Abstract

An efficient preparation process for Al hole array structures emitting wavelength-selective thermal radiation that is based on the anisotropic anodic etching of Al was demonstrated. The formation of an ordered hole array was achieved by a masking process prior to the anodic etching. The present process allows the preparation of large samples because the masking of the Al foil has a high throughput owing to the simple printing process using a flexible stamp. The thermal radiation properties of the Al hole array could be controlled by adjusting the depth and aperture size of the holes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Control of optical transmission through metals perforated with subwavelength hole arrays

Tae Jin Kim, Tineke Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec
Opt. Lett. 24(4) 256-258 (1999)

Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials

E. Shkondin, O. Takayama, M. E. Aryaee Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko
Opt. Mater. Express 7(5) 1606-1627 (2017)

Shaping single emitter emission with metallic hole arrays: strong focusing of dipolar radiation

Robert J. Moerland, Lur Eguiluz, and Matti Kaivola
Opt. Express 21(4) 4578-4590 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Planck, The Theory of Heat Radiation (Dover Publications, 1959).
  2. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  3. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
    [Crossref] [PubMed]
  4. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
    [Crossref] [PubMed]
  5. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [Crossref] [PubMed]
  6. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
    [Crossref]
  7. F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities,” Jpn. J. Appl. Phys. 43(8A), 5253–5258 (2004).
    [Crossref]
  8. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [Crossref]
  9. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  10. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
    [Crossref] [PubMed]
  11. W. Li and S. Fan, “Nanophotonic control of thermal radiation for energy applications [Invited],” Opt. Express 26(12), 15995–16021 (2018).
    [Crossref] [PubMed]
  12. P. Bermel, S. V. Boriskina, Z. Yu, and K. Joulain, “Control of radiative processes for energy conversion and harvesting,” Opt. Express 23(24), A1533–A1540 (2015).
    [Crossref] [PubMed]
  13. M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, and M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18(2), 5–10 (1994).
    [Crossref]
  14. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
    [Crossref]
  15. M. Shimizu and H. Yugami, “Thermal radiation control by surface gratings as an advanced cooling system for electronic devices,” J. Therm. Sci. Technol. 6(2), 297–306 (2011).
    [Crossref]
  16. H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
    [Crossref]
  17. S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
    [Crossref]
  18. M. Hasumi and H. Yugami, “Development of solar selective absorbers and sky radiators based on two-dimensional diffractive grating surfaces,” Proc. SPIE 6197, 61970V (2006).
    [Crossref]
  19. D. Korobkin, Y. A. Urzhumov, B. Neuner, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons,” Appl. Phys., A Mater. Sci. Process. 88(4), 605–609 (2007).
    [Crossref]
  20. Y. Fu and N. K. A. Bryan, “Investigation of aspect ratio of hole drilling from micro to nanoscale via focused ion beam fine milling,” http://hdl.handle.net/1721.1/7450 (2005).
  21. R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, “Electrochemical tunnel etching of aluminum,” J. Electrochem. Soc. 131(1), 13–17 (1984).
    [Crossref]
  22. K. Hebert and R. Alkire, “Growth rates of aluminum etch tunnels,” J. Electrochem. Soc. 135(10), 2447–2452 (1988).
    [Crossref]
  23. K. Nishio, T. Fukushima, and H. Masuda, “Control of pitting sites on Al for electrolytic capacitors using patterned masking film,” Electrochem. Solid-State Lett. 9(9), B39–B41 (2006).
    [Crossref]
  24. T. Fukushima, K. Nishio, and H. Masuda, “Optimization of etching conditions for site-controlled tunnel pits with high aspect ratios in Al foil,” J. Electrochem. Soc. 157(4), C137–C139 (2010).
    [Crossref]
  25. T. Fukushima, K. Nishio, and H. Masuda, “Inkjet printing for site-controlled tunnel pitting with high aspect ratio in Al,” Electrochem. Solid-State Lett. 13(4), C9–C11 (2010).
    [Crossref]

2018 (1)

2015 (1)

2013 (1)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

2011 (2)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

M. Shimizu and H. Yugami, “Thermal radiation control by surface gratings as an advanced cooling system for electronic devices,” J. Therm. Sci. Technol. 6(2), 297–306 (2011).
[Crossref]

2010 (2)

T. Fukushima, K. Nishio, and H. Masuda, “Optimization of etching conditions for site-controlled tunnel pits with high aspect ratios in Al foil,” J. Electrochem. Soc. 157(4), C137–C139 (2010).
[Crossref]

T. Fukushima, K. Nishio, and H. Masuda, “Inkjet printing for site-controlled tunnel pitting with high aspect ratio in Al,” Electrochem. Solid-State Lett. 13(4), C9–C11 (2010).
[Crossref]

2007 (1)

D. Korobkin, Y. A. Urzhumov, B. Neuner, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons,” Appl. Phys., A Mater. Sci. Process. 88(4), 605–609 (2007).
[Crossref]

2006 (2)

M. Hasumi and H. Yugami, “Development of solar selective absorbers and sky radiators based on two-dimensional diffractive grating surfaces,” Proc. SPIE 6197, 61970V (2006).
[Crossref]

K. Nishio, T. Fukushima, and H. Masuda, “Control of pitting sites on Al for electrolytic capacitors using patterned masking film,” Electrochem. Solid-State Lett. 9(9), B39–B41 (2006).
[Crossref]

2004 (2)

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
[Crossref]

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities,” Jpn. J. Appl. Phys. 43(8A), 5253–5258 (2004).
[Crossref]

2003 (3)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
[Crossref]

2002 (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

2001 (1)

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[Crossref]

1994 (1)

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, and M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18(2), 5–10 (1994).
[Crossref]

1988 (2)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[Crossref] [PubMed]

K. Hebert and R. Alkire, “Growth rates of aluminum etch tunnels,” J. Electrochem. Soc. 135(10), 2447–2452 (1988).
[Crossref]

1986 (1)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[Crossref] [PubMed]

1984 (1)

R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, “Electrochemical tunnel etching of aluminum,” J. Electrochem. Soc. 131(1), 13–17 (1984).
[Crossref]

Abelson, J. R.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Alkire, R.

K. Hebert and R. Alkire, “Growth rates of aluminum etch tunnels,” J. Electrochem. Soc. 135(10), 2447–2452 (1988).
[Crossref]

Alkire, R. C.

R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, “Electrochemical tunnel etching of aluminum,” J. Electrochem. Soc. 131(1), 13–17 (1984).
[Crossref]

Alwitt, R. S.

R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, “Electrochemical tunnel etching of aluminum,” J. Electrochem. Soc. 131(1), 13–17 (1984).
[Crossref]

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Beck, T. R.

R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, “Electrochemical tunnel etching of aluminum,” J. Electrochem. Soc. 131(1), 13–17 (1984).
[Crossref]

Bermel, P.

Boriskina, S. V.

Braun, P. V.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Esashi, M.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[Crossref]

Fan, S.

W. Li and S. Fan, “Nanophotonic control of thermal radiation for energy applications [Invited],” Opt. Express 26(12), 15995–16021 (2018).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Fujioka, T.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, and M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18(2), 5–10 (1994).
[Crossref]

Fukumoto, S.

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities,” Jpn. J. Appl. Phys. 43(8A), 5253–5258 (2004).
[Crossref]

Fukushima, H.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, and M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18(2), 5–10 (1994).
[Crossref]

Fukushima, T.

T. Fukushima, K. Nishio, and H. Masuda, “Optimization of etching conditions for site-controlled tunnel pits with high aspect ratios in Al foil,” J. Electrochem. Soc. 157(4), C137–C139 (2010).
[Crossref]

T. Fukushima, K. Nishio, and H. Masuda, “Inkjet printing for site-controlled tunnel pitting with high aspect ratio in Al,” Electrochem. Solid-State Lett. 13(4), C9–C11 (2010).
[Crossref]

K. Nishio, T. Fukushima, and H. Masuda, “Control of pitting sites on Al for electrolytic capacitors using patterned masking film,” Electrochem. Solid-State Lett. 9(9), B39–B41 (2006).
[Crossref]

Gebhart, B.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[Crossref] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[Crossref] [PubMed]

Girolami, G. S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Greffet, J.-J.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Hane, K.

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
[Crossref]

Hasumi, M.

M. Hasumi and H. Yugami, “Development of solar selective absorbers and sky radiators based on two-dimensional diffractive grating surfaces,” Proc. SPIE 6197, 61970V (2006).
[Crossref]

Hebert, K.

K. Hebert and R. Alkire, “Growth rates of aluminum etch tunnels,” J. Electrochem. Soc. 135(10), 2447–2452 (1988).
[Crossref]

Hesketh, P. J.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[Crossref] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[Crossref] [PubMed]

Hiroshima, T.

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities,” Jpn. J. Appl. Phys. 43(8A), 5253–5258 (2004).
[Crossref]

Inoue, T.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, and M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18(2), 5–10 (1994).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Joulain, K.

P. Bermel, S. V. Boriskina, Z. Yu, and K. Joulain, “Control of radiative processes for energy conversion and harvesting,” Opt. Express 23(24), A1533–A1540 (2015).
[Crossref] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Kanamori, Y.

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Kashiwa, T.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[Crossref]

Kobayashi, T.

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities,” Jpn. J. Appl. Phys. 43(8A), 5253–5258 (2004).
[Crossref]

Kohama, T.

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities,” Jpn. J. Appl. Phys. 43(8A), 5253–5258 (2004).
[Crossref]

Korobkin, D.

D. Korobkin, Y. A. Urzhumov, B. Neuner, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons,” Appl. Phys., A Mater. Sci. Process. 88(4), 605–609 (2007).
[Crossref]

Kusunoki, F.

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities,” Jpn. J. Appl. Phys. 43(8A), 5253–5258 (2004).
[Crossref]

Li, W.

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Maruyama, S.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[Crossref]

Masuda, H.

T. Fukushima, K. Nishio, and H. Masuda, “Optimization of etching conditions for site-controlled tunnel pits with high aspect ratios in Al foil,” J. Electrochem. Soc. 157(4), C137–C139 (2010).
[Crossref]

T. Fukushima, K. Nishio, and H. Masuda, “Inkjet printing for site-controlled tunnel pitting with high aspect ratio in Al,” Electrochem. Solid-State Lett. 13(4), C9–C11 (2010).
[Crossref]

K. Nishio, T. Fukushima, and H. Masuda, “Control of pitting sites on Al for electrolytic capacitors using patterned masking film,” Electrochem. Solid-State Lett. 9(9), B39–B41 (2006).
[Crossref]

Matsushima, T.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, and M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18(2), 5–10 (1994).
[Crossref]

Mayergoyz, I. D.

D. Korobkin, Y. A. Urzhumov, B. Neuner, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons,” Appl. Phys., A Mater. Sci. Process. 88(4), 605–609 (2007).
[Crossref]

Mizuyama, Y.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, and M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18(2), 5–10 (1994).
[Crossref]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Neuner, B.

D. Korobkin, Y. A. Urzhumov, B. Neuner, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons,” Appl. Phys., A Mater. Sci. Process. 88(4), 605–609 (2007).
[Crossref]

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Nishio, K.

T. Fukushima, K. Nishio, and H. Masuda, “Inkjet printing for site-controlled tunnel pitting with high aspect ratio in Al,” Electrochem. Solid-State Lett. 13(4), C9–C11 (2010).
[Crossref]

T. Fukushima, K. Nishio, and H. Masuda, “Optimization of etching conditions for site-controlled tunnel pits with high aspect ratios in Al foil,” J. Electrochem. Soc. 157(4), C137–C139 (2010).
[Crossref]

K. Nishio, T. Fukushima, and H. Masuda, “Control of pitting sites on Al for electrolytic capacitors using patterned masking film,” Electrochem. Solid-State Lett. 9(9), B39–B41 (2006).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Sai, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
[Crossref]

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Shimizu, M.

M. Shimizu and H. Yugami, “Thermal radiation control by surface gratings as an advanced cooling system for electronic devices,” J. Therm. Sci. Technol. 6(2), 297–306 (2011).
[Crossref]

Shvets, G.

D. Korobkin, Y. A. Urzhumov, B. Neuner, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons,” Appl. Phys., A Mater. Sci. Process. 88(4), 605–609 (2007).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Sugimoto, M.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, and M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18(2), 5–10 (1994).
[Crossref]

Takahara, J.

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities,” Jpn. J. Appl. Phys. 43(8A), 5253–5258 (2004).
[Crossref]

Toho, M.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, and M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18(2), 5–10 (1994).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Uchi, H.

R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, “Electrochemical tunnel etching of aluminum,” J. Electrochem. Soc. 131(1), 13–17 (1984).
[Crossref]

Ukegawa, S.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, and M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18(2), 5–10 (1994).
[Crossref]

Urzhumov, Y. A.

D. Korobkin, Y. A. Urzhumov, B. Neuner, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons,” Appl. Phys., A Mater. Sci. Process. 88(4), 605–609 (2007).
[Crossref]

Yu, Z.

P. Bermel, S. V. Boriskina, Z. Yu, and K. Joulain, “Control of radiative processes for energy conversion and harvesting,” Opt. Express 23(24), A1533–A1540 (2015).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Yugami, H.

M. Shimizu and H. Yugami, “Thermal radiation control by surface gratings as an advanced cooling system for electronic devices,” J. Therm. Sci. Technol. 6(2), 297–306 (2011).
[Crossref]

M. Hasumi and H. Yugami, “Development of solar selective absorbers and sky radiators based on two-dimensional diffractive grating surfaces,” Proc. SPIE 6197, 61970V (2006).
[Crossref]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
[Crossref]

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[Crossref]

Zemel, J. N.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[Crossref] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[Crossref] [PubMed]

Zhang, Z.

D. Korobkin, Y. A. Urzhumov, B. Neuner, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons,” Appl. Phys., A Mater. Sci. Process. 88(4), 605–609 (2007).
[Crossref]

Zhu, L.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Zorman, C.

D. Korobkin, Y. A. Urzhumov, B. Neuner, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons,” Appl. Phys., A Mater. Sci. Process. 88(4), 605–609 (2007).
[Crossref]

Appl. Phys. Lett. (4)

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
[Crossref]

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. Korobkin, Y. A. Urzhumov, B. Neuner, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons,” Appl. Phys., A Mater. Sci. Process. 88(4), 605–609 (2007).
[Crossref]

Electrochem. Solid-State Lett. (2)

K. Nishio, T. Fukushima, and H. Masuda, “Control of pitting sites on Al for electrolytic capacitors using patterned masking film,” Electrochem. Solid-State Lett. 9(9), B39–B41 (2006).
[Crossref]

T. Fukushima, K. Nishio, and H. Masuda, “Inkjet printing for site-controlled tunnel pitting with high aspect ratio in Al,” Electrochem. Solid-State Lett. 13(4), C9–C11 (2010).
[Crossref]

J. Electrochem. Soc. (3)

T. Fukushima, K. Nishio, and H. Masuda, “Optimization of etching conditions for site-controlled tunnel pits with high aspect ratios in Al foil,” J. Electrochem. Soc. 157(4), C137–C139 (2010).
[Crossref]

R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, “Electrochemical tunnel etching of aluminum,” J. Electrochem. Soc. 131(1), 13–17 (1984).
[Crossref]

K. Hebert and R. Alkire, “Growth rates of aluminum etch tunnels,” J. Electrochem. Soc. 135(10), 2447–2452 (1988).
[Crossref]

J. Light Visual Environ. (1)

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, and M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18(2), 5–10 (1994).
[Crossref]

J. Therm. Sci. Technol. (1)

M. Shimizu and H. Yugami, “Thermal radiation control by surface gratings as an advanced cooling system for electronic devices,” J. Therm. Sci. Technol. 6(2), 297–306 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities,” Jpn. J. Appl. Phys. 43(8A), 5253–5258 (2004).
[Crossref]

Nat. Commun. (1)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Nature (2)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B Condens. Matter (1)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Hasumi and H. Yugami, “Development of solar selective absorbers and sky radiators based on two-dimensional diffractive grating surfaces,” Proc. SPIE 6197, 61970V (2006).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
[Crossref]

Other (3)

Y. Fu and N. K. A. Bryan, “Investigation of aspect ratio of hole drilling from micro to nanoscale via focused ion beam fine milling,” http://hdl.handle.net/1721.1/7450 (2005).

M. Planck, The Theory of Heat Radiation (Dover Publications, 1959).

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Fabrication process of a straight hole array by anisotropic anodic etching of Al by a masking process. Lx and Ly are the aperture sizes of the hole and Lz is the depth of the hole.
Fig. 2
Fig. 2 (a) Polychloroprene mask formed on Al surface. The diameter of the apertures and the interval between the apertures in the polychloroprene mask were 3μm and 5μm, respectively. (b) Frontal and (c) cross-sectional views of an etched Al foil. The side length of the square holes and the interval between the holes were 3.2μm and 5μm, respectively. The depth of the holes was 2.5μm.
Fig. 3
Fig. 3 (a) Measured and (b) simulated emissivity spectra of the etched Al foil and smooth Al surface. Gray lines show the resonant wavelengths calculated using Eq. (1).
Fig. 4
Fig. 4 Cross-sectional images of distribution of time-averaged Ex-field intensity ratio relative to the incident light simulated by the RCWA method at resonant wavelengths of (a) 5.39μm, and (b) 2.96μm.
Fig. 5
Fig. 5 (a)-(d) Cross-sectional SEM images and (e)-(h) emissivity spectra of hole arrays having different hole depths. The hole depths were (a),(e) 1μm, (b),(f) 2.5μm, (c),(g) 5.4μm, (d),(f) 9.0μm. The side length of the square holes and the interval between the holes were 3.2μm and 5μm, respectively. The durations of anodic etching were (a),(e) 1s, (b),(f) 3s, (c),(g) 5s, (d),(h) 10s.
Fig. 6
Fig. 6 SEM images of ordered hole arrays having different aperture sizes. The side lengths of the holes were (a) 5.0μm, (b) 2.0μm, (c) 0.7μm.
Fig. 7
Fig. 7 (a) Emissivity spectra of the etched Al foils having different aperture sizes. The aperture size was controlled from 0.7μm to 5.0μm. (b) Dependence of the wavelength at which the emissivity starts to increase on the aperture size of the holes.

Tables (1)

Tables Icon

Table 1 Conditions of anodic etching process

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ r = 2 ( l L x ) 2 + ( m L y ) 2 + ( n L z ) 2 ,

Metrics