Abstract

Comparison of equivalent circuit models (ECM) for photoconductive antennas (PCA) represents a challenge due to the multiphysics phenomena involved during PCA operation and the absence of a standardized validation methodology. In this work, currently reported ECMs are compared using a unique set of simulation parameters and validation indicators (THz waveform, optical power saturation, and ECM voltages consistency). The ECM simulations are contrasted with measured THz pulses of an H-shaped 20μm gap PCA at different optical powers (20mW to 220mW). In addition, an alternative two-element ECM that accounts for both space-charge and radiation screening effects is presented and validated using the proposed methodology. The model shows an accurately reproduced THz pulse using a reduced number of circuital elements, which represents an advantage for PCA modeling.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic photoconductive antennas with rectangular and stepped rods: a theoretical analysis

Mohammadreza Khorshidi and Gholamreza Dadashzadeh
J. Opt. Soc. Am. B 33(12) 2502-2511 (2016)

Time-domain numerical modeling of terahertz receivers based on photoconductive antennas

E. Moreno, Z. Hemmat, J. B. Roldán, M. F. Pantoja, A. R. Bretones, and S. G. García
J. Opt. Soc. Am. B 32(10) 2034-2041 (2015)

Computational modeling of plasmonic thin-film terahertz photoconductive antennas

Nathan Burford and Magda El-Shenawee
J. Opt. Soc. Am. B 33(4) 748-759 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
    [Crossref]
  2. A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol. 25(1), 40–46 (2012).
    [Crossref]
  3. T. Bowman and M. El-Shenawee, “Nondestructive imaging of packaged microelectronics using pulsed terahertz technology,” Int. Symp. Microelectron., vol. 2017, no. 1, pp. 709–714, Oct. 2017.
    [Crossref]
  4. H. Cheon, H. J. Yang, S.-H. Lee, Y. A. Kim, and J.-H. Son, “Terahertz molecular resonance of cancer DNA,” Sci. Rep. 6 (1), 37103 (2016).
    [Crossref] [PubMed]
  5. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” 2003, vol. 5070, p. 44.
  6. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semiconductor Science and Technology, vol. 20, no. 7. IOP Publishing, pp. S266–S280, 01-Jul-2005.
  7. A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
    [Crossref]
  8. G. C. Loata, M. D. Thomson, T. Löffler, and H. G. Roskos, “Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy,” Appl. Phys. Lett. 91(23), 232506 (2007).
    [Crossref]
  9. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
    [Crossref] [PubMed]
  10. T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, K. Sakai, S. Nakashima, and C.-L. Pan, “Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas,” Opt. Express 12(13), 2954–2959 (2004).
    [Crossref] [PubMed]
  11. X. Ropagnol, F. Blanchard, T. Ozaki, and M. Reid, “Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna,” Appl. Phys. Lett. 103(16), 161108 (2013).
    [Crossref]
  12. S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
    [Crossref]
  13. X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116(4), 043107 (2014).
    [Crossref]
  14. Y.-S. Lee, “Generation and detection of broadband terahertz pulses,” in Principles of Terahertz Science and Technology, Boston, MA: Springer US, 2009, pp. 1–66.
  15. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  16. E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, and S. G. García, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millim. Terahertz Waves 35(5), 432–444 (2014).
    [Crossref]
  17. C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
    [Crossref]
  18. N. Zhu and R. W. Ziolkowski, “Photoconductive THz antenna designs with high radiation efficiency, high directivity, and high aperture efficiency,” IEEE Trans. Terahertz Sci. Technol. 3(6), 721–730 (2013).
    [Crossref]
  19. F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
    [Crossref]
  20. M. R. Sang-Gyu Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35(5), 810–819 (1999).
    [Crossref]
  21. D. Turan, S. C. Corzo-Garcia, N. T. Yardimci, E. Castro-Camus, and M. Jarrahi, “Impact of the metal adhesion layer on the radiation power of plasmonic photoconductive terahertz sources,” J. Infrared Millim. Terahertz Waves 38(12), 1448–1456 (2017).
    [Crossref]
  22. N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A high-power broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity,” Sci. Rep. 7(1), 4166 (2017).
    [Crossref] [PubMed]
  23. X. Li, N. T. Yardimci, and M. Jarrahi, “A polarization-insensitive plasmonic photoconductive terahertz emitter,” AIP Adv. 7(11), 115113 (2017).
    [Crossref] [PubMed]
  24. S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
    [Crossref]
  25. P. J. Hale, J. Madeo, C. Chin, S. S. Dhillon, J. Mangeney, J. Tignon, and K. M. Dani, “20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas,” Opt. Express 22(21), 26358–26364 (2014).
    [Crossref] [PubMed]
  26. J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
    [Crossref] [PubMed]
  27. A. Mingardi, W.-D. Zhang, E. R. Brown, A. D. Feldman, T. E. Harvey, and R. P. Mirin, “High power generation of THz from 1550-nm photoconductive emitters,” Opt. Express 26(11), 14472–14478 (2018).
    [Crossref] [PubMed]
  28. S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, and P. Belov, “Enhancement of terahertz photoconductive antenna operation by optical nanoantennas,” Laser Photonics Rev. 11(1), 1600199 (2017).
    [Crossref]
  29. S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
    [Crossref]
  30. H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
    [Crossref] [PubMed]
  31. A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation,” Opt. Express 25(18), 22140–22148 (2017).
    [Crossref] [PubMed]
  32. S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millim. Terahertz Waves 33(4), 431–454 (2012).
    [Crossref]
  33. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008).
    [Crossref] [PubMed]
  34. D. H. Auston, “Impulse response of photoconductors in transmission lines,” IEEE J. Quantum Electron. 19 (4), 639–648 (1983).
    [Crossref]
  35. M. Lundstrom, Fundamentals of Carrier Transport, 2nd edn, vol. 13, no. 2. IOP Publishing, 2002.
  36. E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B Condens. Matter Mater. Phys. 71(19), 195301 (2005).
    [Crossref]
  37. C. A. Criollo and A. Ávila, “Simulation of photoconductive antennas for terahertz radiation,” Ing. Invest. 35(1), 60–64 (2015).
    [Crossref]
  38. N. Burford and M. El-Shenawee, “Computational modeling of plasmonic thin-film terahertz photoconductive antennas,” J. Opt. Soc. Am. B 33(4), 748 (2016).
    [Crossref]
  39. N. Khiabani, Y. Huang, Y.-C. Shen, and S. Boyes, “Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,” IEEE Trans. Antenn. Propag. 61(4), 1538–1546 (2013).
    [Crossref]
  40. G. C. Loata, “Investigation of low-temperature-grown GaAs photoconductive antennae for continous-wave and pulsed terahertz generation,” Johann Wolfgang Goethe-Universität, 2007.
  41. J. Prajapati, M. Bharadwaj, A. Chatterjee, and R. Bhattacharjee, “Circuit modeling and performance analysis of photoconductive antenna,” Opt. Commun., vol. 394, no. November 2016, pp. 69–79, 2017.
  42. I. Malhotra, P. Thakur, S. Pandit, K. R. Jha, and G. Singh, “Analytical framework of small-gap photoconductive dipole antenna using equivalent circuit model,” Opt. Quantum Electron. 49(10), 334 (2017).
    [Crossref]
  43. C. Criollo, A. Avila, and S. Winnerl, “Estudio de dispositivos terahertz para futuras aplicaciones en biomédica,” Universidad de los Andes (Salta) (2014).
  44. M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
    [Crossref] [PubMed]
  45. S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, and E. U. Rafailov, “Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures,” Sci. Rep. 8(1), 6624 (2018).
    [Crossref] [PubMed]
  46. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
    [Crossref]
  47. D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88(16), 161117 (2006).
    [Crossref]
  48. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424 (1996).
    [Crossref]
  49. N. Khiabani, Y. Huang, Y. Shen, and S. Boyes, “Time variant source resistance in the THz photoconductive antenna,” in 2011 Loughborough Antennas & Propagation Conference, 2011, pp. 1–3.
  50. J. Prajapati, V. K. Boini, M. Bharadwaj, and R. Bhattacharjee, “Comments on ‘Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,’,” IEEE Trans. Antenn. Propag. 64(6), 2583–2584 (2016).
    [Crossref]
  51. N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and hole mobilities in silicon as a function of concentration and temperature,” IEEE Trans. Electron Dev. 29(2), 292–295 (1982).
    [Crossref]
  52. D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE 55(12), 2192–2193 (1967).
    [Crossref]
  53. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90(12), 5915–5923 (2001).
    [Crossref]
  54. T. G. Sanchez, J. E. V. Perez, P. M. G. Conde, and D. P. Collantes, “Five-valley model for the study of electron transport properties at very high electric fields in GaAs,” Semicond. Sci. Technol. 6(9), 862–871 (1991).
    [Crossref]
  55. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006.
  56. R.-H. Chou, C.-S. Yang, and C.-L. Pan, “Effects of pump pulse propagation and spatial distribution of bias fields on terahertz generation from photoconductive antennas,” J. Appl. Phys. 114(4), 043108 (2013).
    [Crossref]
  57. T. M. Wallis and P. Kabos, “Dopant profiling in semiconductor nanoelectronics,” in Measurement Techniques for Radio Frequency Nanoelectronics (Cambridge: Cambridge University, 2017), pp. 203–221.
  58. D. Ban, E. H. Sargent, S. J. Dixon-Warren, I. Calder, A. J. SpringThorpe, R. Dworschak, G. Este, and J. K. White, “Direct imaging of the depletion region of an InP p–n junction under bias using scanning voltage microscopy,” Appl. Phys. Lett. 81(26), 5057–5059 (2002).
    [Crossref]

2018 (2)

A. Mingardi, W.-D. Zhang, E. R. Brown, A. D. Feldman, T. E. Harvey, and R. P. Mirin, “High power generation of THz from 1550-nm photoconductive emitters,” Opt. Express 26(11), 14472–14478 (2018).
[Crossref] [PubMed]

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, and E. U. Rafailov, “Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures,” Sci. Rep. 8(1), 6624 (2018).
[Crossref] [PubMed]

2017 (6)

I. Malhotra, P. Thakur, S. Pandit, K. R. Jha, and G. Singh, “Analytical framework of small-gap photoconductive dipole antenna using equivalent circuit model,” Opt. Quantum Electron. 49(10), 334 (2017).
[Crossref]

S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, and P. Belov, “Enhancement of terahertz photoconductive antenna operation by optical nanoantennas,” Laser Photonics Rev. 11(1), 1600199 (2017).
[Crossref]

A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation,” Opt. Express 25(18), 22140–22148 (2017).
[Crossref] [PubMed]

D. Turan, S. C. Corzo-Garcia, N. T. Yardimci, E. Castro-Camus, and M. Jarrahi, “Impact of the metal adhesion layer on the radiation power of plasmonic photoconductive terahertz sources,” J. Infrared Millim. Terahertz Waves 38(12), 1448–1456 (2017).
[Crossref]

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A high-power broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref] [PubMed]

X. Li, N. T. Yardimci, and M. Jarrahi, “A polarization-insensitive plasmonic photoconductive terahertz emitter,” AIP Adv. 7(11), 115113 (2017).
[Crossref] [PubMed]

2016 (3)

H. Cheon, H. J. Yang, S.-H. Lee, Y. A. Kim, and J.-H. Son, “Terahertz molecular resonance of cancer DNA,” Sci. Rep. 6 (1), 37103 (2016).
[Crossref] [PubMed]

N. Burford and M. El-Shenawee, “Computational modeling of plasmonic thin-film terahertz photoconductive antennas,” J. Opt. Soc. Am. B 33(4), 748 (2016).
[Crossref]

J. Prajapati, V. K. Boini, M. Bharadwaj, and R. Bhattacharjee, “Comments on ‘Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,’,” IEEE Trans. Antenn. Propag. 64(6), 2583–2584 (2016).
[Crossref]

2015 (1)

C. A. Criollo and A. Ávila, “Simulation of photoconductive antennas for terahertz radiation,” Ing. Invest. 35(1), 60–64 (2015).
[Crossref]

2014 (3)

P. J. Hale, J. Madeo, C. Chin, S. S. Dhillon, J. Mangeney, J. Tignon, and K. M. Dani, “20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas,” Opt. Express 22(21), 26358–26364 (2014).
[Crossref] [PubMed]

X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116(4), 043107 (2014).
[Crossref]

E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, and S. G. García, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millim. Terahertz Waves 35(5), 432–444 (2014).
[Crossref]

2013 (4)

X. Ropagnol, F. Blanchard, T. Ozaki, and M. Reid, “Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna,” Appl. Phys. Lett. 103(16), 161108 (2013).
[Crossref]

N. Zhu and R. W. Ziolkowski, “Photoconductive THz antenna designs with high radiation efficiency, high directivity, and high aperture efficiency,” IEEE Trans. Terahertz Sci. Technol. 3(6), 721–730 (2013).
[Crossref]

N. Khiabani, Y. Huang, Y.-C. Shen, and S. Boyes, “Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,” IEEE Trans. Antenn. Propag. 61(4), 1538–1546 (2013).
[Crossref]

R.-H. Chou, C.-S. Yang, and C.-L. Pan, “Effects of pump pulse propagation and spatial distribution of bias fields on terahertz generation from photoconductive antennas,” J. Appl. Phys. 114(4), 043108 (2013).
[Crossref]

2012 (3)

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millim. Terahertz Waves 33(4), 431–454 (2012).
[Crossref]

A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol. 25(1), 40–46 (2012).
[Crossref]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

2011 (1)

2010 (3)

2009 (1)

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

2008 (3)

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008).
[Crossref] [PubMed]

2007 (1)

G. C. Loata, M. D. Thomson, T. Löffler, and H. G. Roskos, “Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy,” Appl. Phys. Lett. 91(23), 232506 (2007).
[Crossref]

2006 (1)

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88(16), 161117 (2006).
[Crossref]

2005 (3)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B Condens. Matter Mater. Phys. 71(19), 195301 (2005).
[Crossref]

2004 (1)

2002 (2)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

D. Ban, E. H. Sargent, S. J. Dixon-Warren, I. Calder, A. J. SpringThorpe, R. Dworschak, G. Este, and J. K. White, “Direct imaging of the depletion region of an InP p–n junction under bias using scanning voltage microscopy,” Appl. Phys. Lett. 81(26), 5057–5059 (2002).
[Crossref]

2001 (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90(12), 5915–5923 (2001).
[Crossref]

2000 (1)

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

1999 (1)

M. R. Sang-Gyu Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35(5), 810–819 (1999).
[Crossref]

1997 (1)

1996 (1)

1991 (1)

T. G. Sanchez, J. E. V. Perez, P. M. G. Conde, and D. P. Collantes, “Five-valley model for the study of electron transport properties at very high electric fields in GaAs,” Semicond. Sci. Technol. 6(9), 862–871 (1991).
[Crossref]

1983 (1)

D. H. Auston, “Impulse response of photoconductors in transmission lines,” IEEE J. Quantum Electron. 19 (4), 639–648 (1983).
[Crossref]

1982 (1)

N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and hole mobilities in silicon as a function of concentration and temperature,” IEEE Trans. Electron Dev. 29(2), 292–295 (1982).
[Crossref]

1967 (1)

D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE 55(12), 2192–2193 (1967).
[Crossref]

Alú, A.

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, and E. U. Rafailov, “Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures,” Sci. Rep. 8(1), 6624 (2018).
[Crossref] [PubMed]

Arora, N. D.

N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and hole mobilities in silicon as a function of concentration and temperature,” IEEE Trans. Electron Dev. 29(2), 292–295 (1982).
[Crossref]

Auston, D. H.

D. H. Auston, “Impulse response of photoconductors in transmission lines,” IEEE J. Quantum Electron. 19 (4), 639–648 (1983).
[Crossref]

Avila, A.

C. Criollo, A. Avila, and S. Winnerl, “Estudio de dispositivos terahertz para futuras aplicaciones en biomédica,” Universidad de los Andes (Salta) (2014).

Ávila, A.

C. A. Criollo and A. Ávila, “Simulation of photoconductive antennas for terahertz radiation,” Ing. Invest. 35(1), 60–64 (2015).
[Crossref]

Bahrami-Yekta, V.

Ban, D.

D. Ban, E. H. Sargent, S. J. Dixon-Warren, I. Calder, A. J. SpringThorpe, R. Dworschak, G. Este, and J. K. White, “Direct imaging of the depletion region of an InP p–n junction under bias using scanning voltage microscopy,” Appl. Phys. Lett. 81(26), 5057–5059 (2002).
[Crossref]

Bastian, M.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90(12), 5915–5923 (2001).
[Crossref]

Beck, M.

Belov, P.

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, and E. U. Rafailov, “Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures,” Sci. Rep. 8(1), 6624 (2018).
[Crossref] [PubMed]

S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, and P. Belov, “Enhancement of terahertz photoconductive antenna operation by optical nanoantennas,” Laser Photonics Rev. 11(1), 1600199 (2017).
[Crossref]

Berry, C. W.

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

Bharadwaj, M.

J. Prajapati, V. K. Boini, M. Bharadwaj, and R. Bhattacharjee, “Comments on ‘Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,’,” IEEE Trans. Antenn. Propag. 64(6), 2583–2584 (2016).
[Crossref]

Bhattacharjee, R.

J. Prajapati, V. K. Boini, M. Bharadwaj, and R. Bhattacharjee, “Comments on ‘Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,’,” IEEE Trans. Antenn. Propag. 64(6), 2583–2584 (2016).
[Crossref]

Blanchard, F.

X. Ropagnol, F. Blanchard, T. Ozaki, and M. Reid, “Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna,” Appl. Phys. Lett. 103(16), 161108 (2013).
[Crossref]

Boini, V. K.

J. Prajapati, V. K. Boini, M. Bharadwaj, and R. Bhattacharjee, “Comments on ‘Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,’,” IEEE Trans. Antenn. Propag. 64(6), 2583–2584 (2016).
[Crossref]

Böttcher, J.

Bouvier, M.

X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116(4), 043107 (2014).
[Crossref]

Boyes, S.

N. Khiabani, Y. Huang, Y.-C. Shen, and S. Boyes, “Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,” IEEE Trans. Antenn. Propag. 61(4), 1538–1546 (2013).
[Crossref]

Brown, E. R.

Burford, N.

Burnett, A. D.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Cakmakyapan, S.

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A high-power broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref] [PubMed]

Calder, I.

D. Ban, E. H. Sargent, S. J. Dixon-Warren, I. Calder, A. J. SpringThorpe, R. Dworschak, G. Este, and J. K. White, “Direct imaging of the depletion region of an InP p–n junction under bias using scanning voltage microscopy,” Appl. Phys. Lett. 81(26), 5057–5059 (2002).
[Crossref]

Castro-Camus, E.

D. Turan, S. C. Corzo-Garcia, N. T. Yardimci, E. Castro-Camus, and M. Jarrahi, “Impact of the metal adhesion layer on the radiation power of plasmonic photoconductive terahertz sources,” J. Infrared Millim. Terahertz Waves 38(12), 1448–1456 (2017).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B Condens. Matter Mater. Phys. 71(19), 195301 (2005).
[Crossref]

Caughey, D. M.

D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE 55(12), 2192–2193 (1967).
[Crossref]

Cheon, H.

H. Cheon, H. J. Yang, S.-H. Lee, Y. A. Kim, and J.-H. Son, “Terahertz molecular resonance of cancer DNA,” Sci. Rep. 6 (1), 37103 (2016).
[Crossref] [PubMed]

Chin, C.

Chou, R.-H.

R.-H. Chou, C.-S. Yang, and C.-L. Pan, “Effects of pump pulse propagation and spatial distribution of bias fields on terahertz generation from photoconductive antennas,” J. Appl. Phys. 114(4), 043108 (2013).
[Crossref]

Citrin, D. S.

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88(16), 161117 (2006).
[Crossref]

Cluff, J. A.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” 2003, vol. 5070, p. 44.

Cole, B. E.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” 2003, vol. 5070, p. 44.

Collantes, D. P.

T. G. Sanchez, J. E. V. Perez, P. M. G. Conde, and D. P. Collantes, “Five-valley model for the study of electron transport properties at very high electric fields in GaAs,” Semicond. Sci. Technol. 6(9), 862–871 (1991).
[Crossref]

Conde, P. M. G.

T. G. Sanchez, J. E. V. Perez, P. M. G. Conde, and D. P. Collantes, “Five-valley model for the study of electron transport properties at very high electric fields in GaAs,” Semicond. Sci. Technol. 6(9), 862–871 (1991).
[Crossref]

Corzo-Garcia, S. C.

D. Turan, S. C. Corzo-Garcia, N. T. Yardimci, E. Castro-Camus, and M. Jarrahi, “Impact of the metal adhesion layer on the radiation power of plasmonic photoconductive terahertz sources,” J. Infrared Millim. Terahertz Waves 38(12), 1448–1456 (2017).
[Crossref]

Criollo, C.

C. Criollo, A. Avila, and S. Winnerl, “Estudio de dispositivos terahertz para futuras aplicaciones en biomédica,” Universidad de los Andes (Salta) (2014).

Criollo, C. A.

C. A. Criollo and A. Ávila, “Simulation of photoconductive antennas for terahertz radiation,” Ing. Invest. 35(1), 60–64 (2015).
[Crossref]

Cunningham, J. E.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Dani, K. M.

Darcie, T. E.

Davies, A. G.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Dekorsy, T.

M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
[Crossref] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Demsar, J.

Dhillon, S. S.

Dietz, R. J. B.

Diwa, G.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Dixon-Warren, S. J.

D. Ban, E. H. Sargent, S. J. Dixon-Warren, I. Calder, A. J. SpringThorpe, R. Dworschak, G. Este, and J. K. White, “Direct imaging of the depletion region of an InP p–n junction under bias using scanning voltage microscopy,” Appl. Phys. Lett. 81(26), 5057–5059 (2002).
[Crossref]

Dreyhaupt, A.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Dworschak, R.

D. Ban, E. H. Sargent, S. J. Dixon-Warren, I. Calder, A. J. SpringThorpe, R. Dworschak, G. Este, and J. K. White, “Direct imaging of the depletion region of an InP p–n junction under bias using scanning voltage microscopy,” Appl. Phys. Lett. 81(26), 5057–5059 (2002).
[Crossref]

El-Shenawee, M.

Este, G.

D. Ban, E. H. Sargent, S. J. Dixon-Warren, I. Calder, A. J. SpringThorpe, R. Dworschak, G. Este, and J. K. White, “Direct imaging of the depletion region of an InP p–n junction under bias using scanning voltage microscopy,” Appl. Phys. Lett. 81(26), 5057–5059 (2002).
[Crossref]

Ezdi, K.

Fan, W.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Feldman, A. D.

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fesharaki, F.

Fitzgerald, A. J.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” 2003, vol. 5070, p. 44.

Fukuda, T.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Furuya, T.

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[Crossref]

García, S. G.

E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, and S. G. García, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millim. Terahertz Waves 35(5), 432–444 (2014).
[Crossref]

Gordon, R.

Gorodetsky, A.

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, and E. U. Rafailov, “Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures,” Sci. Rep. 8(1), 6624 (2018).
[Crossref] [PubMed]

S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, and P. Belov, “Enhancement of terahertz photoconductive antenna operation by optical nanoantennas,” Laser Photonics Rev. 11(1), 1600199 (2017).
[Crossref]

Gowen, A. A.

A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol. 25(1), 40–46 (2012).
[Crossref]

Gu, P.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

Hale, P. J.

Hangyo, M.

Harvey, T. E.

Hasek, T.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

Hauser, J. R.

N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and hole mobilities in silicon as a function of concentration and temperature,” IEEE Trans. Electron Dev. 29(2), 292–295 (1982).
[Crossref]

Helm, M.

J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
[Crossref] [PubMed]

M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
[Crossref] [PubMed]

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Hemmati, S.

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A high-power broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref] [PubMed]

Hensel, H. J.

Hochrein, T.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

Huang, Y.

N. Khiabani, Y. Huang, Y.-C. Shen, and S. Boyes, “Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,” IEEE Trans. Antenn. Propag. 61(4), 1538–1546 (2013).
[Crossref]

Hübers, H. W.

Ichikawa, Y.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Jacobsen, R. H.

Jarrahi, M.

X. Li, N. T. Yardimci, and M. Jarrahi, “A polarization-insensitive plasmonic photoconductive terahertz emitter,” AIP Adv. 7(11), 115113 (2017).
[Crossref] [PubMed]

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A high-power broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref] [PubMed]

D. Turan, S. C. Corzo-Garcia, N. T. Yardimci, E. Castro-Camus, and M. Jarrahi, “Impact of the metal adhesion layer on the radiation power of plasmonic photoconductive terahertz sources,” J. Infrared Millim. Terahertz Waves 38(12), 1448–1456 (2017).
[Crossref]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

Jepsen, P. U.

Jha, K. R.

I. Malhotra, P. Thakur, S. Pandit, K. R. Jha, and G. Singh, “Analytical framework of small-gap photoconductive dipole antenna using equivalent circuit model,” Opt. Quantum Electron. 49(10), 334 (2017).
[Crossref]

Johnston, M. B.

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B Condens. Matter Mater. Phys. 71(19), 195301 (2005).
[Crossref]

Jooshesh, A.

Keiding, S. R.

Kemp, M. C.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” 2003, vol. 5070, p. 44.

Khiabani, N.

N. Khiabani, Y. Huang, Y.-C. Shen, and S. Boyes, “Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,” IEEE Trans. Antenn. Propag. 61(4), 1538–1546 (2013).
[Crossref]

Kim, D. S.

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88(16), 161117 (2006).
[Crossref]

Kim, Y. A.

H. Cheon, H. J. Yang, S.-H. Lee, Y. A. Kim, and J.-H. Son, “Terahertz molecular resonance of cancer DNA,” Sci. Rep. 6 (1), 37103 (2016).
[Crossref] [PubMed]

Klatt, G.

Koch, M.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008).
[Crossref] [PubMed]

Köhler, K.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Kono, S.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

Krasnok, A.

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, and E. U. Rafailov, “Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures,” Sci. Rep. 8(1), 6624 (2018).
[Crossref] [PubMed]

S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, and P. Belov, “Enhancement of terahertz photoconductive antenna operation by optical nanoantennas,” Laser Photonics Rev. 11(1), 1600199 (2017).
[Crossref]

Krause, J.

Kretschmer, K.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

Krumbholz, N.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

Künzel, H.

Lee, S.-H.

H. Cheon, H. J. Yang, S.-H. Lee, Y. A. Kim, and J.-H. Son, “Terahertz molecular resonance of cancer DNA,” Sci. Rep. 6 (1), 37103 (2016).
[Crossref] [PubMed]

Lepeshov, S.

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, and E. U. Rafailov, “Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures,” Sci. Rep. 8(1), 6624 (2018).
[Crossref] [PubMed]

S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, and P. Belov, “Enhancement of terahertz photoconductive antenna operation by optical nanoantennas,” Laser Photonics Rev. 11(1), 1600199 (2017).
[Crossref]

Li, X.

X. Li, N. T. Yardimci, and M. Jarrahi, “A polarization-insensitive plasmonic photoconductive terahertz emitter,” AIP Adv. 7(11), 115113 (2017).
[Crossref] [PubMed]

Linfield, E. H.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Liu, T.-A.

Lloyd-Hughes, J.

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B Condens. Matter Mater. Phys. 71(19), 195301 (2005).
[Crossref]

Loata, G. C.

G. C. Loata, M. D. Thomson, T. Löffler, and H. G. Roskos, “Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy,” Appl. Phys. Lett. 91(23), 232506 (2007).
[Crossref]

Löffler, T.

G. C. Loata, M. D. Thomson, T. Löffler, and H. G. Roskos, “Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy,” Appl. Phys. Lett. 91(23), 232506 (2007).
[Crossref]

Madeo, J.

Mahtab, M.

Malhotra, I.

I. Malhotra, P. Thakur, S. Pandit, K. R. Jha, and G. Singh, “Analytical framework of small-gap photoconductive dipole antenna using equivalent circuit model,” Opt. Quantum Electron. 49(10), 334 (2017).
[Crossref]

Mangeney, J.

Matsuura, S.

Melloch, M. R.

M. R. Sang-Gyu Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35(5), 810–819 (1999).
[Crossref]

Mikulics, M.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008).
[Crossref] [PubMed]

Mingardi, A.

Mirin, R. P.

Miyamaru, F.

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[Crossref]

Moreno, E.

E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, and S. G. García, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millim. Terahertz Waves 35(5), 432–444 (2014).
[Crossref]

Murakami, H.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Nagasaka, R.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Nakajima, M.

Nakashima, S.

Nishizawa, S.

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[Crossref]

Nitsche, S.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

O’Donnell, C. P.

A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol. 25(1), 40–46 (2012).
[Crossref]

O’Sullivan, C.

A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol. 25(1), 40–46 (2012).
[Crossref]

Ogino, H.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Ohshima, E.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Ono, S.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Ozaki, T.

X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116(4), 043107 (2014).
[Crossref]

X. Ropagnol, F. Blanchard, T. Ozaki, and M. Reid, “Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna,” Appl. Phys. Lett. 103(16), 161108 (2013).
[Crossref]

Pan, C.-L.

R.-H. Chou, C.-S. Yang, and C.-L. Pan, “Effects of pump pulse propagation and spatial distribution of bias fields on terahertz generation from photoconductive antennas,” J. Appl. Phys. 114(4), 043108 (2013).
[Crossref]

T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, K. Sakai, S. Nakashima, and C.-L. Pan, “Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas,” Opt. Express 12(13), 2954–2959 (2004).
[Crossref] [PubMed]

Pandit, S.

I. Malhotra, P. Thakur, S. Pandit, K. R. Jha, and G. Singh, “Analytical framework of small-gap photoconductive dipole antenna using equivalent circuit model,” Opt. Quantum Electron. 49(10), 334 (2017).
[Crossref]

Pantoja, M. F.

E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, and S. G. García, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millim. Terahertz Waves 35(5), 432–444 (2014).
[Crossref]

Perez, J. E. V.

T. G. Sanchez, J. E. V. Perez, P. M. G. Conde, and D. P. Collantes, “Five-valley model for the study of electron transport properties at very high electric fields in GaAs,” Semicond. Sci. Technol. 6(9), 862–871 (1991).
[Crossref]

Peter, F.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Prajapati, J.

J. Prajapati, V. K. Boini, M. Bharadwaj, and R. Bhattacharjee, “Comments on ‘Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,’,” IEEE Trans. Antenn. Propag. 64(6), 2583–2584 (2016).
[Crossref]

Quema, A.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Rafailov, E.

S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, and P. Belov, “Enhancement of terahertz photoconductive antenna operation by optical nanoantennas,” Laser Photonics Rev. 11(1), 1600199 (2017).
[Crossref]

Rafailov, E. U.

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, and E. U. Rafailov, “Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures,” Sci. Rep. 8(1), 6624 (2018).
[Crossref] [PubMed]

Reid, M.

X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116(4), 043107 (2014).
[Crossref]

X. Ropagnol, F. Blanchard, T. Ozaki, and M. Reid, “Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna,” Appl. Phys. Lett. 103(16), 161108 (2013).
[Crossref]

Roehle, H.

Roldán, J. B.

E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, and S. G. García, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millim. Terahertz Waves 35(5), 432–444 (2014).
[Crossref]

Ropagnol, X.

X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116(4), 043107 (2014).
[Crossref]

X. Ropagnol, F. Blanchard, T. Ozaki, and M. Reid, “Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna,” Appl. Phys. Lett. 103(16), 161108 (2013).
[Crossref]

Roskos, H. G.

G. C. Loata, M. D. Thomson, T. Löffler, and H. G. Roskos, “Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy,” Appl. Phys. Lett. 91(23), 232506 (2007).
[Crossref]

Roulston, D. J.

N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and hole mobilities in silicon as a function of concentration and temperature,” IEEE Trans. Electron Dev. 29(2), 292–295 (1982).
[Crossref]

Ruiz, F. G.

E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, and S. G. García, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millim. Terahertz Waves 35(5), 432–444 (2014).
[Crossref]

Saito, Y.

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[Crossref]

Sakai, K.

Sanchez, T. G.

T. G. Sanchez, J. E. V. Perez, P. M. G. Conde, and D. P. Collantes, “Five-valley model for the study of electron transport properties at very high electric fields in GaAs,” Semicond. Sci. Technol. 6(9), 862–871 (1991).
[Crossref]

Sang-Gyu Park, M. R.

M. R. Sang-Gyu Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35(5), 810–819 (1999).
[Crossref]

Sargent, E. H.

D. Ban, E. H. Sargent, S. J. Dixon-Warren, I. Calder, A. J. SpringThorpe, R. Dworschak, G. Este, and J. K. White, “Direct imaging of the depletion region of an InP p–n junction under bias using scanning voltage microscopy,” Appl. Phys. Lett. 81(26), 5057–5059 (2002).
[Crossref]

Sartorius, B.

Sarukura, N.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Schäfer, H.

Schell, M.

Scheller, M.

Schmuttenmaer, C. A.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90(12), 5915–5923 (2001).
[Crossref]

Schneider, H.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Shen, Y.-C.

N. Khiabani, Y. Huang, Y.-C. Shen, and S. Boyes, “Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,” IEEE Trans. Antenn. Propag. 61(4), 1538–1546 (2013).
[Crossref]

Singh, G.

I. Malhotra, P. Thakur, S. Pandit, K. R. Jha, and G. Singh, “Analytical framework of small-gap photoconductive dipole antenna using equivalent circuit model,” Opt. Quantum Electron. 49(10), 334 (2017).
[Crossref]

Son, J.-H.

H. Cheon, H. J. Yang, S.-H. Lee, Y. A. Kim, and J.-H. Son, “Terahertz molecular resonance of cancer DNA,” Sci. Rep. 6 (1), 37103 (2016).
[Crossref] [PubMed]

SpringThorpe, A. J.

D. Ban, E. H. Sargent, S. J. Dixon-Warren, I. Calder, A. J. SpringThorpe, R. Dworschak, G. Este, and J. K. White, “Direct imaging of the depletion region of an InP p–n junction under bias using scanning voltage microscopy,” Appl. Phys. Lett. 81(26), 5057–5059 (2002).
[Crossref]

Stanze, D.

Stehr, D.

Taday, P. F.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” 2003, vol. 5070, p. 44.

Tani, M.

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[Crossref]

T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, K. Sakai, S. Nakashima, and C.-L. Pan, “Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas,” Opt. Express 12(13), 2954–2959 (2004).
[Crossref] [PubMed]

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[Crossref] [PubMed]

Thakur, P.

I. Malhotra, P. Thakur, S. Pandit, K. R. Jha, and G. Singh, “Analytical framework of small-gap photoconductive dipole antenna using equivalent circuit model,” Opt. Quantum Electron. 49(10), 334 (2017).
[Crossref]

Thomas, R. E.

D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE 55(12), 2192–2193 (1967).
[Crossref]

Thomson, M. D.

G. C. Loata, M. D. Thomson, T. Löffler, and H. G. Roskos, “Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy,” Appl. Phys. Lett. 91(23), 232506 (2007).
[Crossref]

Tiedje, T.

Tignon, J.

Toropov, N.

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, and E. U. Rafailov, “Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures,” Sci. Rep. 8(1), 6624 (2018).
[Crossref] [PubMed]

Tribe, W. R.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” 2003, vol. 5070, p. 44.

Turan, D.

D. Turan, S. C. Corzo-Garcia, N. T. Yardimci, E. Castro-Camus, and M. Jarrahi, “Impact of the metal adhesion layer on the radiation power of plasmonic photoconductive terahertz sources,” J. Infrared Millim. Terahertz Waves 38(12), 1448–1456 (2017).
[Crossref]

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90(12), 5915–5923 (2001).
[Crossref]

Vartanyan, T. A.

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, and E. U. Rafailov, “Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures,” Sci. Rep. 8(1), 6624 (2018).
[Crossref] [PubMed]

Vieweg, N.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008).
[Crossref] [PubMed]

Wagner, M.

J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
[Crossref] [PubMed]

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Weiner, A. M.

M. R. Sang-Gyu Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35(5), 810–819 (1999).
[Crossref]

White, J. K.

D. Ban, E. H. Sargent, S. J. Dixon-Warren, I. Calder, A. J. SpringThorpe, R. Dworschak, G. Este, and J. K. White, “Direct imaging of the depletion region of an InP p–n junction under bias using scanning voltage microscopy,” Appl. Phys. Lett. 81(26), 5057–5059 (2002).
[Crossref]

Wilk, R.

Winnerl, S.

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millim. Terahertz Waves 33(4), 431–454 (2012).
[Crossref]

J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
[Crossref] [PubMed]

M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
[Crossref] [PubMed]

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

C. Criollo, A. Avila, and S. Winnerl, “Estudio de dispositivos terahertz para futuras aplicaciones en biomédica,” Universidad de los Andes (Salta) (2014).

Yamamoto, K.

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[Crossref]

Yang, C.-S.

R.-H. Chou, C.-S. Yang, and C.-L. Pan, “Effects of pump pulse propagation and spatial distribution of bias fields on terahertz generation from photoconductive antennas,” J. Appl. Phys. 114(4), 043108 (2013).
[Crossref]

Yang, H. J.

H. Cheon, H. J. Yang, S.-H. Lee, Y. A. Kim, and J.-H. Son, “Terahertz molecular resonance of cancer DNA,” Sci. Rep. 6 (1), 37103 (2016).
[Crossref] [PubMed]

Yardimci, N. T.

X. Li, N. T. Yardimci, and M. Jarrahi, “A polarization-insensitive plasmonic photoconductive terahertz emitter,” AIP Adv. 7(11), 115113 (2017).
[Crossref] [PubMed]

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A high-power broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref] [PubMed]

D. Turan, S. C. Corzo-Garcia, N. T. Yardimci, E. Castro-Camus, and M. Jarrahi, “Impact of the metal adhesion layer on the radiation power of plasmonic photoconductive terahertz sources,” J. Infrared Millim. Terahertz Waves 38(12), 1448–1456 (2017).
[Crossref]

Yoshikawa, A.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Zhang, W.-D.

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhu, N.

N. Zhu and R. W. Ziolkowski, “Photoconductive THz antenna designs with high radiation efficiency, high directivity, and high aperture efficiency,” IEEE Trans. Terahertz Sci. Technol. 3(6), 721–730 (2013).
[Crossref]

Zimmermann, B.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Ziolkowski, R. W.

N. Zhu and R. W. Ziolkowski, “Photoconductive THz antenna designs with high radiation efficiency, high directivity, and high aperture efficiency,” IEEE Trans. Terahertz Sci. Technol. 3(6), 721–730 (2013).
[Crossref]

AIP Adv. (1)

X. Li, N. T. Yardimci, and M. Jarrahi, “A polarization-insensitive plasmonic photoconductive terahertz emitter,” AIP Adv. 7(11), 115113 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

D. Ban, E. H. Sargent, S. J. Dixon-Warren, I. Calder, A. J. SpringThorpe, R. Dworschak, G. Este, and J. K. White, “Direct imaging of the depletion region of an InP p–n junction under bias using scanning voltage microscopy,” Appl. Phys. Lett. 81(26), 5057–5059 (2002).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88(16), 161117 (2006).
[Crossref]

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

G. C. Loata, M. D. Thomson, T. Löffler, and H. G. Roskos, “Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy,” Appl. Phys. Lett. 91(23), 232506 (2007).
[Crossref]

X. Ropagnol, F. Blanchard, T. Ozaki, and M. Reid, “Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna,” Appl. Phys. Lett. 103(16), 161108 (2013).
[Crossref]

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

M. R. Sang-Gyu Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35(5), 810–819 (1999).
[Crossref]

D. H. Auston, “Impulse response of photoconductors in transmission lines,” IEEE J. Quantum Electron. 19 (4), 639–648 (1983).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

N. Khiabani, Y. Huang, Y.-C. Shen, and S. Boyes, “Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,” IEEE Trans. Antenn. Propag. 61(4), 1538–1546 (2013).
[Crossref]

J. Prajapati, V. K. Boini, M. Bharadwaj, and R. Bhattacharjee, “Comments on ‘Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,’,” IEEE Trans. Antenn. Propag. 64(6), 2583–2584 (2016).
[Crossref]

IEEE Trans. Electron Dev. (1)

N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and hole mobilities in silicon as a function of concentration and temperature,” IEEE Trans. Electron Dev. 29(2), 292–295 (1982).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

N. Zhu and R. W. Ziolkowski, “Photoconductive THz antenna designs with high radiation efficiency, high directivity, and high aperture efficiency,” IEEE Trans. Terahertz Sci. Technol. 3(6), 721–730 (2013).
[Crossref]

Ing. Invest. (1)

C. A. Criollo and A. Ávila, “Simulation of photoconductive antennas for terahertz radiation,” Ing. Invest. 35(1), 60–64 (2015).
[Crossref]

J. Appl. Phys. (3)

R.-H. Chou, C.-S. Yang, and C.-L. Pan, “Effects of pump pulse propagation and spatial distribution of bias fields on terahertz generation from photoconductive antennas,” J. Appl. Phys. 114(4), 043108 (2013).
[Crossref]

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90(12), 5915–5923 (2001).
[Crossref]

X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116(4), 043107 (2014).
[Crossref]

J. Infrared Millim. Terahertz Waves (3)

D. Turan, S. C. Corzo-Garcia, N. T. Yardimci, E. Castro-Camus, and M. Jarrahi, “Impact of the metal adhesion layer on the radiation power of plasmonic photoconductive terahertz sources,” J. Infrared Millim. Terahertz Waves 38(12), 1448–1456 (2017).
[Crossref]

E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, and S. G. García, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millim. Terahertz Waves 35(5), 432–444 (2014).
[Crossref]

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millim. Terahertz Waves 33(4), 431–454 (2012).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, and P. Belov, “Enhancement of terahertz photoconductive antenna operation by optical nanoantennas,” Laser Photonics Rev. 11(1), 1600199 (2017).
[Crossref]

Mater. Today (1)

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

New J. Phys. (1)

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

Opt. Express (8)

A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation,” Opt. Express 25(18), 22140–22148 (2017).
[Crossref] [PubMed]

A. Mingardi, W.-D. Zhang, E. R. Brown, A. D. Feldman, T. E. Harvey, and R. P. Mirin, “High power generation of THz from 1550-nm photoconductive emitters,” Opt. Express 26(11), 14472–14478 (2018).
[Crossref] [PubMed]

T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, K. Sakai, S. Nakashima, and C.-L. Pan, “Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas,” Opt. Express 12(13), 2954–2959 (2004).
[Crossref] [PubMed]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008).
[Crossref] [PubMed]

H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
[Crossref] [PubMed]

M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
[Crossref] [PubMed]

J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
[Crossref] [PubMed]

P. J. Hale, J. Madeo, C. Chin, S. S. Dhillon, J. Mangeney, J. Tignon, and K. M. Dani, “20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas,” Opt. Express 22(21), 26358–26364 (2014).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

I. Malhotra, P. Thakur, S. Pandit, K. R. Jha, and G. Singh, “Analytical framework of small-gap photoconductive dipole antenna using equivalent circuit model,” Opt. Quantum Electron. 49(10), 334 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B Condens. Matter Mater. Phys. 71(19), 195301 (2005).
[Crossref]

Polym. Test. (1)

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

Proc. IEEE (1)

D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE 55(12), 2192–2193 (1967).
[Crossref]

Sci. Rep. (3)

H. Cheon, H. J. Yang, S.-H. Lee, Y. A. Kim, and J.-H. Son, “Terahertz molecular resonance of cancer DNA,” Sci. Rep. 6 (1), 37103 (2016).
[Crossref] [PubMed]

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A high-power broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref] [PubMed]

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, and E. U. Rafailov, “Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures,” Sci. Rep. 8(1), 6624 (2018).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

T. G. Sanchez, J. E. V. Perez, P. M. G. Conde, and D. P. Collantes, “Five-valley model for the study of electron transport properties at very high electric fields in GaAs,” Semicond. Sci. Technol. 6(9), 862–871 (1991).
[Crossref]

Trends Food Sci. Technol. (1)

A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol. 25(1), 40–46 (2012).
[Crossref]

Other (11)

T. Bowman and M. El-Shenawee, “Nondestructive imaging of packaged microelectronics using pulsed terahertz technology,” Int. Symp. Microelectron., vol. 2017, no. 1, pp. 709–714, Oct. 2017.
[Crossref]

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” 2003, vol. 5070, p. 44.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semiconductor Science and Technology, vol. 20, no. 7. IOP Publishing, pp. S266–S280, 01-Jul-2005.

Y.-S. Lee, “Generation and detection of broadband terahertz pulses,” in Principles of Terahertz Science and Technology, Boston, MA: Springer US, 2009, pp. 1–66.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006.

C. Criollo, A. Avila, and S. Winnerl, “Estudio de dispositivos terahertz para futuras aplicaciones en biomédica,” Universidad de los Andes (Salta) (2014).

N. Khiabani, Y. Huang, Y. Shen, and S. Boyes, “Time variant source resistance in the THz photoconductive antenna,” in 2011 Loughborough Antennas & Propagation Conference, 2011, pp. 1–3.

G. C. Loata, “Investigation of low-temperature-grown GaAs photoconductive antennae for continous-wave and pulsed terahertz generation,” Johann Wolfgang Goethe-Universität, 2007.

J. Prajapati, M. Bharadwaj, A. Chatterjee, and R. Bhattacharjee, “Circuit modeling and performance analysis of photoconductive antenna,” Opt. Commun., vol. 394, no. November 2016, pp. 69–79, 2017.

M. Lundstrom, Fundamentals of Carrier Transport, 2nd edn, vol. 13, no. 2. IOP Publishing, 2002.

T. M. Wallis and P. Kabos, “Dopant profiling in semiconductor nanoelectronics,” in Measurement Techniques for Radio Frequency Nanoelectronics (Cambridge: Cambridge University, 2017), pp. 203–221.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 LT-GaAs based photoconductive antenna. (a) Antenna geometry with an H-shaped dipole structure (not scaled). (b) SEM image of the 20µm antenna gap.
Fig. 2
Fig. 2 Experimental setup for characterization of photoconductive antennas. Beam splitter divides optical pulse in reference and excitation signals. PCA bias signal is modulated at 10KHz. A ZnTe Crystal, a quarter-wave plate, a polarizer beam splitter and two balanced photodiodes are used to detect the emitted THz pulses.
Fig. 3
Fig. 3 ECMs and the supporting equations reported applied to model dipole photoconductive antennas. a) GapG-ScrR [40] b) GapG-Scrsc [48] c) GapG-ScrR/SC [8], d) GapG/C-ScrR/SC [39]. e) GapG/C/Z-ScrR/SC [41]. For each equivalent circuit, the main differential equation for modeling PCA has been identified (red dashed line).
Fig. 4
Fig. 4 a) Measured THz pulses of a PCA with a 20μm gap and 20Vpeak bias voltage at different optical powers. b) THz pulse saturation curve for the PCA. The blue dots represent experimental data, which are compared with a saturation fit equation.
Fig. 5
Fig. 5 Proposed validation indicators to evaluate the performance of ECMs for a PCA with a 20μm gap and 20Vpeak bias voltage. a-e) Calculated (discontinuous line) and experimental (continuous line) THz pulse waveforms for optical powers varying from 20mW to 220mW.The calculated THz pulses are shifted using a time delay of 2.3ps. f-j) THz pulse saturation curves compared with experimental data. Inset: the optical power saturation values are calculated according to Eq. (8). k-o). Calculated temporal evolution of the circuit voltages Vg, VR and Vsc for each ECM at 220mW of optical power.
Fig. 6
Fig. 6 a) Proposed equivalent circuit model for PCA as a THz emitter. b). Calculated temporal evolution of circuit voltages using following parameters: Vbias = 20V, Gap = 20μm and optical power = 220mW. c) Measured and calculated THz pulses of a PCA with a 20μm gap and 20Vpeak bias voltage at different optical powers. c) Optical-Power saturation curves of the PCA compared with experimental data. Inset: the optical power saturation values are calculated according to Eq. (8).

Tables (1)

Tables Icon

Table 1 Laser excitation and photoconductive antenna parameters.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n(t)= J η e T 0 π 2Vh v opt e ( T 0 2 4 τ c 2 t τ c ) ( 1+erf( t T 0 T 0 2 τ c ) ).
dn(t) dt = n(t) τ c +g(t),
g(t)= 2 η e Vh v opt P(t,r),
η e =(1R)(1 e α d 0 ),
P(t,r)= P 0 ( 1 e ( 2 r 2 w 0 2 ) ) e ( 2 t 2 τ l 2 ) ,
n(t,r)= P 0 (1R) τ l π 2 (WL d 0 )h v opt ( 1 e ( 2 r 2 w 0 2 ) )( 1 e α d 0 )( e ( τ l 2 8 τ c 2 t τ c ) )( 1+erf( t 2 τ l τ l 2 4 τ c ) ).
G(t)=q μ e n(t) A L ,
E THz = k 1 1+ e k 2 (P P sat ) ,
I(t)= V g (t)G(t)+C(t) d V g (t) dt + V g (t) dC(t) dt .
C(t)= εA L sc + τ r q μ e n(t) A L ,

Metrics