Abstract

We propose an optofluidic sorting method for nanoparticles with different size by using optical waveguide splitter, and moreover, multiple cascaded splitters with different threshold could act as multi-level sorting unit. For a directional coupler (DC) with a specific wavelength excitation, the power splitting ratio is related to the coupling length and the gap between parallel waveguides. The power splitting ratio further determines the trapping force and potential wells distribution of both output ports. Most importantly, the potential well distribution is dependent on the particle size. For larger particles, the potential wells of both waveguides are inclined to merge, which makes it easier to be attracted and transfers to the adjacent waveguide with deeper potential well. The critical size of sorting is corresponding to the case when the barrier between wells just disappears, or the second derivative of the potential distribution is exactly zero. Moreover, since the sorting threshold of nanoparticles is related to coupling length and gap, multiple cascaded splitters with length or gap gradually varied could act as a multi-level sorting unit. A four-level sorting unit with a critical particle size of 600nm, 700nm, and 800nm are demonstrated. By considering the Brownian motion of particles and using particle-tracking method, the random distribution of nanoparticles on parallel waveguides in the sorting process is statistically presented, which agreed well with its corresponding potential wells distribution analysis. This sorting method based on multi-step optical waveguide splitter offers a number of advantages including single wavelength excitation, low loss, low power performance and ease of fabrication. This design can realize the high-throughput and large-scale nanoparticle automatic sorting in integrated photonic circuits, which have great potential for a large scale lab-on-a-chip system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
An integrated microparticle sorting system based on near-field optical forces and a structural perturbation

Shiyun Lin and Kenneth B. Crozier
Opt. Express 20(4) 3367-3374 (2012)

All-optically-controlled nanoparticle transporting and manipulating at SOI waveguide intersections

Hao Li, Xin Yu, Xiang Wu, Wei Shi, Mo Chen, Liying Liu, and Lei Xu
Opt. Express 20(22) 24160-24166 (2012)

Sorting of polystyrene microspheres using a Y-branched optical waveguide

K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson
Opt. Express 13(1) 1-7 (2005)

References

  • View by:
  • |
  • |
  • |

  1. V. Srinivasan, V. K. Pamula, and R. B. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids,” Lab Chip 4(4), 310–315 (2004).
    [Crossref] [PubMed]
  2. C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab Chip 7(1), 41–57 (2007).
    [Crossref] [PubMed]
  3. S. Haeberle and R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications,” Lab Chip 7(9), 1094–1110 (2007).
    [Crossref] [PubMed]
  4. T. A. Franke and A. Wixforth, “Microfluidics for miniaturized laboratories on a chip,” ChemPhysChem 9(15), 2140–2156 (2008).
    [Crossref] [PubMed]
  5. L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7(1), 12–48 (2011).
    [Crossref] [PubMed]
  6. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [Crossref] [PubMed]
  7. M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
    [Crossref] [PubMed]
  8. H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
    [Crossref] [PubMed]
  9. T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. D. Griffiths, and A. Drevelle, “High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics,” Sci. Rep. 6(1), 27223 (2016).
    [Crossref] [PubMed]
  10. E. Fradet, C. McDougall, P. Abbyad, R. Dangla, D. McGloin, and C. N. Baroud, “Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays,” Lab Chip 11(24), 4228–4234 (2011).
    [Crossref] [PubMed]
  11. D. H. Yoon, D. Wakui, A. Nakahara, T. Sekiguchi, and S. Shoji, “Selective droplet sampling using a minimum number of horizontal pneumatic actuators in a high aspect ratio and highly flexible PDMS device,” RSC Advances 5(3), 2070–2074 (2015).
    [Crossref]
  12. H. Li, Y. Wu, X. Wang, C. Zhu, T. Fu, and Y. Ma, “Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction,” RSC Advances 6(1), 778–785 (2016).
    [Crossref]
  13. D. J. Collins, Z. Ma, and Y. Ai, “Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields,” Anal. Chem. 88(10), 5513–5522 (2016).
    [Crossref] [PubMed]
  14. B. D. Plouffe, S. K. Murthy, and L. H. Lewis, “Fundamentals and application of magnetic particles in cell isolation and enrichment: a review,” Rep. Prog. Phys. 78(1), 016601 (2015).
    [Crossref] [PubMed]
  15. Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
    [Crossref] [PubMed]
  16. W. Wu, X. Zhu, Y. Zuo, L. Liang, S. Zhang, X. Zhang, and Y. Yang, “Precise Sorting of Gold Nanoparticles in a Flowing System,” ACS Photonics 3(12), 2497–2504 (2016).
    [Crossref]
  17. L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
    [Crossref] [PubMed]
  18. H. Cai and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices,” Opt. Lett. 35(17), 2855–2857 (2010).
    [Crossref] [PubMed]
  19. X. Xu, Y. Dong, G. Wang, W. Jiao, Z. Ying, H. P. Ho, and X. Zhang, “Reconfigurable Sorting of Nanoparticles on a Thermal Tuning Silicon Based Optofluidic Chip,” IEEE Photonics J. 10(1), 7803010 (2018).
    [Crossref]
  20. S. Lin and K. B. Crozier, “An integrated microparticle sorting system based on near-field optical forces and a structural perturbation,” Opt. Express 20(4), 3367–3374 (2012).
    [Crossref] [PubMed]
  21. W. Jiao, G. Wang, Z. Ying, Z. Kang, T. Sun, N. Zou, H. P. Ho, and X. Zhang, “Optofluidic Switching of Nanoparticles Based on a WDM Tree Splitter,” IEEE Photonics J. 8(3), 7803010 (2016).
    [Crossref]
  22. K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
    [Crossref] [PubMed]
  23. G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013).
    [Crossref]

2018 (2)

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

X. Xu, Y. Dong, G. Wang, W. Jiao, Z. Ying, H. P. Ho, and X. Zhang, “Reconfigurable Sorting of Nanoparticles on a Thermal Tuning Silicon Based Optofluidic Chip,” IEEE Photonics J. 10(1), 7803010 (2018).
[Crossref]

2017 (1)

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

2016 (5)

T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. D. Griffiths, and A. Drevelle, “High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics,” Sci. Rep. 6(1), 27223 (2016).
[Crossref] [PubMed]

W. Wu, X. Zhu, Y. Zuo, L. Liang, S. Zhang, X. Zhang, and Y. Yang, “Precise Sorting of Gold Nanoparticles in a Flowing System,” ACS Photonics 3(12), 2497–2504 (2016).
[Crossref]

H. Li, Y. Wu, X. Wang, C. Zhu, T. Fu, and Y. Ma, “Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction,” RSC Advances 6(1), 778–785 (2016).
[Crossref]

D. J. Collins, Z. Ma, and Y. Ai, “Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields,” Anal. Chem. 88(10), 5513–5522 (2016).
[Crossref] [PubMed]

W. Jiao, G. Wang, Z. Ying, Z. Kang, T. Sun, N. Zou, H. P. Ho, and X. Zhang, “Optofluidic Switching of Nanoparticles Based on a WDM Tree Splitter,” IEEE Photonics J. 8(3), 7803010 (2016).
[Crossref]

2015 (2)

B. D. Plouffe, S. K. Murthy, and L. H. Lewis, “Fundamentals and application of magnetic particles in cell isolation and enrichment: a review,” Rep. Prog. Phys. 78(1), 016601 (2015).
[Crossref] [PubMed]

D. H. Yoon, D. Wakui, A. Nakahara, T. Sekiguchi, and S. Shoji, “Selective droplet sampling using a minimum number of horizontal pneumatic actuators in a high aspect ratio and highly flexible PDMS device,” RSC Advances 5(3), 2070–2074 (2015).
[Crossref]

2014 (1)

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

2013 (2)

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013).
[Crossref]

2012 (1)

2011 (2)

E. Fradet, C. McDougall, P. Abbyad, R. Dangla, D. McGloin, and C. N. Baroud, “Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays,” Lab Chip 11(24), 4228–4234 (2011).
[Crossref] [PubMed]

L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7(1), 12–48 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

2008 (1)

T. A. Franke and A. Wixforth, “Microfluidics for miniaturized laboratories on a chip,” ChemPhysChem 9(15), 2140–2156 (2008).
[Crossref] [PubMed]

2007 (2)

C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab Chip 7(1), 41–57 (2007).
[Crossref] [PubMed]

S. Haeberle and R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications,” Lab Chip 7(9), 1094–1110 (2007).
[Crossref] [PubMed]

2005 (1)

2004 (1)

V. Srinivasan, V. K. Pamula, and R. B. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids,” Lab Chip 4(4), 310–315 (2004).
[Crossref] [PubMed]

Abbyad, P.

E. Fradet, C. McDougall, P. Abbyad, R. Dangla, D. McGloin, and C. N. Baroud, “Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays,” Lab Chip 11(24), 4228–4234 (2011).
[Crossref] [PubMed]

Ai, Y.

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

D. J. Collins, Z. Ma, and Y. Ai, “Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields,” Anal. Chem. 88(10), 5513–5522 (2016).
[Crossref] [PubMed]

Baroud, C. N.

E. Fradet, C. McDougall, P. Abbyad, R. Dangla, D. McGloin, and C. N. Baroud, “Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays,” Lab Chip 11(24), 4228–4234 (2011).
[Crossref] [PubMed]

Beneyton, T.

T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. D. Griffiths, and A. Drevelle, “High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics,” Sci. Rep. 6(1), 27223 (2016).
[Crossref] [PubMed]

Cai, H.

Chan, P. P.

L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7(1), 12–48 (2011).
[Crossref] [PubMed]

Chang, H. C.

L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7(1), 12–48 (2011).
[Crossref] [PubMed]

Chen, T.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Chen, T. C.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Chen, Y. T.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Chin, C. D.

C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab Chip 7(1), 41–57 (2007).
[Crossref] [PubMed]

Chin, L. K.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Collins, D. J.

D. J. Collins, Z. Ma, and Y. Ai, “Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields,” Anal. Chem. 88(10), 5513–5522 (2016).
[Crossref] [PubMed]

Couvent, A.

T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. D. Griffiths, and A. Drevelle, “High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics,” Sci. Rep. 6(1), 27223 (2016).
[Crossref] [PubMed]

Crozier, K. B.

Dangla, R.

E. Fradet, C. McDougall, P. Abbyad, R. Dangla, D. McGloin, and C. N. Baroud, “Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays,” Lab Chip 11(24), 4228–4234 (2011).
[Crossref] [PubMed]

Dong, Y.

X. Xu, Y. Dong, G. Wang, W. Jiao, Z. Ying, H. P. Ho, and X. Zhang, “Reconfigurable Sorting of Nanoparticles on a Thermal Tuning Silicon Based Optofluidic Chip,” IEEE Photonics J. 10(1), 7803010 (2018).
[Crossref]

Drevelle, A.

T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. D. Griffiths, and A. Drevelle, “High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics,” Sci. Rep. 6(1), 27223 (2016).
[Crossref] [PubMed]

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Fair, R. B.

V. Srinivasan, V. K. Pamula, and R. B. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids,” Lab Chip 4(4), 310–315 (2004).
[Crossref] [PubMed]

Forties, R. A.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Fradet, E.

E. Fradet, C. McDougall, P. Abbyad, R. Dangla, D. McGloin, and C. N. Baroud, “Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays,” Lab Chip 11(24), 4228–4234 (2011).
[Crossref] [PubMed]

Franke, T. A.

T. A. Franke and A. Wixforth, “Microfluidics for miniaturized laboratories on a chip,” ChemPhysChem 9(15), 2140–2156 (2008).
[Crossref] [PubMed]

Friend, J. R.

L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7(1), 12–48 (2011).
[Crossref] [PubMed]

Fu, T.

H. Li, Y. Wu, X. Wang, C. Zhu, T. Fu, and Y. Ma, “Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction,” RSC Advances 6(1), 778–785 (2016).
[Crossref]

Fulbright, R. M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Gañán-Calvo, A. M.

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

Griffiths, A. D.

T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. D. Griffiths, and A. Drevelle, “High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics,” Sci. Rep. 6(1), 27223 (2016).
[Crossref] [PubMed]

Grujic, K.

Guo, W.

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

Haeberle, S.

S. Haeberle and R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications,” Lab Chip 7(9), 1094–1110 (2007).
[Crossref] [PubMed]

Hao, Y.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Hellesø, O.

Ho, H. P.

X. Xu, Y. Dong, G. Wang, W. Jiao, Z. Ying, H. P. Ho, and X. Zhang, “Reconfigurable Sorting of Nanoparticles on a Thermal Tuning Silicon Based Optofluidic Chip,” IEEE Photonics J. 10(1), 7803010 (2018).
[Crossref]

W. Jiao, G. Wang, Z. Ying, Z. Kang, T. Sun, N. Zou, H. P. Ho, and X. Zhang, “Optofluidic Switching of Nanoparticles Based on a WDM Tree Splitter,” IEEE Photonics J. 8(3), 7803010 (2016).
[Crossref]

Hole, J.

Hsu, L. C.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Huang, C. Y.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Huang, Y.

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

Inman, J. T.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Jiao, W.

X. Xu, Y. Dong, G. Wang, W. Jiao, Z. Ying, H. P. Ho, and X. Zhang, “Reconfigurable Sorting of Nanoparticles on a Thermal Tuning Silicon Based Optofluidic Chip,” IEEE Photonics J. 10(1), 7803010 (2018).
[Crossref]

W. Jiao, G. Wang, Z. Ying, Z. Kang, T. Sun, N. Zou, H. P. Ho, and X. Zhang, “Optofluidic Switching of Nanoparticles Based on a WDM Tree Splitter,” IEEE Photonics J. 8(3), 7803010 (2016).
[Crossref]

Kang, Z.

W. Jiao, G. Wang, Z. Ying, Z. Kang, T. Sun, N. Zou, H. P. Ho, and X. Zhang, “Optofluidic Switching of Nanoparticles Based on a WDM Tree Splitter,” IEEE Photonics J. 8(3), 7803010 (2016).
[Crossref]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Leblond, P.

T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. D. Griffiths, and A. Drevelle, “High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics,” Sci. Rep. 6(1), 27223 (2016).
[Crossref] [PubMed]

Lee, M. C.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Lewis, L. H.

B. D. Plouffe, S. K. Murthy, and L. H. Lewis, “Fundamentals and application of magnetic particles in cell isolation and enrichment: a review,” Rep. Prog. Phys. 78(1), 016601 (2015).
[Crossref] [PubMed]

Li, H.

H. Li, Y. Wu, X. Wang, C. Zhu, T. Fu, and Y. Ma, “Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction,” RSC Advances 6(1), 778–785 (2016).
[Crossref]

Li, W.

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

Liang, L.

W. Wu, X. Zhu, Y. Zuo, L. Liang, S. Zhang, X. Zhang, and Y. Yang, “Precise Sorting of Gold Nanoparticles in a Flowing System,” ACS Photonics 3(12), 2497–2504 (2016).
[Crossref]

Liedberg, B.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Lin, J.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Lin, S.

Linder, V.

C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab Chip 7(1), 41–57 (2007).
[Crossref] [PubMed]

Lipson, M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Liu, A. Q.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Ma, Y.

H. Li, Y. Wu, X. Wang, C. Zhu, T. Fu, and Y. Ma, “Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction,” RSC Advances 6(1), 778–785 (2016).
[Crossref]

Ma, Z.

D. J. Collins, Z. Ma, and Y. Ai, “Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields,” Anal. Chem. 88(10), 5513–5522 (2016).
[Crossref] [PubMed]

Mayot, E.

T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. D. Griffiths, and A. Drevelle, “High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics,” Sci. Rep. 6(1), 27223 (2016).
[Crossref] [PubMed]

McDougall, C.

E. Fradet, C. McDougall, P. Abbyad, R. Dangla, D. McGloin, and C. N. Baroud, “Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays,” Lab Chip 11(24), 4228–4234 (2011).
[Crossref] [PubMed]

McGloin, D.

E. Fradet, C. McDougall, P. Abbyad, R. Dangla, D. McGloin, and C. N. Baroud, “Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays,” Lab Chip 11(24), 4228–4234 (2011).
[Crossref] [PubMed]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Murthy, S. K.

B. D. Plouffe, S. K. Murthy, and L. H. Lewis, “Fundamentals and application of magnetic particles in cell isolation and enrichment: a review,” Rep. Prog. Phys. 78(1), 016601 (2015).
[Crossref] [PubMed]

Najah, M.

T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. D. Griffiths, and A. Drevelle, “High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics,” Sci. Rep. 6(1), 27223 (2016).
[Crossref] [PubMed]

Nakahara, A.

D. H. Yoon, D. Wakui, A. Nakahara, T. Sekiguchi, and S. Shoji, “Selective droplet sampling using a minimum number of horizontal pneumatic actuators in a high aspect ratio and highly flexible PDMS device,” RSC Advances 5(3), 2070–2074 (2015).
[Crossref]

Nguyen, N.-T.

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

Pamula, V. K.

V. Srinivasan, V. K. Pamula, and R. B. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids,” Lab Chip 4(4), 310–315 (2004).
[Crossref] [PubMed]

Plouffe, B. D.

B. D. Plouffe, S. K. Murthy, and L. H. Lewis, “Fundamentals and application of magnetic particles in cell isolation and enrichment: a review,” Rep. Prog. Phys. 78(1), 016601 (2015).
[Crossref] [PubMed]

Poon, A. W.

Postros, P.

T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. D. Griffiths, and A. Drevelle, “High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics,” Sci. Rep. 6(1), 27223 (2016).
[Crossref] [PubMed]

Qiu, C.-W.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Saraf, S. N.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Sekiguchi, T.

D. H. Yoon, D. Wakui, A. Nakahara, T. Sekiguchi, and S. Shoji, “Selective droplet sampling using a minimum number of horizontal pneumatic actuators in a high aspect ratio and highly flexible PDMS device,” RSC Advances 5(3), 2070–2074 (2015).
[Crossref]

Ser, W.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Shen, D. W.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Shi, Y.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Shoji, S.

D. H. Yoon, D. Wakui, A. Nakahara, T. Sekiguchi, and S. Shoji, “Selective droplet sampling using a minimum number of horizontal pneumatic actuators in a high aspect ratio and highly flexible PDMS device,” RSC Advances 5(3), 2070–2074 (2015).
[Crossref]

Sia, S. K.

C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab Chip 7(1), 41–57 (2007).
[Crossref] [PubMed]

Soltani, M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Srinivasan, V.

V. Srinivasan, V. K. Pamula, and R. B. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids,” Lab Chip 4(4), 310–315 (2004).
[Crossref] [PubMed]

Sun, T.

W. Jiao, G. Wang, Z. Ying, Z. Kang, T. Sun, N. Zou, H. P. Ho, and X. Zhang, “Optofluidic Switching of Nanoparticles Based on a WDM Tree Splitter,” IEEE Photonics J. 8(3), 7803010 (2016).
[Crossref]

Tan, S. H.

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

Tsai, D. P.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Tsao, C. W.

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

Volpe, G.

G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013).
[Crossref]

G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013).
[Crossref]

Wakui, D.

D. H. Yoon, D. Wakui, A. Nakahara, T. Sekiguchi, and S. Shoji, “Selective droplet sampling using a minimum number of horizontal pneumatic actuators in a high aspect ratio and highly flexible PDMS device,” RSC Advances 5(3), 2070–2074 (2015).
[Crossref]

Wang, G.

X. Xu, Y. Dong, G. Wang, W. Jiao, Z. Ying, H. P. Ho, and X. Zhang, “Reconfigurable Sorting of Nanoparticles on a Thermal Tuning Silicon Based Optofluidic Chip,” IEEE Photonics J. 10(1), 7803010 (2018).
[Crossref]

W. Jiao, G. Wang, Z. Ying, Z. Kang, T. Sun, N. Zou, H. P. Ho, and X. Zhang, “Optofluidic Switching of Nanoparticles Based on a WDM Tree Splitter,” IEEE Photonics J. 8(3), 7803010 (2016).
[Crossref]

Wang, M. D.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Wang, X.

H. Li, Y. Wu, X. Wang, C. Zhu, T. Fu, and Y. Ma, “Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction,” RSC Advances 6(1), 778–785 (2016).
[Crossref]

Wijaya, I. P.

T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. D. Griffiths, and A. Drevelle, “High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics,” Sci. Rep. 6(1), 27223 (2016).
[Crossref] [PubMed]

Wilkinson, J.

Wixforth, A.

T. A. Franke and A. Wixforth, “Microfluidics for miniaturized laboratories on a chip,” ChemPhysChem 9(15), 2140–2156 (2008).
[Crossref] [PubMed]

Wu, J.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Wu, W.

W. Wu, X. Zhu, Y. Zuo, L. Liang, S. Zhang, X. Zhang, and Y. Yang, “Precise Sorting of Gold Nanoparticles in a Flowing System,” ACS Photonics 3(12), 2497–2504 (2016).
[Crossref]

Wu, Y.

H. Li, Y. Wu, X. Wang, C. Zhu, T. Fu, and Y. Ma, “Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction,” RSC Advances 6(1), 778–785 (2016).
[Crossref]

Xi, H. D.

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

Xiong, S.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Xu, X.

X. Xu, Y. Dong, G. Wang, W. Jiao, Z. Ying, H. P. Ho, and X. Zhang, “Reconfigurable Sorting of Nanoparticles on a Thermal Tuning Silicon Based Optofluidic Chip,” IEEE Photonics J. 10(1), 7803010 (2018).
[Crossref]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Yang, Y.

W. Wu, X. Zhu, Y. Zuo, L. Liang, S. Zhang, X. Zhang, and Y. Yang, “Precise Sorting of Gold Nanoparticles in a Flowing System,” ACS Photonics 3(12), 2497–2504 (2016).
[Crossref]

Yang, Y. T.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Yang, Z.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Yap, P. H.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Yeo, L. Y.

L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7(1), 12–48 (2011).
[Crossref] [PubMed]

Ying, Z.

X. Xu, Y. Dong, G. Wang, W. Jiao, Z. Ying, H. P. Ho, and X. Zhang, “Reconfigurable Sorting of Nanoparticles on a Thermal Tuning Silicon Based Optofluidic Chip,” IEEE Photonics J. 10(1), 7803010 (2018).
[Crossref]

W. Jiao, G. Wang, Z. Ying, Z. Kang, T. Sun, N. Zou, H. P. Ho, and X. Zhang, “Optofluidic Switching of Nanoparticles Based on a WDM Tree Splitter,” IEEE Photonics J. 8(3), 7803010 (2016).
[Crossref]

Yoon, D. H.

D. H. Yoon, D. Wakui, A. Nakahara, T. Sekiguchi, and S. Shoji, “Selective droplet sampling using a minimum number of horizontal pneumatic actuators in a high aspect ratio and highly flexible PDMS device,” RSC Advances 5(3), 2070–2074 (2015).
[Crossref]

Zengerle, R.

S. Haeberle and R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications,” Lab Chip 7(9), 1094–1110 (2007).
[Crossref] [PubMed]

Zhang, J.

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Zhang, S.

W. Wu, X. Zhu, Y. Zuo, L. Liang, S. Zhang, X. Zhang, and Y. Yang, “Precise Sorting of Gold Nanoparticles in a Flowing System,” ACS Photonics 3(12), 2497–2504 (2016).
[Crossref]

Zhang, X.

X. Xu, Y. Dong, G. Wang, W. Jiao, Z. Ying, H. P. Ho, and X. Zhang, “Reconfigurable Sorting of Nanoparticles on a Thermal Tuning Silicon Based Optofluidic Chip,” IEEE Photonics J. 10(1), 7803010 (2018).
[Crossref]

W. Wu, X. Zhu, Y. Zuo, L. Liang, S. Zhang, X. Zhang, and Y. Yang, “Precise Sorting of Gold Nanoparticles in a Flowing System,” ACS Photonics 3(12), 2497–2504 (2016).
[Crossref]

W. Jiao, G. Wang, Z. Ying, Z. Kang, T. Sun, N. Zou, H. P. Ho, and X. Zhang, “Optofluidic Switching of Nanoparticles Based on a WDM Tree Splitter,” IEEE Photonics J. 8(3), 7803010 (2016).
[Crossref]

Zheng, H.

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

Zhou, J.

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

Zhu, C.

H. Li, Y. Wu, X. Wang, C. Zhu, T. Fu, and Y. Ma, “Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction,” RSC Advances 6(1), 778–785 (2016).
[Crossref]

Zhu, X.

W. Wu, X. Zhu, Y. Zuo, L. Liang, S. Zhang, X. Zhang, and Y. Yang, “Precise Sorting of Gold Nanoparticles in a Flowing System,” ACS Photonics 3(12), 2497–2504 (2016).
[Crossref]

Zou, N.

W. Jiao, G. Wang, Z. Ying, Z. Kang, T. Sun, N. Zou, H. P. Ho, and X. Zhang, “Optofluidic Switching of Nanoparticles Based on a WDM Tree Splitter,” IEEE Photonics J. 8(3), 7803010 (2016).
[Crossref]

Zuo, Y.

W. Wu, X. Zhu, Y. Zuo, L. Liang, S. Zhang, X. Zhang, and Y. Yang, “Precise Sorting of Gold Nanoparticles in a Flowing System,” ACS Photonics 3(12), 2497–2504 (2016).
[Crossref]

ACS Photonics (1)

W. Wu, X. Zhu, Y. Zuo, L. Liang, S. Zhang, X. Zhang, and Y. Yang, “Precise Sorting of Gold Nanoparticles in a Flowing System,” ACS Photonics 3(12), 2497–2504 (2016).
[Crossref]

Am. J. Phys. (1)

G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013).
[Crossref]

Anal. Chem. (1)

D. J. Collins, Z. Ma, and Y. Ai, “Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields,” Anal. Chem. 88(10), 5513–5522 (2016).
[Crossref] [PubMed]

ChemPhysChem (1)

T. A. Franke and A. Wixforth, “Microfluidics for miniaturized laboratories on a chip,” ChemPhysChem 9(15), 2140–2156 (2008).
[Crossref] [PubMed]

IEEE Photonics J. (2)

X. Xu, Y. Dong, G. Wang, W. Jiao, Z. Ying, H. P. Ho, and X. Zhang, “Reconfigurable Sorting of Nanoparticles on a Thermal Tuning Silicon Based Optofluidic Chip,” IEEE Photonics J. 10(1), 7803010 (2018).
[Crossref]

W. Jiao, G. Wang, Z. Ying, Z. Kang, T. Sun, N. Zou, H. P. Ho, and X. Zhang, “Optofluidic Switching of Nanoparticles Based on a WDM Tree Splitter,” IEEE Photonics J. 8(3), 7803010 (2016).
[Crossref]

Lab Chip (6)

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

E. Fradet, C. McDougall, P. Abbyad, R. Dangla, D. McGloin, and C. N. Baroud, “Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays,” Lab Chip 11(24), 4228–4234 (2011).
[Crossref] [PubMed]

V. Srinivasan, V. K. Pamula, and R. B. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids,” Lab Chip 4(4), 310–315 (2004).
[Crossref] [PubMed]

C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab Chip 7(1), 41–57 (2007).
[Crossref] [PubMed]

S. Haeberle and R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications,” Lab Chip 7(9), 1094–1110 (2007).
[Crossref] [PubMed]

H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C. W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S. H. Tan, “Active droplet sorting in microfluidics: a review,” Lab Chip 17(5), 751–771 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Nature (1)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Rep. Prog. Phys. (1)

B. D. Plouffe, S. K. Murthy, and L. H. Lewis, “Fundamentals and application of magnetic particles in cell isolation and enrichment: a review,” Rep. Prog. Phys. 78(1), 016601 (2015).
[Crossref] [PubMed]

RSC Advances (2)

D. H. Yoon, D. Wakui, A. Nakahara, T. Sekiguchi, and S. Shoji, “Selective droplet sampling using a minimum number of horizontal pneumatic actuators in a high aspect ratio and highly flexible PDMS device,” RSC Advances 5(3), 2070–2074 (2015).
[Crossref]

H. Li, Y. Wu, X. Wang, C. Zhu, T. Fu, and Y. Ma, “Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction,” RSC Advances 6(1), 778–785 (2016).
[Crossref]

Sci. Adv. (1)

Y. Shi, S. Xiong, L. K. Chin, J. Zhang, W. Ser, J. Wu, T. Chen, Z. Yang, Y. Hao, B. Liedberg, P. H. Yap, D. P. Tsai, C.-W. Qiu, and A. Q. Liu, “Nanometer-precision linear sorting with synchronized optofluidic dual barriers,” Sci. Adv. 4(1), 0773 (2018).
[Crossref] [PubMed]

Sci. Rep. (1)

T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. D. Griffiths, and A. Drevelle, “High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics,” Sci. Rep. 6(1), 27223 (2016).
[Crossref] [PubMed]

Small (1)

L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7(1), 12–48 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of one-step optical waveguide splitter. (b) Profile of light path at Lc = 1.25 μm and Gap = 100 nm. (c) Mode profile and trapping forces distribution on adjacent waveguide corresponding to the dot line in (b). (d) Trapping potential well distribution on adjacent waveguides of PS spheres with 500 nm, 600 nm and 700 nm corresponding to the position of dashed line in (b). (e) Trapping force in z axis of PS spheres with size of 500 nm, 600 nm and 700 nm. (f) Trapping force in z axis of PS spheres with size of 500 nm at different distance dz (10nm, 60nm, 110nm) along z direction. (g) The variation of the size threshold and the power ratio (P2/P1) versus coupling length between adjacent waveguides with the gap of 100 nm. (h) The variation of coupling length (Lc) versus gap with the output power ratio (P2/P1) of 4:1. Inset of (a) is the cross section of the one-step optical waveguide splitter.
Fig. 2
Fig. 2 The variation of coupling length versus the gap between adjacent waveguides with the power ratio of 2:1, 4:1 and 6:1.
Fig. 3
Fig. 3 (a) Schematic of multi-step optical waveguide splitter. (b) Corresponding profile of light path. (c) The enlarged profile represents the dotted box of I. (d) The enlarged profile represents the dotted box of II. (e) The enlarged profile represents the dotted box of III. Inset at the top of (c), (d) and (e) are the cross-sectional profile of the optical field at different positions along x direction.
Fig. 4
Fig. 4 The potential depths along y direction of the different-sized PS spheres at different gaps. (a) The potential depths at four different positions along x direction from −9.8 μm to −9.2 μm with a 500 nm PS sphere at g1 = 100 nm. (b) The potential depths at four different positions along x direction from −9.8 μm to −9.2 μm with a 600-nm-sized PS sphere at g1 = 100 nm. (c) The potential depths at four different positions along x direction from −5.8 μm to −5.2 μm with a 600–nm-sized PS sphere at g2 = 150nm. (d) The potential depths at four different positions along x direction from −5.8 μm to −5.2 μm with a 700–nm-sized PS sphere at g2 = 150nm. (e) The potential depths at four different positions along x direction from −0.4 μm to 0.2 μm with a 700–nm-sized PS sphere at g3 = 200nm. (f) The potential depths at four different positions along x direction from −0.4 μm to 0.2 μm with a 800-nm-sized PS sphere at g3 = 200nm.
Fig. 5
Fig. 5 One dimensional histograms along y direction for PS spheres with different sizes at different gaps. (a) The nanoparticles with diameters of 500 nm at different position along x direction with g1 = 100 nm. (b) The nanoparticles with diameters of 600 nm at different position along x direction with g1 = 100 nm. (c) The nanoparticles with diameters of 600 nm at different position along x direction with g2 = 150 nm. (d) The nanoparticles with diameters of 700 nm at different position along x direction with g1 = 150nm. (e) The nanoparticles with diameters of 700 nm at different position along x direction with g3 = 200 nm. (f) The nanoparticles with diameters of 800 nm at different position along x direction with g3 = 200 nm.

Tables (1)

Tables Icon

Table 1 The size threshold of sorting nanoparticles at different power ratio.

Metrics