Abstract

A new device with a 405 nm blue laser diode is developed for collecting samples in air and detecting their spectra variation. The multi-sample particles which are pure microorganisms can be distinguished from interferents in the air by photo-bleaching phenomenon. Six types of microorganisms and twelve types of interferents from the air, which exhibit laser-induced fluorescence, are used to evaluate the performance of the analysis approach, and their fluorescence emission spectra are presented. The results show that when microorganisms are illuminated by the laser, the fluorescence spectra will change significantly within several minutes, including both the wavelength of the main peak and fluorescence intensity. Our work provides a potential approach to distinguish microorganisms from other particles by the changes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results

Yong-Le Pan, Steven C. Hill, Ronald G. Pinnick, Hermes Huang, Jerold R. Bottiger, and Richard K. Chang
Opt. Express 18(12) 12436-12457 (2010)

Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

Steven C. Hill, Ronald G. Pinnick, Paul Nachman, Gang Chen, Richard K. Chang, Michael W. Mayo, and Gilbert L. Fernandez
Appl. Opt. 34(30) 7149-7155 (1995)

Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser

Yong-le Pan, Stephen Holler, Richard K. Chang, Steven C. Hill, Ronald G. Pinnick, Stanley Niles, and Jerold R. Bottiger
Opt. Lett. 24(2) 116-118 (1999)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watches and C. B. Cox, Bioaerosols Handbook, (Lewis Publishers, 1995), Chap. 1.
  2. Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).
  3. S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt. 34(30), 7149–7155 (1995).
    [Crossref] [PubMed]
  4. Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45(8), 1555–1563 (2011).
    [Crossref]
  5. O. Farsund, G. Rustad, and G. Skogan, “Standoff detection of biological agents using laser induced fluorescence-a comparison of 294 nm and 355 nm excitation wavelengths,” Biomed. Opt. Express 3(11), 2964–2975 (2012).
    [Crossref] [PubMed]
  6. C. Primmerman, “A Detection of biological agents,” Linc. Lab. J. 12(1), 32–33 (2000).
  7. J. Eversole, J. Hardgrove, W. Cary, D. Choulas, and M. Seaver, “Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 3(4–5), 249–259 (1999).
    [Crossref]
  8. Product Specifications of Droplet Measurement Technologies,” WIDEBAND INTEGRATED BIOAEROSOL SENSOR-4A(WIBS-4A)”.
  9. D. Suto, Y. Iuchi, Y. Ikeda, K. Sato, Y. Ohba, and J. Fujii, “Inactivation of cysteine and serine proteases by singlet oxygen,” Arch. Biochem. Biophys. 461(2), 151–158 (2007).
    [Crossref] [PubMed]
  10. N. Breusing, S. Grimm, D. Mvondo, A. Flaccus, H. K. Biesalski, and T. Grune, “Light-induced cytotoxicity after aminolevulinic acid treatment is mediated by heme and not by iron,” J. Photochem. Photobiol. B 99(1), 36–43 (2010).
    [Crossref] [PubMed]
  11. H. Rosen and T. Novakov, “Identification of primary particulate carbon and sulfate species by Raman spectroscopy,” Atmos. Environ. 12(4), 923–927 (1978).
    [Crossref] [PubMed]
  12. T. Ronningen, J. Schuetter, J. Wightman, A. Murdock, and A. Bartko, “Raman spectroscopy for biological identification,” In: Schaudies RP, editor. Biological Identification. New York: Elsevier. pages 313–333(2014).
  13. S. Ghosal, J. M. Macher, and K. Ahmed, “Raman microspectroscopy-based identification of individual fungal spores as potential indicators of indoor contamination and moisture-related building damage,” Environ. Sci. Technol. 46(11), 6088–6095 (2012).
    [Crossref] [PubMed]
  14. F. Schulte, J. Lingott, U. Panne, and J. Kneipp, “Chemical characterization and classification of pollen,” Anal. Chem. 80(24), 9551–9556 (2008).
    [Crossref] [PubMed]
  15. A. Sadezky, H. Muckenhuber, H. Grothe, and U. Niessnerl, “Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information,” Carbon 43(8), 1731–1742 (2005).
    [Crossref]
  16. D. C. Doughty and S. C. Hill, “Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol,” J. Quant. Spectrosc. Radiat. Transf. 188, 103–117 (2017).
    [Crossref]
  17. R. L. Craiga, A. L. Bondya, and A. P. Ault, “Computer-controlled Raman microspectroscopy (CC-Raman): A method for the rapid characterization of individual atmospheric aerosol particles,” Aerosol Sci. Technol. 51(9), 1099–1112 (2017).
    [Crossref]
  18. G. C. Zhou, Y. K. Zhao, J. Han, C. X. Feng, and H. J. Huang, “Research on submicron particle sampler based on inertial impactor,” Yiqi Yibiao Xuebao 6(31), 1381 (2010).
  19. D. R. Huffman, B. E. Swanson, and J. A. Huffman, “A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate,” Atmos. Meas. Tech. 9(8), 3987–3998 (2016).
    [Crossref]
  20. C. Y. Lu, P. Zhang, G. H. Wang, J. Zhu, X. Y. Tang, W. P. Huang, S. H. Chen, X. L. Xu, and H. J. Huang, “Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique,” J. Aerosol Sci. 117, 24–33 (2018).
    [Crossref]
  21. C. E. Bolotin and M. V. Trieste, “Method for the detection of biologic particle contamination,” United States Patent, Patent No.: US 8,628,976 B2.
  22. C. Pohlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
    [Crossref]

2018 (1)

C. Y. Lu, P. Zhang, G. H. Wang, J. Zhu, X. Y. Tang, W. P. Huang, S. H. Chen, X. L. Xu, and H. J. Huang, “Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique,” J. Aerosol Sci. 117, 24–33 (2018).
[Crossref]

2017 (2)

D. C. Doughty and S. C. Hill, “Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol,” J. Quant. Spectrosc. Radiat. Transf. 188, 103–117 (2017).
[Crossref]

R. L. Craiga, A. L. Bondya, and A. P. Ault, “Computer-controlled Raman microspectroscopy (CC-Raman): A method for the rapid characterization of individual atmospheric aerosol particles,” Aerosol Sci. Technol. 51(9), 1099–1112 (2017).
[Crossref]

2016 (1)

D. R. Huffman, B. E. Swanson, and J. A. Huffman, “A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate,” Atmos. Meas. Tech. 9(8), 3987–3998 (2016).
[Crossref]

2012 (3)

C. Pohlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[Crossref]

S. Ghosal, J. M. Macher, and K. Ahmed, “Raman microspectroscopy-based identification of individual fungal spores as potential indicators of indoor contamination and moisture-related building damage,” Environ. Sci. Technol. 46(11), 6088–6095 (2012).
[Crossref] [PubMed]

O. Farsund, G. Rustad, and G. Skogan, “Standoff detection of biological agents using laser induced fluorescence-a comparison of 294 nm and 355 nm excitation wavelengths,” Biomed. Opt. Express 3(11), 2964–2975 (2012).
[Crossref] [PubMed]

2011 (1)

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45(8), 1555–1563 (2011).
[Crossref]

2010 (2)

N. Breusing, S. Grimm, D. Mvondo, A. Flaccus, H. K. Biesalski, and T. Grune, “Light-induced cytotoxicity after aminolevulinic acid treatment is mediated by heme and not by iron,” J. Photochem. Photobiol. B 99(1), 36–43 (2010).
[Crossref] [PubMed]

G. C. Zhou, Y. K. Zhao, J. Han, C. X. Feng, and H. J. Huang, “Research on submicron particle sampler based on inertial impactor,” Yiqi Yibiao Xuebao 6(31), 1381 (2010).

2008 (1)

F. Schulte, J. Lingott, U. Panne, and J. Kneipp, “Chemical characterization and classification of pollen,” Anal. Chem. 80(24), 9551–9556 (2008).
[Crossref] [PubMed]

2007 (1)

D. Suto, Y. Iuchi, Y. Ikeda, K. Sato, Y. Ohba, and J. Fujii, “Inactivation of cysteine and serine proteases by singlet oxygen,” Arch. Biochem. Biophys. 461(2), 151–158 (2007).
[Crossref] [PubMed]

2006 (1)

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

2005 (1)

A. Sadezky, H. Muckenhuber, H. Grothe, and U. Niessnerl, “Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information,” Carbon 43(8), 1731–1742 (2005).
[Crossref]

2000 (1)

C. Primmerman, “A Detection of biological agents,” Linc. Lab. J. 12(1), 32–33 (2000).

1999 (1)

J. Eversole, J. Hardgrove, W. Cary, D. Choulas, and M. Seaver, “Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 3(4–5), 249–259 (1999).
[Crossref]

1995 (1)

1978 (1)

H. Rosen and T. Novakov, “Identification of primary particulate carbon and sulfate species by Raman spectroscopy,” Atmos. Environ. 12(4), 923–927 (1978).
[Crossref] [PubMed]

Ahmed, K.

S. Ghosal, J. M. Macher, and K. Ahmed, “Raman microspectroscopy-based identification of individual fungal spores as potential indicators of indoor contamination and moisture-related building damage,” Environ. Sci. Technol. 46(11), 6088–6095 (2012).
[Crossref] [PubMed]

Ault, A. P.

R. L. Craiga, A. L. Bondya, and A. P. Ault, “Computer-controlled Raman microspectroscopy (CC-Raman): A method for the rapid characterization of individual atmospheric aerosol particles,” Aerosol Sci. Technol. 51(9), 1099–1112 (2017).
[Crossref]

Biesalski, H. K.

N. Breusing, S. Grimm, D. Mvondo, A. Flaccus, H. K. Biesalski, and T. Grune, “Light-induced cytotoxicity after aminolevulinic acid treatment is mediated by heme and not by iron,” J. Photochem. Photobiol. B 99(1), 36–43 (2010).
[Crossref] [PubMed]

Bondya, A. L.

R. L. Craiga, A. L. Bondya, and A. P. Ault, “Computer-controlled Raman microspectroscopy (CC-Raman): A method for the rapid characterization of individual atmospheric aerosol particles,” Aerosol Sci. Technol. 51(9), 1099–1112 (2017).
[Crossref]

Bottiger, J. R.

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

Breusing, N.

N. Breusing, S. Grimm, D. Mvondo, A. Flaccus, H. K. Biesalski, and T. Grune, “Light-induced cytotoxicity after aminolevulinic acid treatment is mediated by heme and not by iron,” J. Photochem. Photobiol. B 99(1), 36–43 (2010).
[Crossref] [PubMed]

Cary, W.

J. Eversole, J. Hardgrove, W. Cary, D. Choulas, and M. Seaver, “Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 3(4–5), 249–259 (1999).
[Crossref]

Chang, R. K.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45(8), 1555–1563 (2011).
[Crossref]

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt. 34(30), 7149–7155 (1995).
[Crossref] [PubMed]

Chen, G.

Chen, S. H.

C. Y. Lu, P. Zhang, G. H. Wang, J. Zhu, X. Y. Tang, W. P. Huang, S. H. Chen, X. L. Xu, and H. J. Huang, “Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique,” J. Aerosol Sci. 117, 24–33 (2018).
[Crossref]

Choulas, D.

J. Eversole, J. Hardgrove, W. Cary, D. Choulas, and M. Seaver, “Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 3(4–5), 249–259 (1999).
[Crossref]

Craiga, R. L.

R. L. Craiga, A. L. Bondya, and A. P. Ault, “Computer-controlled Raman microspectroscopy (CC-Raman): A method for the rapid characterization of individual atmospheric aerosol particles,” Aerosol Sci. Technol. 51(9), 1099–1112 (2017).
[Crossref]

Doughty, D. C.

D. C. Doughty and S. C. Hill, “Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol,” J. Quant. Spectrosc. Radiat. Transf. 188, 103–117 (2017).
[Crossref]

Eversole, J.

J. Eversole, J. Hardgrove, W. Cary, D. Choulas, and M. Seaver, “Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 3(4–5), 249–259 (1999).
[Crossref]

Eversole, J. D.

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

Farsund, O.

Feng, C. X.

G. C. Zhou, Y. K. Zhao, J. Han, C. X. Feng, and H. J. Huang, “Research on submicron particle sampler based on inertial impactor,” Yiqi Yibiao Xuebao 6(31), 1381 (2010).

Fernandez, G. L.

Flaccus, A.

N. Breusing, S. Grimm, D. Mvondo, A. Flaccus, H. K. Biesalski, and T. Grune, “Light-induced cytotoxicity after aminolevulinic acid treatment is mediated by heme and not by iron,” J. Photochem. Photobiol. B 99(1), 36–43 (2010).
[Crossref] [PubMed]

Flagan, R. C.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45(8), 1555–1563 (2011).
[Crossref]

Foot, V.

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

Fujii, J.

D. Suto, Y. Iuchi, Y. Ikeda, K. Sato, Y. Ohba, and J. Fujii, “Inactivation of cysteine and serine proteases by singlet oxygen,” Arch. Biochem. Biophys. 461(2), 151–158 (2007).
[Crossref] [PubMed]

Ghosal, S.

S. Ghosal, J. M. Macher, and K. Ahmed, “Raman microspectroscopy-based identification of individual fungal spores as potential indicators of indoor contamination and moisture-related building damage,” Environ. Sci. Technol. 46(11), 6088–6095 (2012).
[Crossref] [PubMed]

Grimm, S.

N. Breusing, S. Grimm, D. Mvondo, A. Flaccus, H. K. Biesalski, and T. Grune, “Light-induced cytotoxicity after aminolevulinic acid treatment is mediated by heme and not by iron,” J. Photochem. Photobiol. B 99(1), 36–43 (2010).
[Crossref] [PubMed]

Grothe, H.

A. Sadezky, H. Muckenhuber, H. Grothe, and U. Niessnerl, “Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information,” Carbon 43(8), 1731–1742 (2005).
[Crossref]

Grune, T.

N. Breusing, S. Grimm, D. Mvondo, A. Flaccus, H. K. Biesalski, and T. Grune, “Light-induced cytotoxicity after aminolevulinic acid treatment is mediated by heme and not by iron,” J. Photochem. Photobiol. B 99(1), 36–43 (2010).
[Crossref] [PubMed]

Han, J.

G. C. Zhou, Y. K. Zhao, J. Han, C. X. Feng, and H. J. Huang, “Research on submicron particle sampler based on inertial impactor,” Yiqi Yibiao Xuebao 6(31), 1381 (2010).

Hardgrove, J.

J. Eversole, J. Hardgrove, W. Cary, D. Choulas, and M. Seaver, “Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 3(4–5), 249–259 (1999).
[Crossref]

Hill, S. C.

D. C. Doughty and S. C. Hill, “Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol,” J. Quant. Spectrosc. Radiat. Transf. 188, 103–117 (2017).
[Crossref]

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45(8), 1555–1563 (2011).
[Crossref]

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt. 34(30), 7149–7155 (1995).
[Crossref] [PubMed]

House, J. M.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45(8), 1555–1563 (2011).
[Crossref]

Huang, H. J.

C. Y. Lu, P. Zhang, G. H. Wang, J. Zhu, X. Y. Tang, W. P. Huang, S. H. Chen, X. L. Xu, and H. J. Huang, “Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique,” J. Aerosol Sci. 117, 24–33 (2018).
[Crossref]

G. C. Zhou, Y. K. Zhao, J. Han, C. X. Feng, and H. J. Huang, “Research on submicron particle sampler based on inertial impactor,” Yiqi Yibiao Xuebao 6(31), 1381 (2010).

Huang, W. P.

C. Y. Lu, P. Zhang, G. H. Wang, J. Zhu, X. Y. Tang, W. P. Huang, S. H. Chen, X. L. Xu, and H. J. Huang, “Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique,” J. Aerosol Sci. 117, 24–33 (2018).
[Crossref]

Huffman, D. R.

D. R. Huffman, B. E. Swanson, and J. A. Huffman, “A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate,” Atmos. Meas. Tech. 9(8), 3987–3998 (2016).
[Crossref]

Huffman, J. A.

D. R. Huffman, B. E. Swanson, and J. A. Huffman, “A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate,” Atmos. Meas. Tech. 9(8), 3987–3998 (2016).
[Crossref]

C. Pohlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[Crossref]

Huston, A.

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

Ikeda, Y.

D. Suto, Y. Iuchi, Y. Ikeda, K. Sato, Y. Ohba, and J. Fujii, “Inactivation of cysteine and serine proteases by singlet oxygen,” Arch. Biochem. Biophys. 461(2), 151–158 (2007).
[Crossref] [PubMed]

Iuchi, Y.

D. Suto, Y. Iuchi, Y. Ikeda, K. Sato, Y. Ohba, and J. Fujii, “Inactivation of cysteine and serine proteases by singlet oxygen,” Arch. Biochem. Biophys. 461(2), 151–158 (2007).
[Crossref] [PubMed]

Kaye, P. H.

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

Kneipp, J.

F. Schulte, J. Lingott, U. Panne, and J. Kneipp, “Chemical characterization and classification of pollen,” Anal. Chem. 80(24), 9551–9556 (2008).
[Crossref] [PubMed]

Lingott, J.

F. Schulte, J. Lingott, U. Panne, and J. Kneipp, “Chemical characterization and classification of pollen,” Anal. Chem. 80(24), 9551–9556 (2008).
[Crossref] [PubMed]

Lu, C. Y.

C. Y. Lu, P. Zhang, G. H. Wang, J. Zhu, X. Y. Tang, W. P. Huang, S. H. Chen, X. L. Xu, and H. J. Huang, “Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique,” J. Aerosol Sci. 117, 24–33 (2018).
[Crossref]

Macher, J. M.

S. Ghosal, J. M. Macher, and K. Ahmed, “Raman microspectroscopy-based identification of individual fungal spores as potential indicators of indoor contamination and moisture-related building damage,” Environ. Sci. Technol. 46(11), 6088–6095 (2012).
[Crossref] [PubMed]

Mayo, M. W.

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt. 34(30), 7149–7155 (1995).
[Crossref] [PubMed]

Muckenhuber, H.

A. Sadezky, H. Muckenhuber, H. Grothe, and U. Niessnerl, “Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information,” Carbon 43(8), 1731–1742 (2005).
[Crossref]

Mvondo, D.

N. Breusing, S. Grimm, D. Mvondo, A. Flaccus, H. K. Biesalski, and T. Grune, “Light-induced cytotoxicity after aminolevulinic acid treatment is mediated by heme and not by iron,” J. Photochem. Photobiol. B 99(1), 36–43 (2010).
[Crossref] [PubMed]

Nachman, P.

Niessnerl, U.

A. Sadezky, H. Muckenhuber, H. Grothe, and U. Niessnerl, “Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information,” Carbon 43(8), 1731–1742 (2005).
[Crossref]

Novakov, T.

H. Rosen and T. Novakov, “Identification of primary particulate carbon and sulfate species by Raman spectroscopy,” Atmos. Environ. 12(4), 923–927 (1978).
[Crossref] [PubMed]

Ohba, Y.

D. Suto, Y. Iuchi, Y. Ikeda, K. Sato, Y. Ohba, and J. Fujii, “Inactivation of cysteine and serine proteases by singlet oxygen,” Arch. Biochem. Biophys. 461(2), 151–158 (2007).
[Crossref] [PubMed]

Pan, Y. L.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45(8), 1555–1563 (2011).
[Crossref]

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

Panne, U.

F. Schulte, J. Lingott, U. Panne, and J. Kneipp, “Chemical characterization and classification of pollen,” Anal. Chem. 80(24), 9551–9556 (2008).
[Crossref] [PubMed]

Pinnick, R. G.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45(8), 1555–1563 (2011).
[Crossref]

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt. 34(30), 7149–7155 (1995).
[Crossref] [PubMed]

Pohlker, C.

C. Pohlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[Crossref]

Poschl, U.

C. Pohlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[Crossref]

Primmerman, C.

C. Primmerman, “A Detection of biological agents,” Linc. Lab. J. 12(1), 32–33 (2000).

Rosen, H.

H. Rosen and T. Novakov, “Identification of primary particulate carbon and sulfate species by Raman spectroscopy,” Atmos. Environ. 12(4), 923–927 (1978).
[Crossref] [PubMed]

Rustad, G.

Sadezky, A.

A. Sadezky, H. Muckenhuber, H. Grothe, and U. Niessnerl, “Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information,” Carbon 43(8), 1731–1742 (2005).
[Crossref]

Sato, K.

D. Suto, Y. Iuchi, Y. Ikeda, K. Sato, Y. Ohba, and J. Fujii, “Inactivation of cysteine and serine proteases by singlet oxygen,” Arch. Biochem. Biophys. 461(2), 151–158 (2007).
[Crossref] [PubMed]

Schulte, F.

F. Schulte, J. Lingott, U. Panne, and J. Kneipp, “Chemical characterization and classification of pollen,” Anal. Chem. 80(24), 9551–9556 (2008).
[Crossref] [PubMed]

Seaver, M.

J. Eversole, J. Hardgrove, W. Cary, D. Choulas, and M. Seaver, “Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 3(4–5), 249–259 (1999).
[Crossref]

Sivaprakasam, V.

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

Skogan, G.

Suto, D.

D. Suto, Y. Iuchi, Y. Ikeda, K. Sato, Y. Ohba, and J. Fujii, “Inactivation of cysteine and serine proteases by singlet oxygen,” Arch. Biochem. Biophys. 461(2), 151–158 (2007).
[Crossref] [PubMed]

Swanson, B. E.

D. R. Huffman, B. E. Swanson, and J. A. Huffman, “A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate,” Atmos. Meas. Tech. 9(8), 3987–3998 (2016).
[Crossref]

Tang, X. Y.

C. Y. Lu, P. Zhang, G. H. Wang, J. Zhu, X. Y. Tang, W. P. Huang, S. H. Chen, X. L. Xu, and H. J. Huang, “Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique,” J. Aerosol Sci. 117, 24–33 (2018).
[Crossref]

Wang, G. H.

C. Y. Lu, P. Zhang, G. H. Wang, J. Zhu, X. Y. Tang, W. P. Huang, S. H. Chen, X. L. Xu, and H. J. Huang, “Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique,” J. Aerosol Sci. 117, 24–33 (2018).
[Crossref]

Xu, X. L.

C. Y. Lu, P. Zhang, G. H. Wang, J. Zhu, X. Y. Tang, W. P. Huang, S. H. Chen, X. L. Xu, and H. J. Huang, “Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique,” J. Aerosol Sci. 117, 24–33 (2018).
[Crossref]

Zhang, P.

C. Y. Lu, P. Zhang, G. H. Wang, J. Zhu, X. Y. Tang, W. P. Huang, S. H. Chen, X. L. Xu, and H. J. Huang, “Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique,” J. Aerosol Sci. 117, 24–33 (2018).
[Crossref]

Zhao, Y. K.

G. C. Zhou, Y. K. Zhao, J. Han, C. X. Feng, and H. J. Huang, “Research on submicron particle sampler based on inertial impactor,” Yiqi Yibiao Xuebao 6(31), 1381 (2010).

Zhou, G. C.

G. C. Zhou, Y. K. Zhao, J. Han, C. X. Feng, and H. J. Huang, “Research on submicron particle sampler based on inertial impactor,” Yiqi Yibiao Xuebao 6(31), 1381 (2010).

Zhu, J.

C. Y. Lu, P. Zhang, G. H. Wang, J. Zhu, X. Y. Tang, W. P. Huang, S. H. Chen, X. L. Xu, and H. J. Huang, “Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique,” J. Aerosol Sci. 117, 24–33 (2018).
[Crossref]

Aerosol Sci. Technol. (1)

R. L. Craiga, A. L. Bondya, and A. P. Ault, “Computer-controlled Raman microspectroscopy (CC-Raman): A method for the rapid characterization of individual atmospheric aerosol particles,” Aerosol Sci. Technol. 51(9), 1099–1112 (2017).
[Crossref]

Anal. Chem. (1)

F. Schulte, J. Lingott, U. Panne, and J. Kneipp, “Chemical characterization and classification of pollen,” Anal. Chem. 80(24), 9551–9556 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Arch. Biochem. Biophys. (1)

D. Suto, Y. Iuchi, Y. Ikeda, K. Sato, Y. Ohba, and J. Fujii, “Inactivation of cysteine and serine proteases by singlet oxygen,” Arch. Biochem. Biophys. 461(2), 151–158 (2007).
[Crossref] [PubMed]

Atmos. Environ. (2)

H. Rosen and T. Novakov, “Identification of primary particulate carbon and sulfate species by Raman spectroscopy,” Atmos. Environ. 12(4), 923–927 (1978).
[Crossref] [PubMed]

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45(8), 1555–1563 (2011).
[Crossref]

Atmos. Meas. Tech. (2)

D. R. Huffman, B. E. Swanson, and J. A. Huffman, “A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate,” Atmos. Meas. Tech. 9(8), 3987–3998 (2016).
[Crossref]

C. Pohlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[Crossref]

Biomed. Opt. Express (1)

Carbon (1)

A. Sadezky, H. Muckenhuber, H. Grothe, and U. Niessnerl, “Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information,” Carbon 43(8), 1731–1742 (2005).
[Crossref]

Environ. Sci. Technol. (1)

S. Ghosal, J. M. Macher, and K. Ahmed, “Raman microspectroscopy-based identification of individual fungal spores as potential indicators of indoor contamination and moisture-related building damage,” Environ. Sci. Technol. 46(11), 6088–6095 (2012).
[Crossref] [PubMed]

Field Anal. Chem. Technol. (1)

J. Eversole, J. Hardgrove, W. Cary, D. Choulas, and M. Seaver, “Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 3(4–5), 249–259 (1999).
[Crossref]

J. Aerosol Sci. (1)

C. Y. Lu, P. Zhang, G. H. Wang, J. Zhu, X. Y. Tang, W. P. Huang, S. H. Chen, X. L. Xu, and H. J. Huang, “Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique,” J. Aerosol Sci. 117, 24–33 (2018).
[Crossref]

J. Photochem. Photobiol. B (1)

N. Breusing, S. Grimm, D. Mvondo, A. Flaccus, H. K. Biesalski, and T. Grune, “Light-induced cytotoxicity after aminolevulinic acid treatment is mediated by heme and not by iron,” J. Photochem. Photobiol. B 99(1), 36–43 (2010).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

D. C. Doughty and S. C. Hill, “Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol,” J. Quant. Spectrosc. Radiat. Transf. 188, 103–117 (2017).
[Crossref]

Linc. Lab. J. (1)

C. Primmerman, “A Detection of biological agents,” Linc. Lab. J. 12(1), 32–33 (2000).

Optics of Biological Particles (1)

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy,” Optics of Biological Particles 7, 63–164 (2006).

Yiqi Yibiao Xuebao (1)

G. C. Zhou, Y. K. Zhao, J. Han, C. X. Feng, and H. J. Huang, “Research on submicron particle sampler based on inertial impactor,” Yiqi Yibiao Xuebao 6(31), 1381 (2010).

Other (4)

C. E. Bolotin and M. V. Trieste, “Method for the detection of biologic particle contamination,” United States Patent, Patent No.: US 8,628,976 B2.

C. M. Watches and C. B. Cox, Bioaerosols Handbook, (Lewis Publishers, 1995), Chap. 1.

T. Ronningen, J. Schuetter, J. Wightman, A. Murdock, and A. Bartko, “Raman spectroscopy for biological identification,” In: Schaudies RP, editor. Biological Identification. New York: Elsevier. pages 313–333(2014).

Product Specifications of Droplet Measurement Technologies,” WIDEBAND INTEGRATED BIOAEROSOL SENSOR-4A(WIBS-4A)”.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Work functional diagram. The system consists of a radiation source, a glass slide, a light trap, two focusing lenses, a fluorescence filter, an impactor, an air pump, and a spectrograph.
Fig. 2
Fig. 2 Transmission characteristics of the fluorescence filter.
Fig. 3
Fig. 3 Variation of laser power with time.
Fig. 4
Fig. 4 Experimental setup for performance evaluation of the monitor. The target aerosol is aerosolized by the aerosol generator, forming a uniform aerosol in the buffer bottle.
Fig. 5
Fig. 5 Fluorescence spectra of six types of microorganisms measured after zero and 5 min of laser exposure. The black line is representative of the filter (JB450) whose cut wavelength was 450 nm: (a) Staphylococcus aureus, (b) Escherichia coli, (c) Pseudomonas aeruginosa, (d) Bacillus subtilis, (e) Candida albicans, and (f) Aspergillus niger.
Fig. 6
Fig. 6 Fluorescence spectra of potential interferent plant-based substances after zero and 5 min of laser exposure: (a) grass, (b) leaf, (c) pollen type 1 (Hippeastrum rutilum), and (d) pollen type 2 (Camellia).
Fig. 7
Fig. 7 Fluorescence spectra of man-made potential interferent particles after zero and 5 min of laser exposure: (a) cigarette smoke, (b) smoke from burning paper, and (c) scaling powder.
Fig. 8
Fig. 8 Fluorescence spectra of possible interferent particles that are common in air after zero and 5 min of laser exposure: (a) dust, (b) paper, and (c) B800 fluorescent microspheres.
Fig. 9
Fig. 9 Fluorescence spectra of (a) nutrient agar and (b) nutrient broth.
Fig. 10
Fig. 10 Fluorescence spectra variation of six types of microorganisms in 5 min: (a) Staphylococcus aureus, (b) Escherichia coli, (c) Pseudomonas aeruginosa, (d) Bacillus subtilis, (e) Candida albicans, and (f) Aspergillus niger.
Fig. 11
Fig. 11 Photobleaching rate of microorganisms.
Fig. 12
Fig. 12 Fluorescence emission spectra of the fluorescent molecules in bacteria and fungi: (a) NADH, (b) DPA, and (c) riboflavin.
Fig. 13
Fig. 13 Differentiation graph for all test objects using two measurement features, main peak position shift percentage and the fluorescence intensity ratio (I5min/I0min).

Metrics