Abstract

Manipulation of terahertz (THz) wave plays an important role in THz imaging, communication, and detection. The difficulty in manipulating the THz wave includes single function, untunable, and inconvenient integration. Here, we present a mechanically tunable THz polarizer by using stretchable buckled carbon nanotube sheets on natural rubber substrate (BCNTS/rubber). The transmittance and degree of polarization of THz wave can be modulated by stretching the BCNTS/rubber. The experiments showed that the degree of polarization increased from 17% to 97%, and the modulation depth reached 365% in the range of 0.2-1.2 THz, as the BCNTS/rubber was stretched from 0% to 150% strain. These changes can be also used for high strain sensing up to 150% strain, with a maximum sensitivity of 2.5 M/S. A spatial modulation of THz imaging was also realized by stretching and rotating BCNTS/rubber. The theoretical analysis and numerical modeling further confirm the BCNTS/rubber changes from weak anisotropic to highly anisotropic structure, which play key roles in THz wave modulation. This approach for active THz wave manipulation can be widely used in polarization imaging, wearable material for security, and highly sensitive strain sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface

Yue Wang, Zijian Cui, Dongying Zhu, Xianbin Zhang, and Li Qian
Opt. Express 26(12) 15343-15352 (2018)

Terahertz conductivity engineering in surface decorated carbon nanotube films by gold nanoparticles

Debanjan Polley, Animesh Patra, Anjan Barman, and Rajib Kumar Mitra
Appl. Opt. 56(4) 1107-1112 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y.-S. Lee, Principles of terahertz science and technology, (Springer Science & Business Media, 2009).
  2. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  3. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  4. G. G. H. Cardoso, S. C. R. Landeros, M. A. Gomez, A. I. Hernandez-Serrano, I. S. Gutierrez, E. L. Bedolla, A. R. C. Guzman, H. L. L. Lemus, and E. C. Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7, 42124 (2017).
  5. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  6. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  7. M. Kato, S. R. Tripathi, K. Murate, K. Imayama, and K. Kawase, “Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection,” Opt. Express 24(6), 6425–6432 (2016).
    [Crossref] [PubMed]
  8. F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
    [Crossref]
  9. R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
    [Crossref] [PubMed]
  10. S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys-Berlin 529(10), 1700151 (2017).
    [Crossref]
  11. S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
    [Crossref] [PubMed]
  12. M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
    [Crossref] [PubMed]
  13. C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
    [Crossref]
  14. M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
    [Crossref] [PubMed]
  15. Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
    [Crossref] [PubMed]
  16. W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
    [Crossref] [PubMed]
  17. Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
    [Crossref]
  18. Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
    [Crossref]
  19. K. Takano, H. Yokoyama, A. Ichii, I. Morimoto, and M. Hangyo, “Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology,” Opt. Lett. 36(14), 2665–2667 (2011).
    [Crossref] [PubMed]
  20. L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
    [Crossref]
  21. L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
    [Crossref]
  22. Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
    [Crossref] [PubMed]
  23. S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
    [Crossref] [PubMed]
  24. J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
    [Crossref]
  25. P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
    [Crossref]
  26. T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
    [Crossref] [PubMed]
  27. S. Smirnov, I. V. Anoshkin, P. Demchenko, D. Gomon, D. V. Lioubtchenko, M. Khodzitsky, and J. Oberhammer, “Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications,” Nanoscale 10(26), 12291–12296 (2018).
    [Crossref] [PubMed]
  28. I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
    [Crossref] [PubMed]
  29. S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
    [Crossref] [PubMed]
  30. L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
    [Crossref] [PubMed]
  31. A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
    [Crossref]
  32. L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
    [Crossref] [PubMed]
  33. J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
    [Crossref] [PubMed]
  34. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref] [PubMed]
  35. Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
    [Crossref] [PubMed]
  36. P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Detection of colon cancer by continuous-wave terahertz polarization imaging technique,” J. Biomed. Opt. 18(9), 090504 (2013).
    [Crossref]
  37. J. P. Martin, C. S. Joseph, and R. H. Giles, “Continuous-wave circular polarization terahertz imaging,” J. Biomed. Opt. 21(7), 70502 (2016).
    [Crossref] [PubMed]
  38. D. M. Mittleman, “Twenty years of terahertz imagin,” Opt. Express 26(8), 9417–9431 (2018).
    [Crossref] [PubMed]
  39. S. Katletz, M. Pfleger, H. Pühringer, M. Mikulics, N. Vieweg, O. Peters, B. Scherger, M. Scheller, M. Koch, and K. Wiesauer, “Polarization sensitive terahertz imaging: detection of birefringence and optical axis,” Opt. Express 20(21), 23025–23035 (2012).
    [Crossref] [PubMed]
  40. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref] [PubMed]
  41. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
    [Crossref]
  42. L. Liu, A. Das, and C. M. Megaridis, “Terahertz shielding of carbon nanomaterials and their composites–a review and applications,” Carbon 69, 1–16 (2014).
    [Crossref]
  43. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  44. Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
    [Crossref]
  45. M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
    [Crossref] [PubMed]
  46. X. L. Xu, P. Parkinson, K.-C. Chuang, M. B. Johnston, R. J. Nicholas, and L. M. Herz, “Dynamic terahertz polarization in single-walled carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 085441 (2010).
    [Crossref]

2018 (5)

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

S. Smirnov, I. V. Anoshkin, P. Demchenko, D. Gomon, D. V. Lioubtchenko, M. Khodzitsky, and J. Oberhammer, “Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications,” Nanoscale 10(26), 12291–12296 (2018).
[Crossref] [PubMed]

D. M. Mittleman, “Twenty years of terahertz imagin,” Opt. Express 26(8), 9417–9431 (2018).
[Crossref] [PubMed]

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
[Crossref] [PubMed]

2017 (4)

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

G. G. H. Cardoso, S. C. R. Landeros, M. A. Gomez, A. I. Hernandez-Serrano, I. S. Gutierrez, E. L. Bedolla, A. R. C. Guzman, H. L. L. Lemus, and E. C. Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7, 42124 (2017).

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys-Berlin 529(10), 1700151 (2017).
[Crossref]

2016 (8)

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

M. Kato, S. R. Tripathi, K. Murate, K. Imayama, and K. Kawase, “Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection,” Opt. Express 24(6), 6425–6432 (2016).
[Crossref] [PubMed]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
[Crossref] [PubMed]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
[Crossref] [PubMed]

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

J. P. Martin, C. S. Joseph, and R. H. Giles, “Continuous-wave circular polarization terahertz imaging,” J. Biomed. Opt. 21(7), 70502 (2016).
[Crossref] [PubMed]

2015 (8)

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

2014 (2)

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

L. Liu, A. Das, and C. M. Megaridis, “Terahertz shielding of carbon nanomaterials and their composites–a review and applications,” Carbon 69, 1–16 (2014).
[Crossref]

2013 (4)

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Detection of colon cancer by continuous-wave terahertz polarization imaging technique,” J. Biomed. Opt. 18(9), 090504 (2013).
[Crossref]

2012 (4)

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

S. Katletz, M. Pfleger, H. Pühringer, M. Mikulics, N. Vieweg, O. Peters, B. Scherger, M. Scheller, M. Koch, and K. Wiesauer, “Polarization sensitive terahertz imaging: detection of birefringence and optical axis,” Opt. Express 20(21), 23025–23035 (2012).
[Crossref] [PubMed]

2011 (3)

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

K. Takano, H. Yokoyama, A. Ichii, I. Morimoto, and M. Hangyo, “Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology,” Opt. Lett. 36(14), 2665–2667 (2011).
[Crossref] [PubMed]

2010 (1)

X. L. Xu, P. Parkinson, K.-C. Chuang, M. B. Johnston, R. J. Nicholas, and L. M. Herz, “Dynamic terahertz polarization in single-walled carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 085441 (2010).
[Crossref]

2009 (1)

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

2007 (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

2005 (2)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

2003 (1)

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Abbott, D.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Alavi, K.

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Detection of colon cancer by continuous-wave terahertz polarization imaging technique,” J. Biomed. Opt. 18(9), 090504 (2013).
[Crossref]

Aliev, A. E.

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

Al-Naib, I.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Al-Sehemi, A. G.

S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
[Crossref] [PubMed]

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

An, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Anoshkin, I. V.

S. Smirnov, I. V. Anoshkin, P. Demchenko, D. Gomon, D. V. Lioubtchenko, M. Khodzitsky, and J. Oberhammer, “Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications,” Nanoscale 10(26), 12291–12296 (2018).
[Crossref] [PubMed]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Arikawa, T.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Azad, A. K.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Baughman, R. H.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Bedolla, E. L.

G. G. H. Cardoso, S. C. R. Landeros, M. A. Gomez, A. I. Hernandez-Serrano, I. S. Gutierrez, E. L. Bedolla, A. R. C. Guzman, H. L. L. Lemus, and E. C. Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7, 42124 (2017).

Bhaskaran, M.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Bomba, J.

M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
[Crossref] [PubMed]

Booshehri, L. G.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Camus, E. C.

G. G. H. Cardoso, S. C. R. Landeros, M. A. Gomez, A. I. Hernandez-Serrano, I. S. Gutierrez, E. L. Bedolla, A. R. C. Guzman, H. L. L. Lemus, and E. C. Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7, 42124 (2017).

Cao, J.

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Cardoso, G. G. H.

G. G. H. Cardoso, S. C. R. Landeros, M. A. Gomez, A. I. Hernandez-Serrano, I. S. Gutierrez, E. L. Bedolla, A. R. C. Guzman, H. L. L. Lemus, and E. C. Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7, 42124 (2017).

Chang, S.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Chang, S.-J.

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys-Berlin 529(10), 1700151 (2017).
[Crossref]

M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
[Crossref] [PubMed]

F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Chaudhry, A. R.

S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
[Crossref] [PubMed]

Chen, H.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

Chen, M.

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys-Berlin 529(10), 1700151 (2017).
[Crossref]

M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
[Crossref] [PubMed]

Chen, M. J.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Chen, P.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Chen, S.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Chen, Y.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

Chen, Z.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Choi, M.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Chong, Y. T.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Chua, S. J.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Chuang, K.-C.

X. L. Xu, P. Parkinson, K.-C. Chuang, M. B. Johnston, R. J. Nicholas, and L. M. Herz, “Dynamic terahertz polarization in single-walled carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 085441 (2010).
[Crossref]

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Cong, L.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Das, A.

L. Liu, A. Das, and C. M. Megaridis, “Terahertz shielding of carbon nanomaterials and their composites–a review and applications,” Carbon 69, 1–16 (2014).
[Crossref]

Demchenko, P.

S. Smirnov, I. V. Anoshkin, P. Demchenko, D. Gomon, D. V. Lioubtchenko, M. Khodzitsky, and J. Oberhammer, “Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications,” Nanoscale 10(26), 12291–12296 (2018).
[Crossref] [PubMed]

Deng, L. Y.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Di, J.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Ding, J. N.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Ding, K.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Dong, C.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Doradla, P.

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Detection of colon cancer by continuous-wave terahertz polarization imaging technique,” J. Biomed. Opt. 18(9), 090504 (2013).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Duzynska, A.

M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
[Crossref] [PubMed]

Everitt, H. O.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Fan, F.

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys-Berlin 529(10), 1700151 (2017).
[Crossref]

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
[Crossref] [PubMed]

F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Fan, R.-H.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Fang, S.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Feng, Y.

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Fukuda, K.

S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
[Crossref] [PubMed]

Galvão, D. S.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ge, Z.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

Giles, R. H.

J. P. Martin, C. S. Joseph, and R. H. Giles, “Continuous-wave circular polarization terahertz imaging,” J. Biomed. Opt. 21(7), 70502 (2016).
[Crossref] [PubMed]

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Detection of colon cancer by continuous-wave terahertz polarization imaging technique,” J. Biomed. Opt. 18(9), 090504 (2013).
[Crossref]

Gomez, M. A.

G. G. H. Cardoso, S. C. R. Landeros, M. A. Gomez, A. I. Hernandez-Serrano, I. S. Gutierrez, E. L. Bedolla, A. R. C. Guzman, H. L. L. Lemus, and E. C. Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7, 42124 (2017).

Gomon, D.

S. Smirnov, I. V. Anoshkin, P. Demchenko, D. Gomon, D. V. Lioubtchenko, M. Khodzitsky, and J. Oberhammer, “Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications,” Nanoscale 10(26), 12291–12296 (2018).
[Crossref] [PubMed]

Gu, W.-H.

F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Gutierrez, I. S.

G. G. H. Cardoso, S. C. R. Landeros, M. A. Gomez, A. I. Hernandez-Serrano, I. S. Gutierrez, E. L. Bedolla, A. R. C. Guzman, H. L. L. Lemus, and E. C. Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7, 42124 (2017).

Guzman, A. R. C.

G. G. H. Cardoso, S. C. R. Landeros, M. A. Gomez, A. I. Hernandez-Serrano, I. S. Gutierrez, E. L. Bedolla, A. R. C. Guzman, H. L. L. Lemus, and E. C. Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7, 42124 (2017).

Haines, C. S.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Hangyo, M.

Hauge, R. H.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

He, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

He, X.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Heimbeck, M. S.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hernandez-Serrano, A. I.

G. G. H. Cardoso, S. C. R. Landeros, M. A. Gomez, A. I. Hernandez-Serrano, I. S. Gutierrez, E. L. Bedolla, A. R. C. Guzman, H. L. L. Lemus, and E. C. Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7, 42124 (2017).

Herz, L. M.

X. L. Xu, P. Parkinson, K.-C. Chuang, M. B. Johnston, R. J. Nicholas, and L. M. Herz, “Dynamic terahertz polarization in single-walled carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 085441 (2010).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hilton, D. J.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Ho, C. P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Hu, F.-T.

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys-Berlin 529(10), 1700151 (2017).
[Crossref]

Hu, W.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Huang, X.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Huang, X.-R.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Huang, Y.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

Huang, Z.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

Ichii, A.

Imayama, K.

Inoue, H.

Irfan, A.

S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
[Crossref] [PubMed]

Isozaki, A.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

Ito, S.

S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
[Crossref] [PubMed]

Jang, E. Y.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Jiang, N.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Jiang, S.-C.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Jiang, T.

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Jin, B.-B.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Johnston, M. B.

X. L. Xu, P. Parkinson, K.-C. Chuang, M. B. Johnston, R. J. Nicholas, and L. M. Herz, “Dynamic terahertz polarization in single-walled carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 085441 (2010).
[Crossref]

Joseph, C. S.

J. P. Martin, C. S. Joseph, and R. H. Giles, “Continuous-wave circular polarization terahertz imaging,” J. Biomed. Opt. 21(7), 70502 (2016).
[Crossref] [PubMed]

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Detection of colon cancer by continuous-wave terahertz polarization imaging technique,” J. Biomed. Opt. 18(9), 090504 (2013).
[Crossref]

Judek, J.

M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
[Crossref] [PubMed]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kan, T.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

Kanda, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

Katletz, S.

Kato, M.

Kawase, K.

Kawayama, I.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Khodzitsky, M.

S. Smirnov, I. V. Anoshkin, P. Demchenko, D. Gomon, D. V. Lioubtchenko, M. Khodzitsky, and J. Oberhammer, “Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications,” Nanoscale 10(26), 12291–12296 (2018).
[Crossref] [PubMed]

Kholmanov, I. N.

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kim, D. S.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Kim, J.-Y.

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Kim, S.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Kim, T. Y.

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

Kim, T.-T.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Kim, Y.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Kim, Y. H.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Kishi, R.

S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
[Crossref] [PubMed]

Kitagawa, Y.

S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
[Crossref] [PubMed]

Koch, M.

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Konishi, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

Kono, J.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kuwata-Gonokami, M.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

Kyoung, J.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Landeros, S. C. R.

G. G. H. Cardoso, S. C. R. Landeros, M. A. Gomez, A. I. Hernandez-Serrano, I. S. Gutierrez, E. L. Bedolla, A. R. C. Guzman, H. L. L. Lemus, and E. C. Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7, 42124 (2017).

Lapinska, A.

M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
[Crossref] [PubMed]

Lee, C.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Lee, D. W.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Lee, S.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Lemus, H. L. L.

G. G. H. Cardoso, S. C. R. Landeros, M. A. Gomez, A. I. Hernandez-Serrano, I. S. Gutierrez, E. L. Bedolla, A. R. C. Guzman, H. L. L. Lemus, and E. C. Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7, 42124 (2017).

Lepró, X.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Li, G.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

Li, J.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Li, T.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Li, X.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Liang, J.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

Liang, L.-J.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liang, X.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lima, M. D.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Lin, X.-W.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lioubtchenko, D. V.

S. Smirnov, I. V. Anoshkin, P. Demchenko, D. Gomon, D. V. Lioubtchenko, M. Khodzitsky, and J. Oberhammer, “Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications,” Nanoscale 10(26), 12291–12296 (2018).
[Crossref] [PubMed]

Liu, H.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Liu, L.

L. Liu, A. Das, and C. M. Megaridis, “Terahertz shielding of carbon nanomaterials and their composites–a review and applications,” Carbon 69, 1–16 (2014).
[Crossref]

Liu, W.-W.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Liu, Z. F.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Lu, H.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Lu, Y.-N.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lu, Y.-Q.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lv, H.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Lv, W.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Magnuson, C. W.

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

Manjappa, M.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Mao, Q.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Martin, J. P.

J. P. Martin, C. S. Joseph, and R. H. Giles, “Continuous-wave circular polarization terahertz imaging,” J. Biomed. Opt. 21(7), 70502 (2016).
[Crossref] [PubMed]

Matsumoto, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

Megaridis, C. M.

L. Liu, A. Das, and C. M. Megaridis, “Terahertz shielding of carbon nanomaterials and their composites–a review and applications,” Carbon 69, 1–16 (2014).
[Crossref]

Miao, Y.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Miao, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Mikulics, M.

Min, B.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Mitchell, A.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Mittleman, D. M.

Morimoto, I.

Moura, F. A.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Muhammad, S.

S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
[Crossref] [PubMed]

Murate, K.

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nakano, M.

S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
[Crossref] [PubMed]

Nemoto, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

Nicholas, R. J.

X. L. Xu, P. Parkinson, K.-C. Chuang, M. B. Johnston, R. J. Nicholas, and L. M. Herz, “Dynamic terahertz polarization in single-walled carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 085441 (2010).
[Crossref]

Oberhammer, J.

S. Smirnov, I. V. Anoshkin, P. Demchenko, D. Gomon, D. V. Lioubtchenko, M. Khodzitsky, and J. Oberhammer, “Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications,” Nanoscale 10(26), 12291–12296 (2018).
[Crossref] [PubMed]

Ogawa, Y.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ovalle-Robles, R.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Pan, C.-L.

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

Pan, R.-P.

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

Park, H. R.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Parkinson, P.

X. L. Xu, P. Parkinson, K.-C. Chuang, M. B. Johnston, R. J. Nicholas, and L. M. Herz, “Dynamic terahertz polarization in single-walled carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 085441 (2010).
[Crossref]

Pasquali, M.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Peng, R.-W.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Peters, O.

Pfleger, M.

Piner, R.

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

Pint, C. L.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Pitchappa, P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Pühringer, H.

Qian, D.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Qian, H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Ren, L.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Ren, X.-P.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Rice, W. D.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Robles, R. O.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Ruoff, R. S.

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

Sanderson, M.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Sberveglieri, G.

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

Scheller, M.

Scherger, B.

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Shah, C. M.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Shao, G.-H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Shi, Q.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

Shimoyama, I.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

Singh, N.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Singh, R.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Smirnov, S.

S. Smirnov, I. V. Anoshkin, P. Demchenko, D. Gomon, D. V. Lioubtchenko, M. Khodzitsky, and J. Oberhammer, “Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications,” Nanoscale 10(26), 12291–12296 (2018).
[Crossref] [PubMed]

Sriram, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Srivastava, Y. K.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Stobinski, L.

M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
[Crossref] [PubMed]

Suszek, J.

M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
[Crossref] [PubMed]

Sypek, M.

M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
[Crossref] [PubMed]

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Takahashi, H.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

Takano, K.

Takeya, K.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Tan, C.

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

Tang, T.-T.

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

Taube, A.

M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
[Crossref] [PubMed]

Teng, J. H.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Tian, W.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Tonouchi, M.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Tripathi, S. R.

Tsentalovich, D. E.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Ung, B. S. Y.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Vieweg, N.

Wang, H. Y.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Wang, L.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Wang, M.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Wang, R.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Wang, X.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Wang, X.-H.

F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Watanabe, Y.

Wen, Q.-Y.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Wiesauer, K.

Withayachumnankul, W.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Wu, P.-H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Wu, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Wu, Q. Y.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Xiao, P.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

Xie, L.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref] [PubMed]

Xiong, X.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Xu, D.-H.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Xu, S.-T.

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys-Berlin 529(10), 1700151 (2017).
[Crossref]

M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
[Crossref] [PubMed]

Xu, W.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref] [PubMed]

Xu, X. L.

X. L. Xu, P. Parkinson, K.-C. Chuang, M. B. Johnston, R. J. Nicholas, and L. M. Herz, “Dynamic terahertz polarization in single-walled carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 085441 (2010).
[Crossref]

Yang, C.-S.

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

Yang, Q.-H.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Yang, Y.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

Yin, Q.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Yin, S. G.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Ying, Y.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref] [PubMed]

Yokoyama, H.

Yoneda, K.

S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
[Crossref] [PubMed]

Young, C. C.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Yu, P.

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

Yuan, N. Y.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Zakhidov, A. A.

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

Zdrojek, M.

M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
[Crossref] [PubMed]

Zeng, B.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zeranska-Chudek, K.

M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
[Crossref] [PubMed]

Zhang, H.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, H.-W.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Zhang, K.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Zhang, L.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Zhang, M.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Zhang, R.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Zhang, R. C.

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Zhang, T.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

Zhang, W.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhang, X. H.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhao, J.

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Zheng, Z.-G.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Zhou, L.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Zhou, Y.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Zhu, B.

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Zubair, A.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Adv. Funct. Mater. (1)

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28(2), 1704363 (2018).
[Crossref]

Adv. Mater. (4)

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

I. N. Kholmanov, C. W. Magnuson, R. Piner, J.-Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, “Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films,” Adv. Mater. 27(19), 3053–3059 (2015).
[Crossref] [PubMed]

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Ann. Phys-Berlin (1)

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys-Berlin 529(10), 1700151 (2017).
[Crossref]

Appl. Phys. Lett. (6)

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Carbon (2)

L. Liu, A. Das, and C. M. Megaridis, “Terahertz shielding of carbon nanomaterials and their composites–a review and applications,” Carbon 69, 1–16 (2014).
[Crossref]

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

J. Biomed. Opt. (2)

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Detection of colon cancer by continuous-wave terahertz polarization imaging technique,” J. Biomed. Opt. 18(9), 090504 (2013).
[Crossref]

J. P. Martin, C. S. Joseph, and R. H. Giles, “Continuous-wave circular polarization terahertz imaging,” J. Biomed. Opt. 21(7), 70502 (2016).
[Crossref] [PubMed]

Light Sci. Appl. (1)

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Nano Lett. (3)

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Nanoscale (6)

S. Smirnov, I. V. Anoshkin, P. Demchenko, D. Gomon, D. V. Lioubtchenko, M. Khodzitsky, and J. Oberhammer, “Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications,” Nanoscale 10(26), 12291–12296 (2018).
[Crossref] [PubMed]

S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, “Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials,” Nanoscale 8(42), 17998–18020 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref] [PubMed]

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, and J. Judek, “Graphene-based plastic absorber for total sub-terahertz radiation shielding,” Nanoscale 10(28), 13426–13431 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (3)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

X. L. Xu, P. Parkinson, K.-C. Chuang, M. B. Johnston, R. J. Nicholas, and L. M. Herz, “Dynamic terahertz polarization in single-walled carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 085441 (2010).
[Crossref]

Phys. Rev. X (1)

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Sci. Rep. (3)

M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
[Crossref] [PubMed]

G. G. H. Cardoso, S. C. R. Landeros, M. A. Gomez, A. I. Hernandez-Serrano, I. S. Gutierrez, E. L. Bedolla, A. R. C. Guzman, H. L. L. Lemus, and E. C. Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7, 42124 (2017).

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Science (1)

Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R. H. Baughman, “Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles,” Science 349(6246), 400–404 (2015).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Other (1)

Y.-S. Lee, Principles of terahertz science and technology, (Springer Science & Business Media, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic illustration of fabrication steps of a BCNTS/rubber. (b) Low- and high-resolution SEM images showing buckles of a BCNTS20/rubber at 30%, 90%, and 150% strain.
Fig. 2
Fig. 2 (a) Schematic diagram of THz-TDS, insets: experimental tensile setup. (b) The stress-strain curve of bare rubber, BCNTS20/rubber, and BCNTS60/rubber. (c) Time-domain THz spectra of bare rubber substrate at different strain 0%, 30%, 60%, 90%, 120% and 150%.
Fig. 3
Fig. 3 Time-domain THz waveform for BCNTS/rubber⊥THz and BCNTS/rubber THz of (a, b) 20-layer and (c, d) 60-layer for strain increasing from 0% to 150%.
Fig. 4
Fig. 4 Amplitude transmission spectra of BCNTS/rubber for the BCNTS THz and BCNTS⊥THz cases of (a) 20-layer and (b) 60-layer with the different strain. Extinction ratio for BCNTS/rubber of (c) 20-layer and (d) 60-layer at the different strain. The peak signal of the Time-domain THz spectra for the (e) 20-layer and (f) 60-layer as a function of polarization angle at different strain.
Fig. 5
Fig. 5 (a) The diagram of the statistical grating model of BCNTS/rubber, the yellow part represents rubber and the gray wires represent CNT gratings. (b) The simulated values of a and b in (a) as a function of strain. (c) The simulated values of b/a in (a) as a function of strain. (d) The simulated amplitude transmission spectra of BCNTS20/rubber for the cases of BCNTS THz and BCNTS⊥THz at different strain.
Fig. 6
Fig. 6 (a) The modulation depth as a function of strain for BCNTS/rubber with different BCNTS layer number (m = 5, 10, 20, 40, and 60, respectively) for the cases of BCNTS⊥THz and BCNTS THz. (b) Strain sensitivity as a function of number of BCNTS layers for the cases of BCNTS⊥THz and BCNTS THz.
Fig. 7
Fig. 7 The extinction ratio curves of BCNTS/rubber at 1THz after different cyclic stretch (red dotted lines represent 20-layer, blue dotted lines represent 60-layer).
Fig. 8
Fig. 8 Tunable THz polarization imaging of a coin by use of BCNTS60/rubber. (a) Schematic demonstration of tunable THz imaging. (b) The THz images with different rotation angle at 150% strain. 0° and 90° are corresponding to the BCNTS THz and BCNTS⊥THz. (c) The THz images at different strain with a rotation angle of 90°.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A ( f ) = | F F t [ E ( t ) ] | ,
t ( f ) = A s ( f ) / A r ( f ) ,
E R ( f ) = ( t 2 t / / 2 ) / ( t 2 + t / / 2 ) ,
M D ( f ) = [ t ε ( f ) 2 t 0 ( f ) 2 ] / t 0 ( f ) 2 ,
S S = ( M D ) / ( ε )

Metrics