–1481 (2018).
[Crossref] [PubMed]

X. Wu, J. Zhu, T. Yang, and G. Jin, “Transverse image translation using an optical freeform single lens,” Appl. Opt. 54(28), E55–E62 (2015).
[Crossref] [PubMed]

T. Yang, J. Zhu, and G. Jin, “Starting configuration design method of freeform imaging and afocal systems with a real exit pupil,” Appl. Opt. 55(2), 345–353 (2016).
[Crossref] [PubMed]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[Crossref] [PubMed]

M. Beier, J. Hartung, T. Peschel, C. Damm, A. Gebhardt, S. Scheiding, D. Stumpf, U. D. Zeitner, S. Risse, R. Eberhardt, and A. Tünnermann, “Development, fabrication, and testing of an anamorphic imaging snap-together freeform telescope,” Appl. Opt. 54(12), 3530–3542 (2015).
[Crossref]

Q. Meng, W. Wang, H. Ma, and J. Dong, “Easy-aligned off-axis three-mirror system with wide field of view using freeform surface based on integration of primary and tertiary mirror,” Appl. Opt. 53(14), 3028–3034 (2014).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

T. Yang, J. Zhu, and G. Jin, “Compact freeform off-axis three-mirror imaging system based on the integration of primary and tertiary mirrors on one single surface,” Chin. Opt. Lett. 14(6), 26–30 (2016).

Comput. Aided Des. (1)

M. I. G. Bloor and M. J. Wilson, “Using partial differential equations to generate free-form surfaces,” Comput. Aided Des. 22(4), 202–212 (1990).
[Crossref]

J. Opt. Soc. Am. A (3)

Light Sci. Appl. (2)

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).
[Crossref] [PubMed]

Opt. Eng. (1)

P. Benítez, J. C. Mi Ano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Opt. Express (11)

T. Yang, J. Zhu, X. Wu, and G. Jin, “Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method,” Opt. Express 23(8), 10233–10246 (2015).
[Crossref] [PubMed]

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
[Crossref] [PubMed]

J. C. Miñano, P. Benítez, W. Lin, J. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express 17(26), 24036–24044 (2009).
[Crossref] [PubMed]

Z. Zhu, D. Ma, Q. Hu, Y. Tang, and R. Liang, “Catadioptric freeform optical system design for LED off-axis road illumination applications,” Opt. Express 26(2), A54–A65 (2018).
[Crossref] [PubMed]

R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).
[Crossref] [PubMed]

J. W. Pan, C. Che-Wen, K. D. Huang, and C. Y. Wu, “Demonstration of a broad band spectral head-mounted display with freeform mirrors,” Opt. Express 22(11), 12785–12798 (2014).
[Crossref] [PubMed]

A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays,” Opt. Express 22(11), 13155–13163 (2014).
[Crossref] [PubMed]

A. Bauer and J. P. Rolland, “Design of a freeform electronic viewfinder coupled to aberration fields of freeform optics,” Opt. Express 23(22), 28141–28153 (2015).
[Crossref] [PubMed]

T. Yang, J. Zhu, W. Hou, and G. Jin, “Design method of freeform off-axis reflective imaging systems with a direct construction process,” Opt. Express 22(8), 9193–9205 (2014).
[Crossref] [PubMed]

T. Gong, G. Jin, and J. Zhu, “Point-by-point design method for mixed-surface-type off-axis reflective imaging systems with spherical, aspheric, and freeform surfaces,” Opt. Express 25(9), 10663–10676 (2017).
[Crossref] [PubMed]

K. P. Thompson, T. Schmid, and J. P. Rolland, “The misalignment induced aberrations of TMA telescopes,” Opt. Express 16(25), 20345–20353 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (2)

G. Moretto, M. P. Langlois, and M. Ferrari, “Suitable off-axis space-based telescope designs,” Proc. SPIE 5487, 1111–1119 (2004).
[Crossref]

K. P. Thompson, E. Schiesser, and J. P. Rolland, “Why are freeform telescopes less alignment sensitive than a traditional unobscured TMA?” Proc. SPIE 9633, 963317 (2015).
[Crossref]

Other (1)

Code V Reference Manual, Synopsys Inc. (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The calculation of N1.
Fig. 2
Fig. 2 The flow diagram for the design process.
Fig. 3
Fig. 3 The initial plane system P1.
Fig. 4
Fig. 4 Assembly sensitivities of the primary, secondary and tertiary mirrors of the spherical system SSS1(n) (n = 1, 2,…, 25).
Fig. 5
Fig. 5 Process of evolving system SSS1(n) into systems SFS1(n) and SSF1(n) (n = 1, 2,…, 25).
Fig. 6
Fig. 6 Assembly sensitivities of freeform surfaces of mixed-surface-type systems SSF1(n) and SFS1(n) (n = 1, 2,…, 25).
Fig. 7
Fig. 7 Construction and evolution to obtain systems FSF1(n) and FSF2(n) (n = 1, 2,…, 25).
Fig. 8
Fig. 8 Total assembly sensitivities of mixed-surface-type systems FSF1(n) and FSF2(n) (n = 1,2,…,25).
Fig. 9
Fig. 9 Initial systems and systems after optimization. (a) System FSF1(5). (b) The geometry and RMS spot diameter for system FSF1(5)opt. (c) System FSF1(25). (d) The geometry and RMS spot diameter for system FSF1(25)opt. (e) System FSF2(5). (f) The geometry and RMS spot diameter for system FSF2(5)opt.

Tables (4)

Tables Icon

Table 1 Specifications of the Optical System

Tables Icon

Table 2 Assembly Sensitivities of Initial Systems

Tables Icon

Table 3 Assembly Sensitivities of Systems after Optimization

Tables Icon

Table 4 Surface Parameters of System FSF1(5)opt

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ RMS = m=1 K σ m 2 K ,
RS S f = i=1 6 (Δ w i ) 2
RS S s = f=1 F RS S f F
RS S all = s=1 S RS S s
Difficult y all = s=1 S W s RS S s ,
z(x,y)= c( x 2 + y 2 ) 1+ 1(1+k) c 2 ( x 2 + y 2 ) + A 2 y+ A 3 x 2 + A 5 y 2 + A 7 x 2 y + A 9 y 3 + A 10 x 4 + A 12 x 2 y 2 + A 14 y 4 ,

Metrics