Abstract

An efficient design for a quarter-wave (λ/4) retardation plate (QWP) operating at microwave frequencies has been designed and manufactured using dual head fused deposition modelling (FDM) 3D printing. Exploiting a bespoke composite material feedstock filament with high dielectric permittivity ϵr = 10.8, the resulting 3D-printed QWP comprising alternative layers of high and low permittivity had a high artificial double refraction of Δϵ = 2.9. The QWP provided broadband conversion of linear to circular polarization and phase modulation of an incident plane electromagnetic wave at 12–18 GHz, and demonstrated the potential for optical devices via additive manufacture for use in the microwave frequency range.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
3D printed fiber optic faceplates by custom controlled fused deposition modeling

Ye Wang, John Gawedzinski, Michal E. Pawlowski, and Tomasz S. Tkaczyk
Opt. Express 26(12) 15362-15376 (2018)

3D-printed polymer antiresonant waveguides for short-reach terahertz applications

L. D. van Putten, J. Gorecki, E. Numkam Fokoua, V. Apostolopoulos, and F. Poletti
Appl. Opt. 57(14) 3953-3958 (2018)

Wideband sub-THz half-wave plate using 3D-printed low-index metagratings with superwavelength lattice

Xi-Pu Dong, Jie-Rong Cheng, Fei Fan, Shi-Tong Xu, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 27(1) 202-211 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. J. G. Fonseca and C. Mangenot, “High-Performance Electrically Thin Dual-Band Polarizing Reflective Surface for Broadband Satellite Applications,” IEEE Trans. Antennas Propag. 64, 640 (2016).
    [Crossref]
  2. A. Ghasemi, A. Abedi, and F. Ghasemi, Propagation Engineering in Wireless Communications, 2nd Ed., Springer International Publishing, Switzerland, 2012.
    [Crossref]
  3. S. A. Bryan, T. E. Montroy, and J. E. Ruhl, “Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism,” Appl. Optics 49, 6313 (2010).
    [Crossref]
  4. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th Ed., Cambridge Univ. Press, UK, 1993.
  5. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
    [Crossref] [PubMed]
  6. Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99, 221907 (2011).
    [Crossref]
  7. J. Y. Chin, J. N. Gollub, J. J. Mock, R. Liu, C. Harrison, D. R. Smith, and T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express 17, 7640 (2009).
    [Crossref] [PubMed]
  8. X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115, 103505 (2014).
    [Crossref]
  9. H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
    [Crossref]
  10. K. Achouri, G. Lavigne, and C. Caloz, “Comparison of two synthesis methods for birefringent metasurfaces,” J. Appl. Phys. 120, 235305 (2016).
    [Crossref]
  11. N. K. Grady, J. E. Heyes, D. R. Chowdhury, and Y. Zeng, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
    [Crossref] [PubMed]
  12. W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Optics Express 24, 13621 (2016).
    [Crossref] [PubMed]
  13. H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, F. Yu, X. Chen, and W. Lu, “Annihilating optical angular momentum and realizing a meta-waveplate with anomalous functionalities,” Opt. Express 25, 16907 (2017).
    [Crossref] [PubMed]
  14. A. Yahyaoui, H. Rmili, K. Achouri, M. Sheikh, A. Dobaie, A. Affandi, and T. Aguili, “Transmission Control of Electromagnetic Waves by Using Quarter-Wave Plate and Half-Wave Plate All-Dielectric Metasurfaces Based on Elliptic Dielectric Resonators,” Int. J. Antenna Prop. 20178215291 (2017).
  15. M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6, 38562 (2016).
    [Crossref] [PubMed]
  16. M. Lorente-Crespo, G. C. Ballesteros, G. Goussetis, and C. Mateo-Segura, “Experimental Validation of All-Dielectric mm-Wave Polarization Conversion Based on Form Birefringence,” IEEE Microw. Wireless Compon. Lett. 26, 759 (2016).
    [Crossref]
  17. D. Isakov, Q. Lei, F. Castles, C.J. Stevens, C.R.M. Grovenor, and P. S. Grant, “3D printed anisotropic dielectric composite with meta-material features,” Mat. Des. 93, 423 (2016).
  18. F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
    [Crossref]
  19. D. E. Aspnes, “Bounds on allowed values of the effective dielectric function of two-component composites at finite frequencies,” Phys. Rev. B Condens. Matter 25, 1358 (1982).
    [Crossref]
  20. C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, Inc. USA, 1997.
  21. D. Isakov, C.J. Stevens, F. Castles, and P. S. Grant, “3D-Printed High Dielectric Contrast Gradient Index Flat Lens for a Directive Antenna with Reduced Dimensions,” Adv. Mater. Technol. 1, 1600072 (2016).
    [Crossref]
  22. Y. Wu, D. Isakov, and P. Grant, “Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing,” Materials 10, 1218 (2017).
    [Crossref]
  23. J. Krupka, “Developments in techniques to measure dielectric properties of low-loss materials at frequencies of 1–50 GHz,” J. Europ. Ceram. Soc. 23, 2607 (2003).
    [Crossref]
  24. A. Yariv, Optical Electronics, 4th Ed. (Saunders College Publishing, USA, 1991).

2017 (3)

H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, F. Yu, X. Chen, and W. Lu, “Annihilating optical angular momentum and realizing a meta-waveplate with anomalous functionalities,” Opt. Express 25, 16907 (2017).
[Crossref] [PubMed]

A. Yahyaoui, H. Rmili, K. Achouri, M. Sheikh, A. Dobaie, A. Affandi, and T. Aguili, “Transmission Control of Electromagnetic Waves by Using Quarter-Wave Plate and Half-Wave Plate All-Dielectric Metasurfaces Based on Elliptic Dielectric Resonators,” Int. J. Antenna Prop. 20178215291 (2017).

Y. Wu, D. Isakov, and P. Grant, “Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing,” Materials 10, 1218 (2017).
[Crossref]

2016 (8)

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Optics Express 24, 13621 (2016).
[Crossref] [PubMed]

D. Isakov, C.J. Stevens, F. Castles, and P. S. Grant, “3D-Printed High Dielectric Contrast Gradient Index Flat Lens for a Directive Antenna with Reduced Dimensions,” Adv. Mater. Technol. 1, 1600072 (2016).
[Crossref]

M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6, 38562 (2016).
[Crossref] [PubMed]

M. Lorente-Crespo, G. C. Ballesteros, G. Goussetis, and C. Mateo-Segura, “Experimental Validation of All-Dielectric mm-Wave Polarization Conversion Based on Form Birefringence,” IEEE Microw. Wireless Compon. Lett. 26, 759 (2016).
[Crossref]

D. Isakov, Q. Lei, F. Castles, C.J. Stevens, C.R.M. Grovenor, and P. S. Grant, “3D printed anisotropic dielectric composite with meta-material features,” Mat. Des. 93, 423 (2016).

F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
[Crossref]

N. J. G. Fonseca and C. Mangenot, “High-Performance Electrically Thin Dual-Band Polarizing Reflective Surface for Broadband Satellite Applications,” IEEE Trans. Antennas Propag. 64, 640 (2016).
[Crossref]

K. Achouri, G. Lavigne, and C. Caloz, “Comparison of two synthesis methods for birefringent metasurfaces,” J. Appl. Phys. 120, 235305 (2016).
[Crossref]

2014 (2)

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115, 103505 (2014).
[Crossref]

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

2013 (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, and Y. Zeng, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

2011 (1)

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99, 221907 (2011).
[Crossref]

2010 (1)

S. A. Bryan, T. E. Montroy, and J. E. Ruhl, “Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism,” Appl. Optics 49, 6313 (2010).
[Crossref]

2009 (1)

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[Crossref] [PubMed]

2003 (1)

J. Krupka, “Developments in techniques to measure dielectric properties of low-loss materials at frequencies of 1–50 GHz,” J. Europ. Ceram. Soc. 23, 2607 (2003).
[Crossref]

1982 (1)

D. E. Aspnes, “Bounds on allowed values of the effective dielectric function of two-component composites at finite frequencies,” Phys. Rev. B Condens. Matter 25, 1358 (1982).
[Crossref]

Abedi, A.

A. Ghasemi, A. Abedi, and F. Ghasemi, Propagation Engineering in Wireless Communications, 2nd Ed., Springer International Publishing, Switzerland, 2012.
[Crossref]

Achouri, K.

A. Yahyaoui, H. Rmili, K. Achouri, M. Sheikh, A. Dobaie, A. Affandi, and T. Aguili, “Transmission Control of Electromagnetic Waves by Using Quarter-Wave Plate and Half-Wave Plate All-Dielectric Metasurfaces Based on Elliptic Dielectric Resonators,” Int. J. Antenna Prop. 20178215291 (2017).

K. Achouri, G. Lavigne, and C. Caloz, “Comparison of two synthesis methods for birefringent metasurfaces,” J. Appl. Phys. 120, 235305 (2016).
[Crossref]

Affandi, A.

A. Yahyaoui, H. Rmili, K. Achouri, M. Sheikh, A. Dobaie, A. Affandi, and T. Aguili, “Transmission Control of Electromagnetic Waves by Using Quarter-Wave Plate and Half-Wave Plate All-Dielectric Metasurfaces Based on Elliptic Dielectric Resonators,” Int. J. Antenna Prop. 20178215291 (2017).

Aguili, T.

A. Yahyaoui, H. Rmili, K. Achouri, M. Sheikh, A. Dobaie, A. Affandi, and T. Aguili, “Transmission Control of Electromagnetic Waves by Using Quarter-Wave Plate and Half-Wave Plate All-Dielectric Metasurfaces Based on Elliptic Dielectric Resonators,” Int. J. Antenna Prop. 20178215291 (2017).

Aspnes, D. E.

D. E. Aspnes, “Bounds on allowed values of the effective dielectric function of two-component composites at finite frequencies,” Phys. Rev. B Condens. Matter 25, 1358 (1982).
[Crossref]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, Inc. USA, 1997.

Ballesteros, G. C.

M. Lorente-Crespo, G. C. Ballesteros, G. Goussetis, and C. Mateo-Segura, “Experimental Validation of All-Dielectric mm-Wave Polarization Conversion Based on Form Birefringence,” IEEE Microw. Wireless Compon. Lett. 26, 759 (2016).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th Ed., Cambridge Univ. Press, UK, 1993.

Bryan, S. A.

S. A. Bryan, T. E. Montroy, and J. E. Ruhl, “Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism,” Appl. Optics 49, 6313 (2010).
[Crossref]

Caloz, C.

K. Achouri, G. Lavigne, and C. Caloz, “Comparison of two synthesis methods for birefringent metasurfaces,” J. Appl. Phys. 120, 235305 (2016).
[Crossref]

Cao, G.

Cao, Y.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99, 221907 (2011).
[Crossref]

Castles, F.

D. Isakov, Q. Lei, F. Castles, C.J. Stevens, C.R.M. Grovenor, and P. S. Grant, “3D printed anisotropic dielectric composite with meta-material features,” Mat. Des. 93, 423 (2016).

F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
[Crossref]

D. Isakov, C.J. Stevens, F. Castles, and P. S. Grant, “3D-Printed High Dielectric Contrast Gradient Index Flat Lens for a Directive Antenna with Reduced Dimensions,” Adv. Mater. Technol. 1, 1600072 (2016).
[Crossref]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[Crossref] [PubMed]

Chang, S.-J.

M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6, 38562 (2016).
[Crossref] [PubMed]

Chen, M.

M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6, 38562 (2016).
[Crossref] [PubMed]

Chen, X.

Chin, J. Y.

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, and Y. Zeng, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Cui, T. J.

Dancer, C. E. J.

F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
[Crossref]

Dobaie, A.

A. Yahyaoui, H. Rmili, K. Achouri, M. Sheikh, A. Dobaie, A. Affandi, and T. Aguili, “Transmission Control of Electromagnetic Waves by Using Quarter-Wave Plate and Half-Wave Plate All-Dielectric Metasurfaces Based on Elliptic Dielectric Resonators,” Int. J. Antenna Prop. 20178215291 (2017).

Fan, F.

M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6, 38562 (2016).
[Crossref] [PubMed]

Fan, Y.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99, 221907 (2011).
[Crossref]

Fonseca, N. J. G.

N. J. G. Fonseca and C. Mangenot, “High-Performance Electrically Thin Dual-Band Polarizing Reflective Surface for Broadband Satellite Applications,” IEEE Trans. Antennas Propag. 64, 640 (2016).
[Crossref]

Ghasemi, A.

A. Ghasemi, A. Abedi, and F. Ghasemi, Propagation Engineering in Wireless Communications, 2nd Ed., Springer International Publishing, Switzerland, 2012.
[Crossref]

Ghasemi, F.

A. Ghasemi, A. Abedi, and F. Ghasemi, Propagation Engineering in Wireless Communications, 2nd Ed., Springer International Publishing, Switzerland, 2012.
[Crossref]

Gollub, J. N.

Goussetis, G.

M. Lorente-Crespo, G. C. Ballesteros, G. Goussetis, and C. Mateo-Segura, “Experimental Validation of All-Dielectric mm-Wave Polarization Conversion Based on Form Birefringence,” IEEE Microw. Wireless Compon. Lett. 26, 759 (2016).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, and Y. Zeng, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Grant, P.

Y. Wu, D. Isakov, and P. Grant, “Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing,” Materials 10, 1218 (2017).
[Crossref]

Grant, P. S.

D. Isakov, C.J. Stevens, F. Castles, and P. S. Grant, “3D-Printed High Dielectric Contrast Gradient Index Flat Lens for a Directive Antenna with Reduced Dimensions,” Adv. Mater. Technol. 1, 1600072 (2016).
[Crossref]

F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
[Crossref]

D. Isakov, Q. Lei, F. Castles, C.J. Stevens, C.R.M. Grovenor, and P. S. Grant, “3D printed anisotropic dielectric composite with meta-material features,” Mat. Des. 93, 423 (2016).

Grovenor, C. R. M.

F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
[Crossref]

Grovenor, C.R.M.

D. Isakov, Q. Lei, F. Castles, C.J. Stevens, C.R.M. Grovenor, and P. S. Grant, “3D printed anisotropic dielectric composite with meta-material features,” Mat. Des. 93, 423 (2016).

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[Crossref] [PubMed]

Harrison, C.

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, and Y. Zeng, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Huang, X.

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115, 103505 (2014).
[Crossref]

Isakov, D.

Y. Wu, D. Isakov, and P. Grant, “Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing,” Materials 10, 1218 (2017).
[Crossref]

F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
[Crossref]

D. Isakov, C.J. Stevens, F. Castles, and P. S. Grant, “3D-Printed High Dielectric Contrast Gradient Index Flat Lens for a Directive Antenna with Reduced Dimensions,” Adv. Mater. Technol. 1, 1600072 (2016).
[Crossref]

D. Isakov, Q. Lei, F. Castles, C.J. Stevens, C.R.M. Grovenor, and P. S. Grant, “3D printed anisotropic dielectric composite with meta-material features,” Mat. Des. 93, 423 (2016).

Janurudin, J. M.

F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
[Crossref]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[Crossref] [PubMed]

Jiang, Y.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[Crossref] [PubMed]

Krupka, J.

J. Krupka, “Developments in techniques to measure dielectric properties of low-loss materials at frequencies of 1–50 GHz,” J. Europ. Ceram. Soc. 23, 2607 (2003).
[Crossref]

Lavigne, G.

K. Achouri, G. Lavigne, and C. Caloz, “Comparison of two synthesis methods for birefringent metasurfaces,” J. Appl. Phys. 120, 235305 (2016).
[Crossref]

Lei, Q.

D. Isakov, Q. Lei, F. Castles, C.J. Stevens, C.R.M. Grovenor, and P. S. Grant, “3D printed anisotropic dielectric composite with meta-material features,” Mat. Des. 93, 423 (2016).

F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
[Crossref]

Li, G.

Li, H.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99, 221907 (2011).
[Crossref]

Li, J.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

Li, Y.

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Optics Express 24, 13621 (2016).
[Crossref] [PubMed]

Liu, J.

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Optics Express 24, 13621 (2016).
[Crossref] [PubMed]

Liu, R.

Lorente-Crespo, M.

M. Lorente-Crespo, G. C. Ballesteros, G. Goussetis, and C. Mateo-Segura, “Experimental Validation of All-Dielectric mm-Wave Polarization Conversion Based on Form Birefringence,” IEEE Microw. Wireless Compon. Lett. 26, 759 (2016).
[Crossref]

Lu, W.

Lui, A.

F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
[Crossref]

Mangenot, C.

N. J. G. Fonseca and C. Mangenot, “High-Performance Electrically Thin Dual-Band Polarizing Reflective Surface for Broadband Satellite Applications,” IEEE Trans. Antennas Propag. 64, 640 (2016).
[Crossref]

Mateo-Segura, C.

M. Lorente-Crespo, G. C. Ballesteros, G. Goussetis, and C. Mateo-Segura, “Experimental Validation of All-Dielectric mm-Wave Polarization Conversion Based on Form Birefringence,” IEEE Microw. Wireless Compon. Lett. 26, 759 (2016).
[Crossref]

Mo, W.

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Optics Express 24, 13621 (2016).
[Crossref] [PubMed]

Mock, J. J.

Montroy, T. E.

S. A. Bryan, T. E. Montroy, and J. E. Ruhl, “Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism,” Appl. Optics 49, 6313 (2010).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[Crossref] [PubMed]

Rmili, H.

A. Yahyaoui, H. Rmili, K. Achouri, M. Sheikh, A. Dobaie, A. Affandi, and T. Aguili, “Transmission Control of Electromagnetic Waves by Using Quarter-Wave Plate and Half-Wave Plate All-Dielectric Metasurfaces Based on Elliptic Dielectric Resonators,” Int. J. Antenna Prop. 20178215291 (2017).

Ruhl, J. E.

S. A. Bryan, T. E. Montroy, and J. E. Ruhl, “Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism,” Appl. Optics 49, 6313 (2010).
[Crossref]

Sheikh, M.

A. Yahyaoui, H. Rmili, K. Achouri, M. Sheikh, A. Dobaie, A. Affandi, and T. Aguili, “Transmission Control of Electromagnetic Waves by Using Quarter-Wave Plate and Half-Wave Plate All-Dielectric Metasurfaces Based on Elliptic Dielectric Resonators,” Int. J. Antenna Prop. 20178215291 (2017).

Shi, H.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

Smith, D. R.

Speller, S. C.

F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
[Crossref]

Stevens, C.J.

D. Isakov, C.J. Stevens, F. Castles, and P. S. Grant, “3D-Printed High Dielectric Contrast Gradient Index Flat Lens for a Directive Antenna with Reduced Dimensions,” Adv. Mater. Technol. 1, 1600072 (2016).
[Crossref]

D. Isakov, Q. Lei, F. Castles, C.J. Stevens, C.R.M. Grovenor, and P. S. Grant, “3D printed anisotropic dielectric composite with meta-material features,” Mat. Des. 93, 423 (2016).

Su, X.

Wang, K.

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Optics Express 24, 13621 (2016).
[Crossref] [PubMed]

Wang, Y.

F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
[Crossref]

Wei, X.

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Optics Express 24, 13621 (2016).
[Crossref] [PubMed]

Wei, Z.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99, 221907 (2011).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th Ed., Cambridge Univ. Press, UK, 1993.

Wu, Y.

Y. Wu, D. Isakov, and P. Grant, “Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing,” Materials 10, 1218 (2017).
[Crossref]

Xu, S.-T.

M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6, 38562 (2016).
[Crossref] [PubMed]

Yahyaoui, A.

A. Yahyaoui, H. Rmili, K. Achouri, M. Sheikh, A. Dobaie, A. Affandi, and T. Aguili, “Transmission Control of Electromagnetic Waves by Using Quarter-Wave Plate and Half-Wave Plate All-Dielectric Metasurfaces Based on Elliptic Dielectric Resonators,” Int. J. Antenna Prop. 20178215291 (2017).

Yang, D.

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115, 103505 (2014).
[Crossref]

Yang, H.

Yariv, A.

A. Yariv, Optical Electronics, 4th Ed. (Saunders College Publishing, USA, 1991).

Yu, F.

Yu, X.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99, 221907 (2011).
[Crossref]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, and Y. Zeng, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Zhang, A.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

Zhao, Z.

Zheng, S.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[Crossref] [PubMed]

Adv. Mater. Technol. (1)

D. Isakov, C.J. Stevens, F. Castles, and P. S. Grant, “3D-Printed High Dielectric Contrast Gradient Index Flat Lens for a Directive Antenna with Reduced Dimensions,” Adv. Mater. Technol. 1, 1600072 (2016).
[Crossref]

Appl. Optics (1)

S. A. Bryan, T. E. Montroy, and J. E. Ruhl, “Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism,” Appl. Optics 49, 6313 (2010).
[Crossref]

Appl. Phys. Lett. (2)

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99, 221907 (2011).
[Crossref]

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

IEEE Microw. Wireless Compon. Lett. (1)

M. Lorente-Crespo, G. C. Ballesteros, G. Goussetis, and C. Mateo-Segura, “Experimental Validation of All-Dielectric mm-Wave Polarization Conversion Based on Form Birefringence,” IEEE Microw. Wireless Compon. Lett. 26, 759 (2016).
[Crossref]

IEEE Trans. Antennas Propag. (1)

N. J. G. Fonseca and C. Mangenot, “High-Performance Electrically Thin Dual-Band Polarizing Reflective Surface for Broadband Satellite Applications,” IEEE Trans. Antennas Propag. 64, 640 (2016).
[Crossref]

Int. J. Antenna Prop. (1)

A. Yahyaoui, H. Rmili, K. Achouri, M. Sheikh, A. Dobaie, A. Affandi, and T. Aguili, “Transmission Control of Electromagnetic Waves by Using Quarter-Wave Plate and Half-Wave Plate All-Dielectric Metasurfaces Based on Elliptic Dielectric Resonators,” Int. J. Antenna Prop. 20178215291 (2017).

J. Appl. Phys. (2)

K. Achouri, G. Lavigne, and C. Caloz, “Comparison of two synthesis methods for birefringent metasurfaces,” J. Appl. Phys. 120, 235305 (2016).
[Crossref]

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115, 103505 (2014).
[Crossref]

J. Europ. Ceram. Soc. (1)

J. Krupka, “Developments in techniques to measure dielectric properties of low-loss materials at frequencies of 1–50 GHz,” J. Europ. Ceram. Soc. 23, 2607 (2003).
[Crossref]

Mat. Des. (1)

D. Isakov, Q. Lei, F. Castles, C.J. Stevens, C.R.M. Grovenor, and P. S. Grant, “3D printed anisotropic dielectric composite with meta-material features,” Mat. Des. 93, 423 (2016).

Materials (1)

Y. Wu, D. Isakov, and P. Grant, “Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing,” Materials 10, 1218 (2017).
[Crossref]

Opt. Express (2)

Optics Express (1)

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Optics Express 24, 13621 (2016).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

D. E. Aspnes, “Bounds on allowed values of the effective dielectric function of two-component composites at finite frequencies,” Phys. Rev. B Condens. Matter 25, 1358 (1982).
[Crossref]

Phys. Rev. Lett. (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[Crossref] [PubMed]

Sci. Rep. (2)

M. Chen, F. Fan, S.-T. Xu, and S.-J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6, 38562 (2016).
[Crossref] [PubMed]

F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, “Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites,” Sci. Rep. 6, 22714 (2016).
[Crossref]

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, and Y. Zeng, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Other (4)

A. Ghasemi, A. Abedi, and F. Ghasemi, Propagation Engineering in Wireless Communications, 2nd Ed., Springer International Publishing, Switzerland, 2012.
[Crossref]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th Ed., Cambridge Univ. Press, UK, 1993.

C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, Inc. USA, 1997.

A. Yariv, Optical Electronics, 4th Ed. (Saunders College Publishing, USA, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The design approach for a microwave λ/4 phase retardation plate. (a) The effective relative dielectric permittivity of the upper (ϵmax,) and lower (ϵmin) Wiener bounds as a function of volume fraction v for a two-phase composite with ϵl=2.65 and ϵh=10.8 corresponding to the experimentally available feedstock filaments for FDM 3D printing. (b) The difference between the upper and lower Wiener bounds Δϵ = ϵmaxϵmin and the corresponding derivative Δϵ′(v) that determines the optimum volume fraction v0, shown as dashed vertical line, at which Δϵ = max. (c) CAD model of the λ/4 wave plate composed of two materials and designed with regards to the conditions shown in (b) and from Eq. (6).
Fig. 2
Fig. 2 (a) Simulated near-field x and y components of the electric field E in the direction of radiation for pyramidal horn with E oriented along y-axis and a λ/4 plate with its “slow” axis also parallel to y. (b) The same components after the rotation of the λ/4 plate at 45° to the polarization of the horn antenna. (c) Projection of the far-field |Ey|− |Ex| difference on a plane 0.8×0.8 m2 at a distance of 100λ from the horn aperture with the λ/4 plate oriented with its “slow” axis parallel to the radiation polarisation Ey and, (d) oriented at 45°. Note that the intensity contours in the colour legend have different scales.
Fig. 3
Fig. 3 (a) Photograph of the 3D-printed λ/4 plate and (b) experimental setup.
Fig. 4
Fig. 4 (a) Schematic of the experimental setup showing two pyramidal horns and the λ/4 plate. (b) Measured power gain difference and phase difference (c) between transmitted Ey (P‖A) and Ex (P⊥A) components with λ/4 plate oriented at 45° to the principal axes. (d) Measured transmittance (solid black curve) as a function of the λ/4 plate rotation between two ports oriented perpendicularly to each other (P⊥A).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε max = f ε h + ( 1 v ) ε l ,
ε min 1 = v ε h 1 + ( 1 v ) ε 1 1 ,
v 0 = ε h ε 1 ε h ε l ε h ,
E y ( z , t ) = R e [ E y 0 exp ( j ω t + k z + ϕ y ) ]
E x ( z , t ) = R e [ E x 0 exp ( j ω t + k z + ϕ x ) ]
Δ ϕ = ϕ y ϕ x = 2 π λ ( ε y y ε x x ) d ,
T = 1 2 sin 2 ( 2 θ ) .

Metrics