Abstract

The multi-resonant response of three-steps tapered dipole nano-antennas, coupled to a resistive and fast micro-bolometer, is investigated for the efficient sensing in the infrared band. The proposed devices are designed to operate at 10.6 μm, regime where the complex refractive index of metals becomes important, in contrast to the visible counterpart, and where a full parametric analysis is performed. By using a particle swarm algorithm (PSO) the geometry was adjusted to match the impedance between the nanoantenna and the micro-bolometer, reducing the return losses by a factor of 650%. This technique is compared to standards matching techniques based on transmission lines, showing better accuracy. Tapered dipoles therefore open the route towards an efficient energy transfer between load elements and resonant nanoantennas.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of Seebeck nanoantenna-based infrared harvesters

Edgar Briones, Riemann Ruiz-Cruz, Joel Briones, and Jorge Simon
Opt. Express 28(1) 116-129 (2020)

Optimized tapered dipole nanoantenna as efficient energy harvester

Youssef M. El-Toukhy, Mohamed Hussein, Mohamed Farhat O. Hameed, A. M. Heikal, M. M. Abd-Elrazzak, and S. S. A. Obayya
Opt. Express 24(14) A1107-A1122 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
    [Crossref] [PubMed]
  2. J. A. Ratches, “Current and Future Trends in Military Night Vision Applications,” Ferroelectrics 342(1), 183–192 (2006).
    [Crossref]
  3. T. M. Walcott, Bolometers: Theory, Types, and Applications (Nova Sci., 2011).
  4. G. D. Skidmore, C. J. Han, and C. Li, “Uncooled microbolometers at DRS and elsewhere through 2013,” Proc. SPIE 9100, 910003 (2014).
    [Crossref]
  5. H. Takeya, J. Frame, T. Tanaka, Y. Urade, X. Fang, and W. Kubo, “Bolometric photodetection using plasmon-assisted resistivity change in vanadium dioxide,” Sci. Rep. 8(1), 12764 (2018).
    [Crossref] [PubMed]
  6. A. Subrahmanyam, Y. Bharat Kumar Reddy, and C. L. Nagendra, “Nano-vanadium oxide thin films in mixed phase for microbolometer applications,” J. Phys. D Appl. Phys. 41(19), 195108 (2008).
    [Crossref]
  7. A. J. Syllaios, T. R. Schimert, R. W. Gooch, W. L. McCardel, B. A. Ritchey, and J. H. Tregilgas, “Amorphous Silicon Microbolometer Technology,” Mat. Res. Soc. Symp. Proc. 609, A14.4 (2000).
  8. U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
    [Crossref] [PubMed]
  9. Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
    [Crossref] [PubMed]
  10. M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
    [Crossref] [PubMed]
  11. A. Kawakami, H. Shimakage, J. Horikawa, M. Hyodo, S. Saito, S. Tanaka, and Y. Uzawa, “Fast response of superconducting hot-electron bolometers with a twin-slot nano-antenna for mid-infrared operation,” AIP Adv. 6(12), 125120 (2016).
    [Crossref]
  12. V. Yu. Zerov, V. G. Malyarov, and I. A. Khrebtov, “Antenna-coupled microbolometers,” J. Opt. Technol. 78(5), 308–316 (2011).
    [Crossref]
  13. I. Codreanu and G. D. Boreman, “Integration of microbolometers with infrared microstrip antennas,” Infrared Phys. Technol. 43(6), 335–344 (2002).
    [Crossref]
  14. P. Renoux, S. A. Jónsson, L. J. Klein, H. F. Hamann, and S. Ingvarsson, “Sub-wavelength bolometers: Uncooled platinum wires as infrared sensors,” Opt. Express 19(9), 8721–8727 (2011).
    [Crossref] [PubMed]
  15. J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev, and M. E. Gershenson, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics,” Nat. Nanotechnol. 3(8), 496–500 (2008).
    [Crossref] [PubMed]
  16. F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45(1), 47–51 (2004).
    [Crossref]
  17. F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
    [Crossref]
  18. C. F. Middleton and G. D. Boreman, “Technique for thermal isolation of antenna-coupled infrared microbolometers,” J. Vac. Sci. Technol. B 24(5), 2356–2359 (2006).
    [Crossref]
  19. F. J. González, B. Ilic, and G. D. Boreman, “Antenna‐coupled microbolometers on a silicon‐nitride membrane,” Microw. Opt. Technol. Lett. 47(6), 546–548 (2005).
    [Crossref]
  20. J. P. Rice, E. N. Grossman, and D. A. Rudman, “Antenna‐coupled high‐Tc air‐bridge microbolometer on silicon,” Appl. Phys. Lett. 65(6), 773–775 (1994).
    [Crossref]
  21. F. J. González, M. Abdel‐Rahman, and G. D. Boreman, “Antenna‐coupled VOx thin‐film microbolometer array,” Microw. Opt. Technol. Lett. 38(3), 235–237 (2003).
    [Crossref]
  22. Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, A. M. Heikal, M. M. Abd-Elrazzak, and S. S. A. Obayya, “Optimized tapered dipole nanoantenna as efficient energy harvester,” Opt. Express 24(14), A1107–A1122 (2016).
    [Crossref] [PubMed]
  23. Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Characterization of Asymmetric Tapered Dipole Nanoantenna for Energy Harvesting Applications,” Plasmonics 13(2), 503–510 (2018).
    [Crossref]
  24. M. Gustafsson and C. Sohl, “Summation rules for the antenna input impedance,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 2008), pp. 1–4.
  25. E. D. Palik, Handbook Of Optical Constants of Solids (Academic Press, 1985).
  26. R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of IEEE International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39–43.
    [Crossref]
  27. C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett. 35(2), 133–135 (2010).
    [Crossref] [PubMed]
  28. R. Ruiz-Cruz, E. N. Sanchez, F. Ornelas-Tellez, A. G. Loukianov, and R. G. Harley, “Particle Swarm Optimization for Discrete-Time Inverse Optimal Control of a Doubly Fed Induction Generator,” IEEE Trans. Cybern. 43(6), 1698–1709 (2013).
    [Crossref] [PubMed]
  29. R. Méjard, A. Verdy, O. Demichel, M. Petit, L. Markey, F. Herbst, R. Chassagnon, G. Colas-des-Francs, B. Cluzel, and A. Bouhelier, “Advanced engineering of single-crystal gold nanoantennas,” Opt. Mater. Express 7(4), 1157–1168 (2017).
    [Crossref]
  30. S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
    [Crossref]
  31. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
    [Crossref] [PubMed]
  32. F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
    [Crossref]
  33. L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  34. C. A. Balanis, Antenna Theory (Wiley Interscience, 2005).
  35. J. A. Bean, A. Weeks, and G. D. Boreman, “Performance Optimization of Antenna-Coupled Al/AlOx/Pt Tunnel Diode Infrared Detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
    [Crossref]
  36. J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
    [Crossref]
  37. P. K. Ghosh, D. T. Debu, D. A. French, and J. B. Herzog, “Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime,” PLoS One 12(5), e0177463 (2017).
    [Crossref] [PubMed]
  38. M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112(6), 1704–1709 (2015).
    [Crossref] [PubMed]
  39. D. P. Fromm, A. Sundaramurthy, P. James Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single Bowtie Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
    [Crossref]
  40. O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
    [Crossref] [PubMed]
  41. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
    [Crossref] [PubMed]
  42. P. M. Krenz, B. Tiwari, G. P. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, and W. Porod, “Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
    [Crossref]
  43. H. J. Visser, Antenna Theory and Applications (John Wiley & Sons, 2012).

2018 (2)

H. Takeya, J. Frame, T. Tanaka, Y. Urade, X. Fang, and W. Kubo, “Bolometric photodetection using plasmon-assisted resistivity change in vanadium dioxide,” Sci. Rep. 8(1), 12764 (2018).
[Crossref] [PubMed]

Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Characterization of Asymmetric Tapered Dipole Nanoantenna for Energy Harvesting Applications,” Plasmonics 13(2), 503–510 (2018).
[Crossref]

2017 (3)

R. Méjard, A. Verdy, O. Demichel, M. Petit, L. Markey, F. Herbst, R. Chassagnon, G. Colas-des-Francs, B. Cluzel, and A. Bouhelier, “Advanced engineering of single-crystal gold nanoantennas,” Opt. Mater. Express 7(4), 1157–1168 (2017).
[Crossref]

P. K. Ghosh, D. T. Debu, D. A. French, and J. B. Herzog, “Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime,” PLoS One 12(5), e0177463 (2017).
[Crossref] [PubMed]

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

2016 (3)

A. Kawakami, H. Shimakage, J. Horikawa, M. Hyodo, S. Saito, S. Tanaka, and Y. Uzawa, “Fast response of superconducting hot-electron bolometers with a twin-slot nano-antenna for mid-infrared operation,” AIP Adv. 6(12), 125120 (2016).
[Crossref]

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, A. M. Heikal, M. M. Abd-Elrazzak, and S. S. A. Obayya, “Optimized tapered dipole nanoantenna as efficient energy harvester,” Opt. Express 24(14), A1107–A1122 (2016).
[Crossref] [PubMed]

2015 (2)

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112(6), 1704–1709 (2015).
[Crossref] [PubMed]

2014 (1)

G. D. Skidmore, C. J. Han, and C. Li, “Uncooled microbolometers at DRS and elsewhere through 2013,” Proc. SPIE 9100, 910003 (2014).
[Crossref]

2013 (4)

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
[Crossref] [PubMed]

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

R. Ruiz-Cruz, E. N. Sanchez, F. Ornelas-Tellez, A. G. Loukianov, and R. G. Harley, “Particle Swarm Optimization for Discrete-Time Inverse Optimal Control of a Doubly Fed Induction Generator,” IEEE Trans. Cybern. 43(6), 1698–1709 (2013).
[Crossref] [PubMed]

2012 (2)

P. M. Krenz, B. Tiwari, G. P. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, and W. Porod, “Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[Crossref]

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

2011 (3)

2010 (2)

C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett. 35(2), 133–135 (2010).
[Crossref] [PubMed]

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

2009 (2)

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[Crossref]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

2008 (3)

H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
[Crossref] [PubMed]

A. Subrahmanyam, Y. Bharat Kumar Reddy, and C. L. Nagendra, “Nano-vanadium oxide thin films in mixed phase for microbolometer applications,” J. Phys. D Appl. Phys. 41(19), 195108 (2008).
[Crossref]

J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev, and M. E. Gershenson, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics,” Nat. Nanotechnol. 3(8), 496–500 (2008).
[Crossref] [PubMed]

2007 (1)

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

2006 (2)

C. F. Middleton and G. D. Boreman, “Technique for thermal isolation of antenna-coupled infrared microbolometers,” J. Vac. Sci. Technol. B 24(5), 2356–2359 (2006).
[Crossref]

J. A. Ratches, “Current and Future Trends in Military Night Vision Applications,” Ferroelectrics 342(1), 183–192 (2006).
[Crossref]

2005 (1)

F. J. González, B. Ilic, and G. D. Boreman, “Antenna‐coupled microbolometers on a silicon‐nitride membrane,” Microw. Opt. Technol. Lett. 47(6), 546–548 (2005).
[Crossref]

2004 (2)

F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45(1), 47–51 (2004).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. James Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single Bowtie Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

2003 (1)

F. J. González, M. Abdel‐Rahman, and G. D. Boreman, “Antenna‐coupled VOx thin‐film microbolometer array,” Microw. Opt. Technol. Lett. 38(3), 235–237 (2003).
[Crossref]

2002 (1)

I. Codreanu and G. D. Boreman, “Integration of microbolometers with infrared microstrip antennas,” Infrared Phys. Technol. 43(6), 335–344 (2002).
[Crossref]

1994 (1)

J. P. Rice, E. N. Grossman, and D. A. Rudman, “Antenna‐coupled high‐Tc air‐bridge microbolometer on silicon,” Appl. Phys. Lett. 65(6), 773–775 (1994).
[Crossref]

Abdel-Rahman, M.

F. J. González, M. Abdel‐Rahman, and G. D. Boreman, “Antenna‐coupled VOx thin‐film microbolometer array,” Microw. Opt. Technol. Lett. 38(3), 235–237 (2003).
[Crossref]

Abd-Elrazzak, M. M.

Adato, R.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Aksu, S.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Alda, J.

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[Crossref]

Altug, H.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Artar, A.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Ashley, C. S.

F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45(1), 47–51 (2004).
[Crossref]

Bagheri, S.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Bean, J. A.

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance Optimization of Antenna-Coupled Al/AlOx/Pt Tunnel Diode Infrared Detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[Crossref]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

Bernstein, G. H.

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

Bharat Kumar Reddy, Y.

A. Subrahmanyam, Y. Bharat Kumar Reddy, and C. L. Nagendra, “Nano-vanadium oxide thin films in mixed phase for microbolometer applications,” J. Phys. D Appl. Phys. 41(19), 195108 (2008).
[Crossref]

Bona, G.-L.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Boreman, G.

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[Crossref]

Boreman, G. D.

P. M. Krenz, B. Tiwari, G. P. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, and W. Porod, “Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[Crossref]

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance Optimization of Antenna-Coupled Al/AlOx/Pt Tunnel Diode Infrared Detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[Crossref]

C. F. Middleton and G. D. Boreman, “Technique for thermal isolation of antenna-coupled infrared microbolometers,” J. Vac. Sci. Technol. B 24(5), 2356–2359 (2006).
[Crossref]

F. J. González, B. Ilic, and G. D. Boreman, “Antenna‐coupled microbolometers on a silicon‐nitride membrane,” Microw. Opt. Technol. Lett. 47(6), 546–548 (2005).
[Crossref]

F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45(1), 47–51 (2004).
[Crossref]

F. J. González, M. Abdel‐Rahman, and G. D. Boreman, “Antenna‐coupled VOx thin‐film microbolometer array,” Microw. Opt. Technol. Lett. 38(3), 235–237 (2003).
[Crossref]

I. Codreanu and G. D. Boreman, “Integration of microbolometers with infrared microstrip antennas,” Infrared Phys. Technol. 43(6), 335–344 (2002).
[Crossref]

Borini, S.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Bouhelier, A.

Bruna, M.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Chassagnon, R.

Chen, J.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
[Crossref] [PubMed]

Chen, Y.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
[Crossref] [PubMed]

Clem, P. G.

F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45(1), 47–51 (2004).
[Crossref]

Cluzel, B.

Codreanu, I.

I. Codreanu and G. D. Boreman, “Integration of microbolometers with infrared microstrip antennas,” Infrared Phys. Technol. 43(6), 335–344 (2002).
[Crossref]

Colas-des-Francs, G.

Colli, A.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Dal Negro, L.

De Fazio, D.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Debu, D. T.

P. K. Ghosh, D. T. Debu, D. A. French, and J. B. Herzog, “Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime,” PLoS One 12(5), e0177463 (2017).
[Crossref] [PubMed]

Demichel, O.

Donelli, M.

Eberhart, R.

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of IEEE International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39–43.
[Crossref]

Eggleston, M. S.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112(6), 1704–1709 (2015).
[Crossref] [PubMed]

El-Toukhy, Y. M.

Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Characterization of Asymmetric Tapered Dipole Nanoantenna for Energy Harvesting Applications,” Plasmonics 13(2), 503–510 (2018).
[Crossref]

Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, A. M. Heikal, M. M. Abd-Elrazzak, and S. S. A. Obayya, “Optimized tapered dipole nanoantenna as efficient energy harvester,” Opt. Express 24(14), A1107–A1122 (2016).
[Crossref] [PubMed]

Fang, X.

H. Takeya, J. Frame, T. Tanaka, Y. Urade, X. Fang, and W. Kubo, “Bolometric photodetection using plasmon-assisted resistivity change in vanadium dioxide,” Sci. Rep. 8(1), 12764 (2018).
[Crossref] [PubMed]

Fay, P.

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

Ferrari, A. C.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Fischbach, S.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Forestiere, C.

Frame, J.

H. Takeya, J. Frame, T. Tanaka, Y. Urade, X. Fang, and W. Kubo, “Bolometric photodetection using plasmon-assisted resistivity change in vanadium dioxide,” Sci. Rep. 8(1), 12764 (2018).
[Crossref] [PubMed]

French, D. A.

P. K. Ghosh, D. T. Debu, D. A. French, and J. B. Herzog, “Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime,” PLoS One 12(5), e0177463 (2017).
[Crossref] [PubMed]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. James Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single Bowtie Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Fu, L.

Gansel, J. K.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Gao, T.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
[Crossref] [PubMed]

Gershenson, M. E.

J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev, and M. E. Gershenson, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics,” Nat. Nanotechnol. 3(8), 496–500 (2008).
[Crossref] [PubMed]

Ghosh, P. K.

P. K. Ghosh, D. T. Debu, D. A. French, and J. B. Herzog, “Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime,” PLoS One 12(5), e0177463 (2017).
[Crossref] [PubMed]

Giessen, H.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
[Crossref] [PubMed]

Ginn, J.

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[Crossref]

Gissibl, T.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Gonzalez, F. J.

F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45(1), 47–51 (2004).
[Crossref]

González, F. J.

P. M. Krenz, B. Tiwari, G. P. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, and W. Porod, “Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[Crossref]

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[Crossref]

F. J. González, B. Ilic, and G. D. Boreman, “Antenna‐coupled microbolometers on a silicon‐nitride membrane,” Microw. Opt. Technol. Lett. 47(6), 546–548 (2005).
[Crossref]

F. J. González, M. Abdel‐Rahman, and G. D. Boreman, “Antenna‐coupled VOx thin‐film microbolometer array,” Microw. Opt. Technol. Lett. 38(3), 235–237 (2003).
[Crossref]

Grossman, E. N.

J. P. Rice, E. N. Grossman, and D. A. Rudman, “Antenna‐coupled high‐Tc air‐bridge microbolometer on silicon,” Appl. Phys. Lett. 65(6), 773–775 (1994).
[Crossref]

Guo, H.

Gustafsson, M.

M. Gustafsson and C. Sohl, “Summation rules for the antenna input impedance,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 2008), pp. 1–4.

Hafner, C.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Hamann, H. F.

Hameed, M. F. O.

Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Characterization of Asymmetric Tapered Dipole Nanoantenna for Energy Harvesting Applications,” Plasmonics 13(2), 503–510 (2018).
[Crossref]

Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, A. M. Heikal, M. M. Abd-Elrazzak, and S. S. A. Obayya, “Optimized tapered dipole nanoantenna as efficient energy harvester,” Opt. Express 24(14), A1107–A1122 (2016).
[Crossref] [PubMed]

Han, C. J.

G. D. Skidmore, C. J. Han, and C. Li, “Uncooled microbolometers at DRS and elsewhere through 2013,” Proc. SPIE 9100, 910003 (2014).
[Crossref]

Han, Q.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
[Crossref] [PubMed]

Harley, R. G.

R. Ruiz-Cruz, E. N. Sanchez, F. Ornelas-Tellez, A. G. Loukianov, and R. G. Harley, “Particle Swarm Optimization for Discrete-Time Inverse Optimal Control of a Doubly Fed Induction Generator,” IEEE Trans. Cybern. 43(6), 1698–1709 (2013).
[Crossref] [PubMed]

He, X. N.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Heikal, A. M.

Herbst, F.

Herzog, J. B.

P. K. Ghosh, D. T. Debu, D. A. French, and J. B. Herzog, “Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime,” PLoS One 12(5), e0177463 (2017).
[Crossref] [PubMed]

Hilger, P.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Horikawa, J.

A. Kawakami, H. Shimakage, J. Horikawa, M. Hyodo, S. Saito, S. Tanaka, and Y. Uzawa, “Fast response of superconducting hot-electron bolometers with a twin-slot nano-antenna for mid-infrared operation,” AIP Adv. 6(12), 125120 (2016).
[Crossref]

Huang, M.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Hussein, M.

Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Characterization of Asymmetric Tapered Dipole Nanoantenna for Energy Harvesting Applications,” Plasmonics 13(2), 503–510 (2018).
[Crossref]

Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, A. M. Heikal, M. M. Abd-Elrazzak, and S. S. A. Obayya, “Optimized tapered dipole nanoantenna as efficient energy harvester,” Opt. Express 24(14), A1107–A1122 (2016).
[Crossref] [PubMed]

Hyodo, M.

A. Kawakami, H. Shimakage, J. Horikawa, M. Hyodo, S. Saito, S. Tanaka, and Y. Uzawa, “Fast response of superconducting hot-electron bolometers with a twin-slot nano-antenna for mid-infrared operation,” AIP Adv. 6(12), 125120 (2016).
[Crossref]

Ilic, B.

F. J. González, B. Ilic, and G. D. Boreman, “Antenna‐coupled microbolometers on a silicon‐nitride membrane,” Microw. Opt. Technol. Lett. 47(6), 546–548 (2005).
[Crossref]

Ingvarsson, S.

James Schuck, P.

D. P. Fromm, A. Sundaramurthy, P. James Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single Bowtie Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Jefimovs, K.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Jónsson, S. A.

Karasik, B. S.

J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev, and M. E. Gershenson, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics,” Nat. Nanotechnol. 3(8), 496–500 (2008).
[Crossref] [PubMed]

Kawakami, A.

A. Kawakami, H. Shimakage, J. Horikawa, M. Hyodo, S. Saito, S. Tanaka, and Y. Uzawa, “Fast response of superconducting hot-electron bolometers with a twin-slot nano-antenna for mid-infrared operation,” AIP Adv. 6(12), 125120 (2016).
[Crossref]

Kennedy, J.

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of IEEE International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39–43.
[Crossref]

Khrebtov, I. A.

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. James Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single Bowtie Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Klein, L. J.

Koppens, F. H. L.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Kopytko, M.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Krenz, P. M.

P. M. Krenz, B. Tiwari, G. P. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, and W. Porod, “Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[Crossref]

Kubo, W.

H. Takeya, J. Frame, T. Tanaka, Y. Urade, X. Fang, and W. Kubo, “Bolometric photodetection using plasmon-assisted resistivity change in vanadium dioxide,” Sci. Rep. 8(1), 12764 (2018).
[Crossref] [PubMed]

Li, C.

G. D. Skidmore, C. J. Han, and C. Li, “Uncooled microbolometers at DRS and elsewhere through 2013,” Proc. SPIE 9100, 910003 (2014).
[Crossref]

Lidorikis, E.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Liu, G.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
[Crossref] [PubMed]

Liu, N.

Liu, Z.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
[Crossref] [PubMed]

Loukianov, A. G.

R. Ruiz-Cruz, E. N. Sanchez, F. Ornelas-Tellez, A. G. Loukianov, and R. G. Harley, “Particle Swarm Optimization for Discrete-Time Inverse Optimal Control of a Doubly Fed Induction Generator,” IEEE Trans. Cybern. 43(6), 1698–1709 (2013).
[Crossref] [PubMed]

Lu, Y. F.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Mahjouri-Samani, M.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Malyarov, V. G.

Markey, L.

Martyniuk, P.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Méjard, R.

Messer, K.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112(6), 1704–1709 (2015).
[Crossref] [PubMed]

Meyrath, T. P.

Miano, G.

Middleton, C. F.

C. F. Middleton and G. D. Boreman, “Technique for thermal isolation of antenna-coupled infrared microbolometers,” J. Vac. Sci. Technol. B 24(5), 2356–2359 (2006).
[Crossref]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. James Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single Bowtie Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Nagendra, C. L.

A. Subrahmanyam, Y. Bharat Kumar Reddy, and C. L. Nagendra, “Nano-vanadium oxide thin films in mixed phase for microbolometer applications,” J. Phys. D Appl. Phys. 41(19), 195108 (2008).
[Crossref]

Nanot, S.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Neubrech, F.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Niesler, F. B. P.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Novotny, L.

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Obayya, S. S. A.

Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Characterization of Asymmetric Tapered Dipole Nanoantenna for Energy Harvesting Applications,” Plasmonics 13(2), 503–510 (2018).
[Crossref]

Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, A. M. Heikal, M. M. Abd-Elrazzak, and S. S. A. Obayya, “Optimized tapered dipole nanoantenna as efficient energy harvester,” Opt. Express 24(14), A1107–A1122 (2016).
[Crossref] [PubMed]

Olaya, D.

J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev, and M. E. Gershenson, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics,” Nat. Nanotechnol. 3(8), 496–500 (2008).
[Crossref] [PubMed]

Orlov, A. O.

P. M. Krenz, B. Tiwari, G. P. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, and W. Porod, “Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[Crossref]

Ornelas-Tellez, F.

R. Ruiz-Cruz, E. N. Sanchez, F. Ornelas-Tellez, A. G. Loukianov, and R. G. Harley, “Particle Swarm Optimization for Discrete-Time Inverse Optimal Control of a Doubly Fed Induction Generator,” IEEE Trans. Cybern. 43(6), 1698–1709 (2013).
[Crossref] [PubMed]

Parret, R.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Pereverzev, S. V.

J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev, and M. E. Gershenson, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics,” Nat. Nanotechnol. 3(8), 496–500 (2008).
[Crossref] [PubMed]

Petit, M.

Porod, W.

P. M. Krenz, B. Tiwari, G. P. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, and W. Porod, “Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[Crossref]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

Ratches, J. A.

J. A. Ratches, “Current and Future Trends in Military Night Vision Applications,” Ferroelectrics 342(1), 183–192 (2006).
[Crossref]

Renoux, P.

Rice, J. P.

J. P. Rice, E. N. Grossman, and D. A. Rudman, “Antenna‐coupled high‐Tc air‐bridge microbolometer on silicon,” Appl. Phys. Lett. 65(6), 773–775 (1994).
[Crossref]

Rogalski, A.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Rudman, D. A.

J. P. Rice, E. N. Grossman, and D. A. Rudman, “Antenna‐coupled high‐Tc air‐bridge microbolometer on silicon,” Appl. Phys. Lett. 65(6), 773–775 (1994).
[Crossref]

Ruiz-Cruz, R.

R. Ruiz-Cruz, E. N. Sanchez, F. Ornelas-Tellez, A. G. Loukianov, and R. G. Harley, “Particle Swarm Optimization for Discrete-Time Inverse Optimal Control of a Doubly Fed Induction Generator,” IEEE Trans. Cybern. 43(6), 1698–1709 (2013).
[Crossref] [PubMed]

Saito, S.

A. Kawakami, H. Shimakage, J. Horikawa, M. Hyodo, S. Saito, S. Tanaka, and Y. Uzawa, “Fast response of superconducting hot-electron bolometers with a twin-slot nano-antenna for mid-infrared operation,” AIP Adv. 6(12), 125120 (2016).
[Crossref]

Sanchez, E. N.

R. Ruiz-Cruz, E. N. Sanchez, F. Ornelas-Tellez, A. G. Loukianov, and R. G. Harley, “Particle Swarm Optimization for Discrete-Time Inverse Optimal Control of a Doubly Fed Induction Generator,” IEEE Trans. Cybern. 43(6), 1698–1709 (2013).
[Crossref] [PubMed]

Sassi, U.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Scholder, O.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Schweizer, H.

Sennhauser, U.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Sergeev, A. V.

J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev, and M. E. Gershenson, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics,” Nat. Nanotechnol. 3(8), 496–500 (2008).
[Crossref] [PubMed]

Shimakage, H.

A. Kawakami, H. Shimakage, J. Horikawa, M. Hyodo, S. Saito, S. Tanaka, and Y. Uzawa, “Fast response of superconducting hot-electron bolometers with a twin-slot nano-antenna for mid-infrared operation,” AIP Adv. 6(12), 125120 (2016).
[Crossref]

Shorubalko, I.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Simón, J.

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[Crossref]

Skidmore, G. D.

G. D. Skidmore, C. J. Han, and C. Li, “Uncooled microbolometers at DRS and elsewhere through 2013,” Proc. SPIE 9100, 910003 (2014).
[Crossref]

Sohl, C.

M. Gustafsson and C. Sohl, “Summation rules for the antenna input impedance,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 2008), pp. 1–4.

Subrahmanyam, A.

A. Subrahmanyam, Y. Bharat Kumar Reddy, and C. L. Nagendra, “Nano-vanadium oxide thin films in mixed phase for microbolometer applications,” J. Phys. D Appl. Phys. 41(19), 195108 (2008).
[Crossref]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. James Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single Bowtie Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Szakmany, G. P.

P. M. Krenz, B. Tiwari, G. P. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, and W. Porod, “Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[Crossref]

Takeya, H.

H. Takeya, J. Frame, T. Tanaka, Y. Urade, X. Fang, and W. Kubo, “Bolometric photodetection using plasmon-assisted resistivity change in vanadium dioxide,” Sci. Rep. 8(1), 12764 (2018).
[Crossref] [PubMed]

Tanaka, S.

A. Kawakami, H. Shimakage, J. Horikawa, M. Hyodo, S. Saito, S. Tanaka, and Y. Uzawa, “Fast response of superconducting hot-electron bolometers with a twin-slot nano-antenna for mid-infrared operation,” AIP Adv. 6(12), 125120 (2016).
[Crossref]

Tanaka, T.

H. Takeya, J. Frame, T. Tanaka, Y. Urade, X. Fang, and W. Kubo, “Bolometric photodetection using plasmon-assisted resistivity change in vanadium dioxide,” Sci. Rep. 8(1), 12764 (2018).
[Crossref] [PubMed]

Tiwari, B.

P. M. Krenz, B. Tiwari, G. P. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, and W. Porod, “Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[Crossref]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

Urade, Y.

H. Takeya, J. Frame, T. Tanaka, Y. Urade, X. Fang, and W. Kubo, “Bolometric photodetection using plasmon-assisted resistivity change in vanadium dioxide,” Sci. Rep. 8(1), 12764 (2018).
[Crossref] [PubMed]

Uzawa, Y.

A. Kawakami, H. Shimakage, J. Horikawa, M. Hyodo, S. Saito, S. Tanaka, and Y. Uzawa, “Fast response of superconducting hot-electron bolometers with a twin-slot nano-antenna for mid-infrared operation,” AIP Adv. 6(12), 125120 (2016).
[Crossref]

Verdy, A.

Walsh, G. F.

Weber, K.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Weeks, A.

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance Optimization of Antenna-Coupled Al/AlOx/Pt Tunnel Diode Infrared Detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[Crossref]

Wegener, M.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Wei, J.

J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev, and M. E. Gershenson, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics,” Nat. Nanotechnol. 3(8), 496–500 (2008).
[Crossref] [PubMed]

Weiss, T.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Wu, M. C.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112(6), 1704–1709 (2015).
[Crossref] [PubMed]

Wu, X.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
[Crossref] [PubMed]

Xiong, W.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Yablonovitch, E.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112(6), 1704–1709 (2015).
[Crossref] [PubMed]

Yanik, A. A.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Yu, D.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
[Crossref] [PubMed]

Zeni, E.

Zentgraf, T.

Zerov, V. Yu.

Zhang, L.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112(6), 1704–1709 (2015).
[Crossref] [PubMed]

Zhang, R.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
[Crossref] [PubMed]

Zhang, Y.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
[Crossref] [PubMed]

Zhao, Z.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Zhou, Y. S.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

AIP Adv. (1)

A. Kawakami, H. Shimakage, J. Horikawa, M. Hyodo, S. Saito, S. Tanaka, and Y. Uzawa, “Fast response of superconducting hot-electron bolometers with a twin-slot nano-antenna for mid-infrared operation,” AIP Adv. 6(12), 125120 (2016).
[Crossref]

Appl. Phys. Lett. (2)

J. P. Rice, E. N. Grossman, and D. A. Rudman, “Antenna‐coupled high‐Tc air‐bridge microbolometer on silicon,” Appl. Phys. Lett. 65(6), 773–775 (1994).
[Crossref]

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Ferroelectrics (1)

J. A. Ratches, “Current and Future Trends in Military Night Vision Applications,” Ferroelectrics 342(1), 183–192 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance Optimization of Antenna-Coupled Al/AlOx/Pt Tunnel Diode Infrared Detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[Crossref]

P. M. Krenz, B. Tiwari, G. P. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, and W. Porod, “Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[Crossref]

IEEE Trans. Cybern. (1)

R. Ruiz-Cruz, E. N. Sanchez, F. Ornelas-Tellez, A. G. Loukianov, and R. G. Harley, “Particle Swarm Optimization for Discrete-Time Inverse Optimal Control of a Doubly Fed Induction Generator,” IEEE Trans. Cybern. 43(6), 1698–1709 (2013).
[Crossref] [PubMed]

Infrared Phys. Technol. (3)

F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45(1), 47–51 (2004).
[Crossref]

I. Codreanu and G. D. Boreman, “Integration of microbolometers with infrared microstrip antennas,” Infrared Phys. Technol. 43(6), 335–344 (2002).
[Crossref]

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[Crossref]

J. Opt. Technol. (1)

J. Phys. D Appl. Phys. (1)

A. Subrahmanyam, Y. Bharat Kumar Reddy, and C. L. Nagendra, “Nano-vanadium oxide thin films in mixed phase for microbolometer applications,” J. Phys. D Appl. Phys. 41(19), 195108 (2008).
[Crossref]

J. Vac. Sci. Technol. B (2)

C. F. Middleton and G. D. Boreman, “Technique for thermal isolation of antenna-coupled infrared microbolometers,” J. Vac. Sci. Technol. B 24(5), 2356–2359 (2006).
[Crossref]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

Microw. Opt. Technol. Lett. (2)

F. J. González, B. Ilic, and G. D. Boreman, “Antenna‐coupled microbolometers on a silicon‐nitride membrane,” Microw. Opt. Technol. Lett. 47(6), 546–548 (2005).
[Crossref]

F. J. González, M. Abdel‐Rahman, and G. D. Boreman, “Antenna‐coupled VOx thin‐film microbolometer array,” Microw. Opt. Technol. Lett. 38(3), 235–237 (2003).
[Crossref]

Nano Lett. (2)

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. James Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single Bowtie Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Nanotechnology (2)

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev, and M. E. Gershenson, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics,” Nat. Nanotechnol. 3(8), 496–500 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Plasmonics (1)

Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Characterization of Asymmetric Tapered Dipole Nanoantenna for Energy Harvesting Applications,” Plasmonics 13(2), 503–510 (2018).
[Crossref]

PLoS One (1)

P. K. Ghosh, D. T. Debu, D. A. French, and J. B. Herzog, “Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime,” PLoS One 12(5), e0177463 (2017).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112(6), 1704–1709 (2015).
[Crossref] [PubMed]

Proc. SPIE (1)

G. D. Skidmore, C. J. Han, and C. Li, “Uncooled microbolometers at DRS and elsewhere through 2013,” Proc. SPIE 9100, 910003 (2014).
[Crossref]

Rep. Prog. Phys. (1)

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

H. Takeya, J. Frame, T. Tanaka, Y. Urade, X. Fang, and W. Kubo, “Bolometric photodetection using plasmon-assisted resistivity change in vanadium dioxide,” Sci. Rep. 8(1), 12764 (2018).
[Crossref] [PubMed]

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3(1), 3533 (2013).
[Crossref] [PubMed]

Other (7)

A. J. Syllaios, T. R. Schimert, R. W. Gooch, W. L. McCardel, B. A. Ritchey, and J. H. Tregilgas, “Amorphous Silicon Microbolometer Technology,” Mat. Res. Soc. Symp. Proc. 609, A14.4 (2000).

T. M. Walcott, Bolometers: Theory, Types, and Applications (Nova Sci., 2011).

M. Gustafsson and C. Sohl, “Summation rules for the antenna input impedance,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 2008), pp. 1–4.

E. D. Palik, Handbook Of Optical Constants of Solids (Academic Press, 1985).

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of IEEE International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39–43.
[Crossref]

H. J. Visser, Antenna Theory and Applications (John Wiley & Sons, 2012).

C. A. Balanis, Antenna Theory (Wiley Interscience, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Half-wave dipole nano-antenna coupled to a nano-bolometer. (a) Schematic representation of the nano-antenna, defining its geometrical parameters width W, length L and thickness T. The nano-bolometer is freestanding-bridge-like on the dipole elements; with the antenna lying on a Si//SiO2 substrate. (b) Input impedance of the dipole-antenna as a function of the frequency; with R being the real and X the imaginary parts of the impedance. (c). Frequency dependence of the input return loss (S11) for several port-resistance values.
Fig. 2
Fig. 2 Schematic representation of the three-steps tapered dipole antenna, defining its geometrical parameters width W, length L and thickness T, for each of the three steps. The nano-bolometer is freestanding-bridge-like on the dipole elements; with the antenna lying on a Si//SiO2 substrate.
Fig. 3
Fig. 3 Frequency dependence of the characteristic impedance for a 3-steps tapered dipole antenna. The real R and imaginary X parts of the impedance are presented as a function of: (a) the geometry structure, (b) the thickness, (c) the gap size, and (d) the type of metal considered for the dipole.
Fig. 4
Fig. 4 Optimized Nano-antenna. (a) Evolution of the fitness function with the number of improvements. (b) Schema of the optimized geometry obtained with the PSO algorithm. (c) Real R and imaginary Χ parts of the input impedance for the optimized geometry. (d) Return losses.
Fig. 5
Fig. 5 (a) Schema of a section of transmission line inserted between a conventional half-wave dipole and the 500-Ω lumped port, used as impedance matcher, (b) input impedance of the dipole-coupled transmission line, real R and imaginary parts Χ, as a function of the frequency (for several line lengths), unveiling the shift of the odd resonance mode towards lower frequencies, (c) input impedance of the dipole-coupled transmission line at 28.3 THz (10.6 μm), real R and imaginary Χ parts, as function of the line length, revealing the line length that matches better both elements (900nm), and (d) return losses exhibit the device when a 900 nm line is used as impedance matcher.

Tables (1)

Tables Icon

Table 1 Geometrical parameters for the three-steps tapered dipole antennas

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f= c 1 | λ min( S 11 ) 10.6μm |+ c 2 | X |
Z in (l)= Z 0 Z L + Z 0 tanh(γl) Z 0 + Z L tanh(γl)

Metrics