Abstract

In this paper, a liquid crystal device for generating transflected optical vortices with high efficiency based on Pancharatnam-Berry phase is devised and demonstrated experimentally. In the experiment, both photo-alignment material and polymer-alignment material are used for assembling three-dimensional distributed liquid crystal polymer and cholesteric liquid crystal. Through the interaction between the incident light and the device, both transmitted light and reflected light get spin-orbital angular momentum conversion. Moreover, the amount of transmitted and reflected beams can be modulated by the input polarization. In our proposal, the device is dual functional, low-cost and simple in manufacturing process.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spin-to-orbital angular momentum conversion in dielectric metasurfaces

Robert Charles Devlin, Antonio Ambrosio, Daniel Wintz, Stefano Luigi Oscurato, Alexander Yutong Zhu, Mohammadreza Khorasaninejad, Jaewon Oh, Pasqualino Maddalena, and Federico Capasso
Opt. Express 25(1) 377-393 (2017)

Doubling the geometric phase of reflective Pancharatnam–Berry diffractive waveplates

Masaru Ono, Junji Kobashi, Hiroyuki Yoshida, and Masanori Ozaki
J. Opt. Soc. Am. B 36(5) D20-D27 (2019)

High performance transflective liquid crystal display associated with fringe-field switching device

Young Jin Lim, Suck Jae Shin, Nam Ho Cho, Surjya Sarathi Bhattacharyya, Kyoung Ho Park, Joun Ho Lee, Byeong Koo Kim, and Seung Hee Lee
Opt. Express 19(9) 8085-8091 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarized light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909).
    [Crossref]
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  3. G. Molina Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
    [Crossref]
  4. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref] [PubMed]
  5. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
    [Crossref] [PubMed]
  6. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
    [Crossref]
  7. J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
    [Crossref]
  8. R. Barboza, U. Bortolozzo, M. G. Clerc, and S. Residori, “Berry phase of light under Bragg reflection by chiral liquid crystal media,” Phys. Rev. Lett. 117(5), 053903 (2016).
    [Crossref] [PubMed]
  9. M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116(25), 253902 (2016).
    [Crossref] [PubMed]
  10. J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116(25), 253903 (2016).
    [Crossref] [PubMed]
  11. M. Rafayelyan and E. Brasselet, “Bragg-Berry mirrors: reflective broadband q-plates,” Opt. Lett. 41(17), 3972–3975 (2016).
    [Crossref] [PubMed]
  12. M. Rafayelyan, G. Agez, and E. Brasselet, “Ultra-broadband gradient-pitch Bragg-Berry mirrors,” Phys. Rev. A 96(4), 043862 (2017).
    [Crossref]
  13. J. Kobashi, H. Yoshida, and M. Ozaki, “Broadband optical vortex generation from patterned cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 646(1), 116–124 (2017).
    [Crossref]
  14. M. Rafayelyan and E. Brasselet, “Spin-to-orbital angular momentum mapping of polychromatic light,” Phys. Rev. Lett. 120(21), 213903 (2018).
    [Crossref] [PubMed]
  15. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
    [Crossref]
  16. M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  17. J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
    [Crossref]
  18. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  19. A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
    [Crossref]
  20. P. Chen, B. Y. Wei, W. Ji, S. J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y. Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3(4), 133–139 (2015).
    [Crossref]
  21. W. Duan, P. Chen, S. J. Ge, B. Y. Wei, W. Hu, and Y. Q. Lu, “Helicity-dependent forked vortex lens based on photo-patterned liquid crystals,” Opt. Express 25(13), 14059–14064 (2017).
    [Crossref] [PubMed]
  22. C. X. Zhao, F. Fan, T. Du, V. G. Chigrinov, and H. S. Kwok, “Multilayer photo-aligned thin-film structure for polarizing photonics,” Opt. Lett. 40(13), 2993–2996 (2015).
    [Crossref] [PubMed]
  23. M. J. Tang, P. Chen, W. L. Zhang, A. M. Tam, V. G. Chigrinov, W. Hu, and Y. Q. Lu, “Integrated and reconfigurable optical paths based on stacking optical functional films,” Opt. Express 24(22), 25510–25514 (2016).
    [Crossref] [PubMed]
  24. S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).
    [Crossref]
  25. M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-induced alignment and patterning of hybrid liquid crystalline polymer films on single substrates,” Jpn. J. Appl. Phys. 34(Part 2, No. 6B), L764–L767 (1995).
    [Crossref]
  26. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
    [Crossref]
  27. H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography systems,” Opt. Express 20(15), 16684–16689 (2012).
    [Crossref]
  28. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]

2018 (1)

M. Rafayelyan and E. Brasselet, “Spin-to-orbital angular momentum mapping of polychromatic light,” Phys. Rev. Lett. 120(21), 213903 (2018).
[Crossref] [PubMed]

2017 (4)

M. Rafayelyan, G. Agez, and E. Brasselet, “Ultra-broadband gradient-pitch Bragg-Berry mirrors,” Phys. Rev. A 96(4), 043862 (2017).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Broadband optical vortex generation from patterned cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 646(1), 116–124 (2017).
[Crossref]

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

W. Duan, P. Chen, S. J. Ge, B. Y. Wei, W. Hu, and Y. Q. Lu, “Helicity-dependent forked vortex lens based on photo-patterned liquid crystals,” Opt. Express 25(13), 14059–14064 (2017).
[Crossref] [PubMed]

2016 (8)

M. J. Tang, P. Chen, W. L. Zhang, A. M. Tam, V. G. Chigrinov, W. Hu, and Y. Q. Lu, “Integrated and reconfigurable optical paths based on stacking optical functional films,” Opt. Express 24(22), 25510–25514 (2016).
[Crossref] [PubMed]

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).
[Crossref]

J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

R. Barboza, U. Bortolozzo, M. G. Clerc, and S. Residori, “Berry phase of light under Bragg reflection by chiral liquid crystal media,” Phys. Rev. Lett. 117(5), 053903 (2016).
[Crossref] [PubMed]

M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116(25), 253902 (2016).
[Crossref] [PubMed]

J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116(25), 253903 (2016).
[Crossref] [PubMed]

M. Rafayelyan and E. Brasselet, “Bragg-Berry mirrors: reflective broadband q-plates,” Opt. Lett. 41(17), 3972–3975 (2016).
[Crossref] [PubMed]

2015 (3)

2012 (1)

2011 (4)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
[Crossref] [PubMed]

2009 (1)

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

2007 (1)

G. Molina Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

2006 (1)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

1995 (1)

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-induced alignment and patterning of hybrid liquid crystalline polymer films on single substrates,” Jpn. J. Appl. Phys. 34(Part 2, No. 6B), L764–L767 (1995).
[Crossref]

1992 (2)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1909 (1)

J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarized light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909).
[Crossref]

Agez, G.

M. Rafayelyan, G. Agez, and E. Brasselet, “Ultra-broadband gradient-pitch Bragg-Berry mirrors,” Phys. Rev. A 96(4), 043862 (2017).
[Crossref]

Alberucci, A.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Assanto, G.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).
[Crossref]

Barboza, R.

R. Barboza, U. Bortolozzo, M. G. Clerc, and S. Residori, “Berry phase of light under Bragg reflection by chiral liquid crystal media,” Phys. Rev. Lett. 117(5), 053903 (2016).
[Crossref] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Bortolozzo, U.

R. Barboza, U. Bortolozzo, M. G. Clerc, and S. Residori, “Berry phase of light under Bragg reflection by chiral liquid crystal media,” Phys. Rev. Lett. 117(5), 053903 (2016).
[Crossref] [PubMed]

Bowman, R.

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Brasselet, E.

M. Rafayelyan and E. Brasselet, “Spin-to-orbital angular momentum mapping of polychromatic light,” Phys. Rev. Lett. 120(21), 213903 (2018).
[Crossref] [PubMed]

M. Rafayelyan, G. Agez, and E. Brasselet, “Ultra-broadband gradient-pitch Bragg-Berry mirrors,” Phys. Rev. A 96(4), 043862 (2017).
[Crossref]

M. Rafayelyan and E. Brasselet, “Bragg-Berry mirrors: reflective broadband q-plates,” Opt. Lett. 41(17), 3972–3975 (2016).
[Crossref] [PubMed]

M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116(25), 253902 (2016).
[Crossref] [PubMed]

Chen, P.

Chigrinov, V.

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

P. Chen, B. Y. Wei, W. Ji, S. J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y. Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3(4), 133–139 (2015).
[Crossref]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography systems,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
[Crossref] [PubMed]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
[Crossref]

Chigrinov, V. G.

Ching, K. L.

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

Choi, J. W.

Clerc, M. G.

R. Barboza, U. Bortolozzo, M. G. Clerc, and S. Residori, “Berry phase of light under Bragg reflection by chiral liquid crystal media,” Phys. Rev. Lett. 117(5), 053903 (2016).
[Crossref] [PubMed]

Du, T.

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

C. X. Zhao, F. Fan, T. Du, V. G. Chigrinov, and H. S. Kwok, “Multilayer photo-aligned thin-film structure for polarizing photonics,” Opt. Lett. 40(13), 2993–2996 (2015).
[Crossref] [PubMed]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
[Crossref] [PubMed]

Duan, W.

Escuti, M. J.

Fan, F.

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

C. X. Zhao, F. Fan, T. Du, V. G. Chigrinov, and H. S. Kwok, “Multilayer photo-aligned thin-film structure for polarizing photonics,” Opt. Lett. 40(13), 2993–2996 (2015).
[Crossref] [PubMed]

Ge, S. J.

Hu, H. C.

Hu, W.

Ji, W.

Jisha, C. P.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).
[Crossref]

Karimi, E.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

Kelly, S. M.

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-induced alignment and patterning of hybrid liquid crystalline polymer films on single substrates,” Jpn. J. Appl. Phys. 34(Part 2, No. 6B), L764–L767 (1995).
[Crossref]

Kim, J.

Kobashi, J.

J. Kobashi, H. Yoshida, and M. Ozaki, “Broadband optical vortex generation from patterned cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 646(1), 116–124 (2017).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116(25), 253903 (2016).
[Crossref] [PubMed]

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
[Crossref]

Kudenov, M. W.

Kwok, H. S.

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

C. X. Zhao, F. Fan, T. Du, V. G. Chigrinov, and H. S. Kwok, “Multilayer photo-aligned thin-film structure for polarizing photonics,” Opt. Lett. 40(13), 2993–2996 (2015).
[Crossref] [PubMed]

Li, G. J.

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

Li, Y.

Lin, X. W.

Lu, Y. Q.

Luo, H. L.

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Marrucci, L.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).
[Crossref]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
[Crossref] [PubMed]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Miskiewicz, M. N.

Molina Terriza, G.

G. Molina Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Murauski, A.

Nagali, E.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

Oh, C.

Ozaki, M.

J. Kobashi, H. Yoshida, and M. Ozaki, “Broadband optical vortex generation from patterned cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 646(1), 116–124 (2017).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116(25), 253903 (2016).
[Crossref] [PubMed]

Padgett, M. J.

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Piccirillo, B.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).
[Crossref]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

Poynting, J. H.

J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarized light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909).
[Crossref]

Rafayelyan, M.

M. Rafayelyan and E. Brasselet, “Spin-to-orbital angular momentum mapping of polychromatic light,” Phys. Rev. Lett. 120(21), 213903 (2018).
[Crossref] [PubMed]

M. Rafayelyan, G. Agez, and E. Brasselet, “Ultra-broadband gradient-pitch Bragg-Berry mirrors,” Phys. Rev. A 96(4), 043862 (2017).
[Crossref]

M. Rafayelyan and E. Brasselet, “Bragg-Berry mirrors: reflective broadband q-plates,” Opt. Lett. 41(17), 3972–3975 (2016).
[Crossref] [PubMed]

M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116(25), 253902 (2016).
[Crossref] [PubMed]

Residori, S.

R. Barboza, U. Bortolozzo, M. G. Clerc, and S. Residori, “Berry phase of light under Bragg reflection by chiral liquid crystal media,” Phys. Rev. Lett. 117(5), 053903 (2016).
[Crossref] [PubMed]

Santamato, E.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).
[Crossref]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
[Crossref] [PubMed]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

Schadt, M.

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-induced alignment and patterning of hybrid liquid crystalline polymer films on single substrates,” Jpn. J. Appl. Phys. 34(Part 2, No. 6B), L764–L767 (1995).
[Crossref]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
[Crossref]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
[Crossref]

Schuster, A.

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-induced alignment and patterning of hybrid liquid crystalline polymer films on single substrates,” Jpn. J. Appl. Phys. 34(Part 2, No. 6B), L764–L767 (1995).
[Crossref]

Sciarrino, F.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Seiberle, H.

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-induced alignment and patterning of hybrid liquid crystalline polymer films on single substrates,” Jpn. J. Appl. Phys. 34(Part 2, No. 6B), L764–L767 (1995).
[Crossref]

Slussarenko, S.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).
[Crossref]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
[Crossref] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Tam, A. M.

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

M. J. Tang, P. Chen, W. L. Zhang, A. M. Tam, V. G. Chigrinov, W. Hu, and Y. Q. Lu, “Integrated and reconfigurable optical paths based on stacking optical functional films,” Opt. Express 24(22), 25510–25514 (2016).
[Crossref] [PubMed]

Tang, M. J.

Tkachenko, G.

M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116(25), 253902 (2016).
[Crossref] [PubMed]

Torner, L.

G. Molina Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Wang, J.

Wang, X. Q.

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

Wei, B. Y.

Wen, S. C.

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wu, H.

Xu, F.

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yoshida, H.

J. Kobashi, H. Yoshida, and M. Ozaki, “Broadband optical vortex generation from patterned cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 646(1), 116–124 (2017).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116(25), 253903 (2016).
[Crossref] [PubMed]

Zhang, W. L.

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

M. J. Tang, P. Chen, W. L. Zhang, A. M. Tam, V. G. Chigrinov, W. Hu, and Y. Q. Lu, “Integrated and reconfigurable optical paths based on stacking optical functional films,” Opt. Express 24(22), 25510–25514 (2016).
[Crossref] [PubMed]

Zhao, C. X.

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

C. X. Zhao, F. Fan, T. Du, V. G. Chigrinov, and H. S. Kwok, “Multilayer photo-aligned thin-film structure for polarizing photonics,” Opt. Lett. 40(13), 2993–2996 (2015).
[Crossref] [PubMed]

Zhu, G.

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Appl. Phys. Lett. (1)

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

J. Opt. (1)

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Jpn. J. Appl. Phys. (2)

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-induced alignment and patterning of hybrid liquid crystalline polymer films on single substrates,” Jpn. J. Appl. Phys. 34(Part 2, No. 6B), L764–L767 (1995).
[Crossref]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

J. Kobashi, H. Yoshida, and M. Ozaki, “Broadband optical vortex generation from patterned cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 646(1), 116–124 (2017).
[Crossref]

Nat. Photonics (3)

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

Nat. Phys. (1)

G. Molina Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Photon. Res. (2)

Phys. Rev. A (2)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

M. Rafayelyan, G. Agez, and E. Brasselet, “Ultra-broadband gradient-pitch Bragg-Berry mirrors,” Phys. Rev. A 96(4), 043862 (2017).
[Crossref]

Phys. Rev. Appl. (1)

A. M. Tam, F. Fan, T. Du, W. Hu, W. L. Zhang, C. X. Zhao, X. Q. Wang, K. L. Ching, G. J. Li, H. L. Luo, V. Chigrinov, S. C. Wen, and H. S. Kwok, “Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 0304010 (2017).
[Crossref]

Phys. Rev. Lett. (5)

M. Rafayelyan and E. Brasselet, “Spin-to-orbital angular momentum mapping of polychromatic light,” Phys. Rev. Lett. 120(21), 213903 (2018).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

R. Barboza, U. Bortolozzo, M. G. Clerc, and S. Residori, “Berry phase of light under Bragg reflection by chiral liquid crystal media,” Phys. Rev. Lett. 117(5), 053903 (2016).
[Crossref] [PubMed]

M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116(25), 253902 (2016).
[Crossref] [PubMed]

J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116(25), 253903 (2016).
[Crossref] [PubMed]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarized light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) and (b) schematic representation of ChLC and NLC molecular orientation and light interation with them. Schematic representation of molecular orientation in the bulk (c) and at the boundaries (d) of transflective q-plate of q = 1 and θ0 = 0.
Fig. 2
Fig. 2 Optical action pictorial illustration of a transflective type q-plate with q = 1, θ0 = 0 on an input planar light wave with arbitrary polarization state (APS). The transmissive and reflective light are RHC polarized and carry the helical modes with the topological charge m = 2.
Fig. 3
Fig. 3 (a) Schematic illustration of sample fabrication process. (b) sketch of the sample and material of each layer. LCPF, liquid crystal polymer film; PAL, photo-alignment layers; GS, glass substrates. (c) Photo of the transflective q-plate with q = 4 under crossed linear polarizers.
Fig. 4
Fig. 4 (a) Experimental setup to generate transflected vortices and measured intensity distribution by the interaction of Gaussian light with the transflective q-plate (QP). When linearly polarized (LP) light, LHC polarized light and RHC polarized light illuminate upon the QP in turn, transmitted optical intensity profiles were collected from CMOS Camera 1 which can be seen in (b) - (d). Reflected optical intensity profiles which were collected from CMOS Camera 2 can be seen in (f) - (h). (e) and (i) are the interference patterns of transmitted light and reflected light with the reference Gaussian light.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = [ cos θ sin θ sin θ cos θ ] [ 1 0 0 exp ( i π ) ] [ cos θ sin θ sin θ cos θ ] .
θ = { 2 π p z + q φ + θ 0 , 0 < z < d 1 2 π p d 1 + q φ + θ 0 , d 1 < z < d 1 + d 2 .

Metrics