Abstract

Silicon-on-chip photonic circuits are among some very promising platforms for generating nonclassical photonic quantum state, because of its low loss, small footprint, and compatibility with complementary metal–oxide–semiconductor (CMOS) and telecommunications techniques. Dense wavelength division multiplexing (DWDM) is a leading technique for enhancing the transmission capacity of both classical and quantum communications. To bridge the frequency gap between silicon-chip and other quantum systems, such as quantum memories, a quantum interface is indispensable. Here, we demonstrate a quantum interface for multiplexed energy-time entanglement states, which are generated on a silicon micro-ring cavity that is based on frequency up-conversion. By switching the pump wavelength, energy-time entanglement from any channel can be selected at will after being up-converted. The high visibilities of two-photon interference over three channels after frequency up-conversion clearly prove that the entanglement is fully preserved during the quantum frequency conversion (QFC) process. Our work provides new perspectives regarding channel capacity enhancement in quantum communications and for quantum resources being transferred between two different quantum systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement

Wen-Tan Fang, Yin-Hai Li, Zhi-Yuan Zhou, Li-Xin Xu, Guang-Can Guo, and Bao-Sen Shi
Opt. Express 26(10) 12912-12921 (2018)

High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, É. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli
Opt. Express 24(25) 28731-28738 (2016)

Ion–photon entanglement and quantum frequency conversion with trapped Ba+ ions

J. D. Siverns, X. Li, and Q. Quraishi
Appl. Opt. 56(3) B222-B230 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  2. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
    [Crossref]
  3. B. B. Blinov, D. L. Moehring, L. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
    [Crossref] [PubMed]
  4. O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425(6961), 937–940 (2003).
    [Crossref] [PubMed]
  5. D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306(5696), 663–666 (2004).
    [Crossref] [PubMed]
  6. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
    [Crossref]
  7. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
    [Crossref] [PubMed]
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  9. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [Crossref] [PubMed]
  10. Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
    [Crossref] [PubMed]
  11. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
    [Crossref] [PubMed]
  12. Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
    [Crossref]
  13. J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13(19), 7572–7582 (2005).
    [Crossref] [PubMed]
  14. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
    [Crossref] [PubMed]
  15. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2(2), 88–94 (2015).
    [Crossref]
  16. F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, É. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High quality entanglement on a chip-based frequency comb,” Opt. Express 24(25), 28731–28738 (2016).
    [Crossref] [PubMed]
  17. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
    [Crossref]
  18. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [Crossref] [PubMed]
  19. J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z. Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4(6), 655–658 (2017).
    [Crossref]
  20. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
    [Crossref] [PubMed]
  21. X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
    [Crossref]
  22. J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
    [Crossref] [PubMed]
  23. L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
    [Crossref]
  24. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
    [Crossref] [PubMed]
  25. Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
    [Crossref]
  26. J. Wang, E. Polizzi, and M. Lundstrom, “A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation,” J. Appl. Phys. 96(4), 2192–2203 (2004).
    [Crossref]
  27. R. Raussendorf and J. Harrington, “Fault-tolerant quantum computation with high threshold in two dimensions,” Phys. Rev. Lett. 98(19), 190504 (2007).
    [Crossref] [PubMed]
  28. M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
    [Crossref] [PubMed]
  29. N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
    [Crossref]
  30. N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
    [Crossref] [PubMed]
  31. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
    [Crossref] [PubMed]
  32. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
    [Crossref] [PubMed]
  33. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
    [Crossref]
  34. M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
    [Crossref] [PubMed]
  35. Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
    [Crossref] [PubMed]
  36. Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5(1), e16019 (2016).
    [Crossref] [PubMed]
  37. Z. Y. Zhou, S. L. Liu, S. K. Liu, H. Y. Li, D. S. Ding, G. C. Guo, and B. S. Shi, “Superresolving phase measurement with short-wavelength NOON states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
    [Crossref]
  38. T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
    [Crossref] [PubMed]
  39. R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
    [Crossref] [PubMed]
  40. M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
    [Crossref] [PubMed]
  41. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [Crossref] [PubMed]
  42. E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11(11), 113042 (2009).
    [Crossref]
  43. L. Yang, F. Sun, N. Zhao, and X. Li, “Generation of frequency degenerate twin photons in pulse pumped fiber optical parametric amplifiers: Influence of background noise,” Opt. Express 22(3), 2553–2561 (2014).
    [Crossref] [PubMed]
  44. A. S. Clark, M. J. Collins, A. C. Judge, E. C. Mägi, C. Xiong, and B. J. Eggleton, “Raman scattering effects on correlated photon-pair generation in chalcogenide,” Opt. Express 20(15), 16807–16814 (2012).
    [Crossref]
  45. S. L. Liu, S. K. Liu, Y. H. Li, S. Shi, Z. Y. Zhou, and B. S. Shi, “Coherent frequency bridge between visible and telecommunications band for vortex light,” Opt. Express 25(20), 24290–24298 (2017).
    [Crossref] [PubMed]
  46. T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
    [Crossref]
  47. D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
    [Crossref] [PubMed]
  48. X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
    [Crossref] [PubMed]
  49. Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10(6), 406–414 (2016).
    [Crossref]
  50. S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
    [Crossref]

2018 (6)

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
[Crossref] [PubMed]

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref] [PubMed]

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

2017 (6)

S. L. Liu, S. K. Liu, Y. H. Li, S. Shi, Z. Y. Zhou, and B. S. Shi, “Coherent frequency bridge between visible and telecommunications band for vortex light,” Opt. Express 25(20), 24290–24298 (2017).
[Crossref] [PubMed]

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Z. Y. Zhou, S. L. Liu, S. K. Liu, H. Y. Li, D. S. Ding, G. C. Guo, and B. S. Shi, “Superresolving phase measurement with short-wavelength NOON states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z. Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4(6), 655–658 (2017).
[Crossref]

2016 (8)

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, É. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High quality entanglement on a chip-based frequency comb,” Opt. Express 24(25), 28731–28738 (2016).
[Crossref] [PubMed]

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5(1), e16019 (2016).
[Crossref] [PubMed]

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[Crossref] [PubMed]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10(6), 406–414 (2016).
[Crossref]

2015 (3)

2014 (3)

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

L. Yang, F. Sun, N. Zhao, and X. Li, “Generation of frequency degenerate twin photons in pulse pumped fiber optical parametric amplifiers: Influence of background noise,” Opt. Express 22(3), 2553–2561 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (1)

N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

2010 (1)

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

2009 (2)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11(11), 113042 (2009).
[Crossref]

2008 (1)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

2007 (2)

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[Crossref] [PubMed]

R. Raussendorf and J. Harrington, “Fault-tolerant quantum computation with high threshold in two dimensions,” Phys. Rev. Lett. 98(19), 190504 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (3)

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13(19), 7572–7582 (2005).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

2004 (5)

J. Wang, E. Polizzi, and M. Lundstrom, “A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation,” J. Appl. Phys. 96(4), 2192–2203 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

B. B. Blinov, D. L. Moehring, L. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
[Crossref] [PubMed]

D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306(5696), 663–666 (2004).
[Crossref] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[Crossref] [PubMed]

2003 (1)

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425(6961), 937–940 (2003).
[Crossref] [PubMed]

2002 (1)

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[Crossref] [PubMed]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

1998 (1)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

1992 (1)

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[Crossref] [PubMed]

1980 (1)

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Acín, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Agrawal, G. P.

Aktas, D.

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13(19), 7572–7582 (2005).
[Crossref] [PubMed]

Allgaier, M.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Almeida, V. R.

Ansari, V.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Augusiak, R.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Azaña, J.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

Azzini, S.

Bacco, D.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Bajoni, D.

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Becher, C.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref] [PubMed]

Belabas-Plougonven, N.

Bentivegna, M.

Blinov, B. B.

B. B. Blinov, D. L. Moehring, L. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
[Crossref] [PubMed]

Bloch, I.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425(6961), 937–940 (2003).
[Crossref] [PubMed]

Bock, M.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref] [PubMed]

Bonneau, D.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Brecht, B.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[Crossref]

Bromberg, Y.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Caspani, L.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Cassan, É.

Chu, S. T.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Cino, A.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

Clark, A. S.

Clerici, M.

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Collins, D.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[Crossref] [PubMed]

Collins, M. J.

Cortés, L. R.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

Couillaud, B.

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Davanço, M.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10(6), 406–414 (2016).
[Crossref]

De Riedmatten, H.

N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

Ding, D. S.

Z. Y. Zhou, S. L. Liu, S. K. Liu, H. Y. Li, D. S. Ding, G. C. Guo, and B. S. Shi, “Superresolving phase measurement with short-wavelength NOON states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5(1), e16019 (2016).
[Crossref] [PubMed]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref] [PubMed]

Ding, Y.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Dong, M. X.

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Duan, L.

B. B. Blinov, D. L. Moehring, L. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
[Crossref] [PubMed]

Eggleton, B. J.

Eich, P.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref] [PubMed]

Eigner, C.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Eschner, J.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref] [PubMed]

Ezaki, M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Fang, W. T.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Feng, L. T.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Ferrera, M.

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Foster, M. A.

Fulconis, J.

Gaeta, A. L.

Galli, M.

George, M.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Gisin, N.

N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11(11), 113042 (2009).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[Crossref]

Gong, Q.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Grassani, D.

Grazioso, F.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Greiner, M.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425(6961), 937–940 (2003).
[Crossref] [PubMed]

Guo, G. C.

Z. Y. Zhou, S. L. Liu, S. K. Liu, H. Y. Li, D. S. Ding, G. C. Guo, and B. S. Shi, “Superresolving phase measurement with short-wavelength NOON states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5(1), e16019 (2016).
[Crossref] [PubMed]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Guo, X.

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[Crossref] [PubMed]

Hadfield, R. H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Han, Z. H.

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Hansch, T. W.

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Hänsch, T. W.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425(6961), 937–940 (2003).
[Crossref] [PubMed]

Harder, G.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Harrington, J.

R. Raussendorf and J. Harrington, “Fault-tolerant quantum computation with high threshold in two dimensions,” Phys. Rev. Lett. 98(19), 190504 (2007).
[Crossref] [PubMed]

Hayasaka, K.

T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
[Crossref] [PubMed]

Hedges, M. P.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Huang, J.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[Crossref] [PubMed]

Iizuka, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Ikuta, R.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
[Crossref] [PubMed]

Imany, P.

Imoto, N.

T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
[Crossref] [PubMed]

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Jaramillo-Villegas, J. A.

Jestin, Y.

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Johnston, T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Judge, A. C.

Jung, H.

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[Crossref] [PubMed]

Kaiser, F.

Kawakami, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Keller, M.

T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
[Crossref] [PubMed]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Kling, L.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Koashi, M.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Kobayashi, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Kreis, M.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref] [PubMed]

Kucera, S.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref] [PubMed]

Kues, M.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Kumar, P.

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref] [PubMed]

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[Crossref] [PubMed]

Kuzmich, A.

D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306(5696), 663–666 (2004).
[Crossref] [PubMed]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Labonté, L.

Laing, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Le Roux, X.

Leaird, D. E.

Lee, K. F.

Legré, M.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

Lenhard, A.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref] [PubMed]

Li, H. Y.

Z. Y. Zhou, S. L. Liu, S. K. Liu, H. Y. Li, D. S. Ding, G. C. Guo, and B. S. Shi, “Superresolving phase measurement with short-wavelength NOON states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Li, Q.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10(6), 406–414 (2016).
[Crossref]

Li, X.

L. Yang, F. Sun, N. Zhao, and X. Li, “Generation of frequency degenerate twin photons in pulse pumped fiber optical parametric amplifiers: Influence of background noise,” Opt. Express 22(3), 2553–2561 (2014).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref] [PubMed]

Li, Y.

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5(1), e16019 (2016).
[Crossref] [PubMed]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref] [PubMed]

Li, Y. H.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

S. L. Liu, S. K. Liu, Y. H. Li, S. Shi, Z. Y. Zhou, and B. S. Shi, “Coherent frequency bridge between visible and telecommunications band for vortex light,” Opt. Express 25(20), 24290–24298 (2017).
[Crossref] [PubMed]

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Lin, Q.

Linden, N.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[Crossref] [PubMed]

Lipson, M.

Liscidini, M.

Little, B. E.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Liu, S.

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Liu, S. K.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

S. L. Liu, S. K. Liu, Y. H. Li, S. Shi, Z. Y. Zhou, and B. S. Shi, “Coherent frequency bridge between visible and telecommunications band for vortex light,” Opt. Express 25(20), 24290–24298 (2017).
[Crossref] [PubMed]

Z. Y. Zhou, S. L. Liu, S. K. Liu, H. Y. Li, D. S. Ding, G. C. Guo, and B. S. Shi, “Superresolving phase measurement with short-wavelength NOON states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Liu, S. L.

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

S. L. Liu, S. K. Liu, Y. H. Li, S. Shi, Z. Y. Zhou, and B. S. Shi, “Coherent frequency bridge between visible and telecommunications band for vortex light,” Opt. Express 25(20), 24290–24298 (2017).
[Crossref] [PubMed]

Z. Y. Zhou, S. L. Liu, S. K. Liu, H. Y. Li, D. S. Ding, G. C. Guo, and B. S. Shi, “Superresolving phase measurement with short-wavelength NOON states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Loke, T.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Lundstrom, M.

J. Wang, E. Polizzi, and M. Lundstrom, “A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation,” J. Appl. Phys. 96(4), 2192–2203 (2004).
[Crossref]

Lunghi, T.

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Ma, L.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Mägi, E. C.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Mallahzadeh, H.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Mancinska, L.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Mandel, O.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425(6961), 937–940 (2003).
[Crossref] [PubMed]

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

Marris-Morini, D.

Marshall, G. D.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Massar, S.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[Crossref] [PubMed]

Matsukevich, D. N.

D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306(5696), 663–666 (2004).
[Crossref] [PubMed]

Matthews, G. C. F.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Mazeas, F.

Miki, S.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Miyanishi, K.

T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
[Crossref] [PubMed]

Moehring, D. L.

B. B. Blinov, D. L. Moehring, L. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
[Crossref] [PubMed]

Monroe, C.

B. B. Blinov, D. L. Moehring, L. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
[Crossref] [PubMed]

Morandotti, R.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Moss, D. J.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Mukai, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Natarajan, C. M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Ngah, L. A.

O’Brien, J. L.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

O’Gara, S.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Oblak, D.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Odele, O. D.

Ohira, K.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Ou, Z. Y.

Oxenløwe, L. K.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Paesani, S.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Painter, O. J.

Pasquazi, A.

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Peccianti, M.

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Picholle, É.

Polizzi, E.

J. Wang, E. Polizzi, and M. Lundstrom, “A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation,” J. Appl. Phys. 96(4), 2192–2203 (2004).
[Crossref]

Pomarico, E.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11(11), 113042 (2009).
[Crossref]

Popescu, S.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[Crossref] [PubMed]

Qi, M.

Qiang, X.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Quiring, V.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Rakher, M. T.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Ralph, T. C.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Ramos, C. A.

Rarity, J.

Rarity, J. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Raussendorf, R.

R. Raussendorf and J. Harrington, “Fault-tolerant quantum computation with high threshold in two dimensions,” Phys. Rev. Lett. 98(19), 190504 (2007).
[Crossref] [PubMed]

Razzari, L.

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Reimer, C.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Ren, X. F.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Ricken, R.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Rom, T.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425(6961), 937–940 (2003).
[Crossref] [PubMed]

Rottwitt, K.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Roztocki, P.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Russell, P.

Saglamyurek, E.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Salavrakos, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Sangouard, N.

N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

Sanguinetti, B.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11(11), 113042 (2009).
[Crossref]

Sansoni, L.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Santagati, R.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

Sauder, G.

Schmidt, B. S.

Schreiber, G.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11(11), 113042 (2009).
[Crossref]

Sciara, S.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Sharping, J. E.

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref] [PubMed]

Shi, B.

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Shi, B. S.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Z. Y. Zhou, S. L. Liu, S. K. Liu, H. Y. Li, D. S. Ding, G. C. Guo, and B. S. Shi, “Superresolving phase measurement with short-wavelength NOON states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

S. L. Liu, S. K. Liu, Y. H. Li, S. Shi, Z. Y. Zhou, and B. S. Shi, “Coherent frequency bridge between visible and telecommunications band for vortex light,” Opt. Express 25(20), 24290–24298 (2017).
[Crossref] [PubMed]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5(1), e16019 (2016).
[Crossref] [PubMed]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref] [PubMed]

Shi, S.

S. L. Liu, S. K. Liu, Y. H. Li, S. Shi, Z. Y. Zhou, and B. S. Shi, “Coherent frequency bridge between visible and telecommunications band for vortex light,” Opt. Express 25(20), 24290–24298 (2017).
[Crossref] [PubMed]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5(1), e16019 (2016).
[Crossref] [PubMed]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Silberhorn, C.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Silverstone, J. W.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Simon, C.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

Sinclair, N.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Sipe, J. E.

Skrzypczyk, P.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Slater, J. A.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

Slattery, O.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Sohler, W.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11(11), 113042 (2009).
[Crossref]

Sorel, M.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2(2), 88–94 (2015).
[Crossref]

Srinivasan, K.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10(6), 406–414 (2016).
[Crossref]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Strain, M. J.

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2(2), 88–94 (2015).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

Sun, F.

Suzuki, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Takahashi, H.

T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
[Crossref] [PubMed]

Tang, H. X.

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[Crossref] [PubMed]

Tang, X.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Tanner, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Tanzilli, S.

Terai, H.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Thew, R.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11(11), 113042 (2009).
[Crossref]

Thomas, A.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11(11), 113042 (2009).
[Crossref]

Thompson, M. G.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Tittel, W.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[Crossref]

Traetta, M.

Tsujimoto, Y.

T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
[Crossref] [PubMed]

Tura, J.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

Turner, A. C.

Vartabi Kashanian, S.

T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
[Crossref] [PubMed]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Vivien, L.

Voss, P. L.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref] [PubMed]

Wadsworth, W.

Walker, T.

T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
[Crossref] [PubMed]

Wang, J.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

J. Wang, E. Polizzi, and M. Lundstrom, “A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation,” J. Appl. Phys. 96(4), 2192–2203 (2004).
[Crossref]

Wang, J. B.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Wang, K.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Weiner, A. M.

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Wetzel, B.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Widera, A.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425(6961), 937–940 (2003).
[Crossref] [PubMed]

Wilkes, C. M.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Xiong, C.

Xu, L. X.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Xu, Z. H.

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Yabuno, M.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Yamamoto, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
[Crossref] [PubMed]

Yamashita, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

Yang, L.

Yoshida, H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Zbinden, H.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11(11), 113042 (2009).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[Crossref]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Zhang, W.

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5(1), e16019 (2016).
[Crossref] [PubMed]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, É. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High quality entanglement on a chip-based frequency comb,” Opt. Express 24(25), 28731–28738 (2016).
[Crossref] [PubMed]

Zhang, Y.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

Zhao, N.

Zhou, X.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Zhou, Z.

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Zhou, Z. Y.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Z. Y. Zhou, S. L. Liu, S. K. Liu, H. Y. Li, D. S. Ding, G. C. Guo, and B. S. Shi, “Superresolving phase measurement with short-wavelength NOON states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

S. L. Liu, S. K. Liu, Y. H. Li, S. Shi, Z. Y. Zhou, and B. S. Shi, “Coherent frequency bridge between visible and telecommunications band for vortex light,” Opt. Express 25(20), 24290–24298 (2017).
[Crossref] [PubMed]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5(1), e16019 (2016).
[Crossref] [PubMed]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref] [PubMed]

Zou, C. L.

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[Crossref] [PubMed]

Zwiller, V.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

J. Appl. Phys. (1)

J. Wang, E. Polizzi, and M. Lundstrom, “A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation,” J. Appl. Phys. 96(4), 2192–2203 (2004).
[Crossref]

Light Sci. Appl. (1)

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5(1), e16019 (2016).
[Crossref] [PubMed]

Nanophotonics (1)

L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs,” Nanophotonics 5(2), 351–362 (2016).
[Crossref]

Nat. Commun. (4)

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, and N. Imoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref] [PubMed]

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref] [PubMed]

Nat. Photonics (5)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and G. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10(6), 406–414 (2016).
[Crossref]

Nature (6)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

B. B. Blinov, D. L. Moehring, L. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
[Crossref] [PubMed]

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425(6961), 937–940 (2003).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

New J. Phys. (1)

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11(11), 113042 (2009).
[Crossref]

Opt. Commun. (2)

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Opt. Express (8)

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref] [PubMed]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, É. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High quality entanglement on a chip-based frequency comb,” Opt. Express 24(25), 28731–28738 (2016).
[Crossref] [PubMed]

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13(19), 7572–7582 (2005).
[Crossref] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
[Crossref] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[Crossref] [PubMed]

A. S. Clark, M. J. Collins, A. C. Judge, E. C. Mägi, C. Xiong, and B. J. Eggleton, “Raman scattering effects on correlated photon-pair generation in chalcogenide,” Opt. Express 20(15), 16807–16814 (2012).
[Crossref]

L. Yang, F. Sun, N. Zhao, and X. Li, “Generation of frequency degenerate twin photons in pulse pumped fiber optical parametric amplifiers: Influence of background noise,” Opt. Express 22(3), 2553–2561 (2014).
[Crossref] [PubMed]

S. L. Liu, S. K. Liu, Y. H. Li, S. Shi, Z. Y. Zhou, and B. S. Shi, “Coherent frequency bridge between visible and telecommunications band for vortex light,” Opt. Express 25(20), 24290–24298 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (2)

Phys. Rev. A (Coll. Park) (1)

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Phys. Rev. Appl. (2)

Z. Y. Zhou, S. L. Liu, S. K. Liu, H. Y. Li, D. S. Ding, G. C. Guo, and B. S. Shi, “Superresolving phase measurement with short-wavelength NOON states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Phys. Rev. Lett. (11)

R. Raussendorf and J. Harrington, “Fault-tolerant quantum computation with high threshold in two dimensions,” Phys. Rev. Lett. 98(19), 190504 (2007).
[Crossref] [PubMed]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113(5), 053603 (2014).
[Crossref] [PubMed]

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[Crossref] [PubMed]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto, K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, “Long-distance single photon transmission from a trapped ion via quantum frequency conversion,” Phys. Rev. Lett. 120(20), 203601 (2018).
[Crossref] [PubMed]

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[Crossref] [PubMed]

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

Science (3)

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306(5696), 663–666 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The principle of multiplexed quantum interface and experimental setup for multiplexed energy-time entanglement generation and analysis. TA, tunable attenuator; Filters, DWDM filters; PC, polarization controller; FBS, fiber beam splitter; FRM, Faraday rotation mirror; APD1 and APD2, free-running InGaAs avalanched single photon detectors (ID220, ID Quantique SA).
Fig. 2
Fig. 2 Characteristics of multiplexed energy-time entangled photon pair source. (a) Transmission spectrum of the micro-ring resonator. The bottom part shows details of our source: spectrally-correlated photon pairs are generated in ITU-grid paired channels located symmetrically with respect to the pump channel. We relabeled them as I1-I3 and S1-S3. For detail definition of the central wavelength of the ITU grid, see Table 1 in the Appendix 5.1. (b) CAR as a function of pump power for channel pair S2-I2. (c) Raw and net visibilities for three channel pairs ranging from S1-I1 to S3-I3. (d-f) Two-photon interference fringes obtained with energy time entangled photons. The curves d, e, f show the coincidence counts for three channel pairs S1-I1, S2-I2, S3-I3 respectively. Error bars are evaluated assuming that the photon detection process obeys Poisson statistics.
Fig. 3
Fig. 3 Experimental setup of quantum interface for multiplexed entangled states from a silicon micro-ring resonator. (a) Multiplexed energy-time entangled photon source. TA, tunable attenuator; PC, polarization controller. (b) Free-Space UMI module. PD, photon detector; BS, beam splitter; APD3, Si avalanched single photon detector; Locking Beam, tunable 795 nm laser reference beam, aimed at locking the phase of free space UMI; KTP, potassium titanyl phosphate. (c) Cavity enhanced SFG module. The frequency conversion is performed in a bow-tie cavity, which resonates at 795 nm. M1-M4, cavity mirrors. Q(H)WP, quarter(half) wave plate; Locking Beam, tunable 795 nm laser SFG pump; PPLN, periodically-poled lithium niobate. (d) Fiber UMI module. FBS, fiber beam splitter; FRM, Faraday rotation mirror; APD1, free-running (In,Ga)As avalanched single photon detector, ID 220, ID Quantique SA.
Fig. 4
Fig. 4 Characteristics of multiplexed entangled states after up-conversion. (a) Power conversion efficiencies and quantum conversion efficiency of the SFG module versus different pump power. (b) CARs as a function of pump power for channel pairs I2-S’2. (c) Raw and net visibilities for three channel pairs ranging from I1 to I3. (d-f) Two-photon interference fringes obtained with entangled output photons. The curves d, e, f show the coincidence counts for three channels S’1-I1, S’2-I2 and S’3-I3 respectively. Error bars are evaluated assuming that the photon detection process obeys Poisson statistics.
Fig. 5
Fig. 5 (a) The output wavelength of the tunable diode laser as a function of the manual controlled offset value (the number shown by laser knob, linear relation); (b) Transmission power as a function of frequency shift of the pump laser; (c) single photon count rates as a function of pump power for signal and idler channels S2 and I2 (fitted with the parabolic function); (d) coincidence count rates as a function of pump power, error bars are evaluated assuming that the photon detection process obeys Poisson statistics; (e) coincidence histogram of channel pair I2-S2 with minimum value (time window 0.1ns); (f) coincidence histogram of channel pair I2-S2 with maximum value (time window 0.1ns).
Fig. 6
Fig. 6 The simulation of the phase mismatch condition.

Tables (1)

Tables Icon

Table 1 Definition of the wavelengths of the standard ITU grids for the signal and idler photons

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| Φ i n = 1 2 ( | S S + | L L )
P 3 = 8 ω 1 ω 2 d e f f 2 l 2 ε 0 c 3 n 1 n 2 n 3 π ω 0 2 P 1 P 2 sin c 2 ( Δ k l / 2 )

Metrics