Abstract

A variable grating period made of quartz has been applied to fabricate a tunable guided mode resonance (TGMR) filter with transverse-electric (TE) and –magnetic (TM) modes in the terahertz (THz) region. We prepared three TGMR filters with grating periods of 5.0, 3.3, and 1.7 μm/mm over the length of the filter. For the 5.0 μm/mm, the resolution of resonance frequency shift of the TE0,1, TE1.1, and TM0,1 was 3.6, 4.0, and 3.4 GHz/mm, respectively. With a metal slit spacing of 2 mm located in front of the TGMR filter, the movable range of the TGMR was 24 mm, and the resonance frequency could be shifted up to 87, 96, and 82 GHz, where the center frequencies of each resonance were 0.402, 0.579, and 0.460 THz, for the TE0,1, TE1.1, and TM0,1, respectively. Furthermore, because the TGMR and guided mode resonance (GMR) filters are placed independently in the THz beam path, both tunable and fixed resonances can be obtained at the same time in the spectrum.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dielectric film sensing with TE mode of terahertz guided-mode resonance

Hyeon Sang Bark and Tea-In Jeon
Opt. Express 26(26) 34547-34556 (2018)

Two-dimensional grating guided-mode resonance tunable filter

Wen-Kai Kuo and Che-Jung Hsu
Opt. Express 25(24) 29642-29649 (2017)

Tunable guided-mode resonances in coupled gratings

Hahn Young Song, Sangin Kim, and Robert Magnusson
Opt. Express 17(26) 23544-23555 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
    [Crossref] [PubMed]
  2. X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensor,” Laser Photonics Rev. 10(6), 962–969 (2016).
    [Crossref]
  3. Y. Wen, D. Jia, W. Ma, Y. Feng, M. Liu, L. Dong, Y. Zhao, and X. Yu, “Photomechanical meta-molecule array for real-time terahertz imaging,” Microsyst. Nanoeng. 3, 17071 (2017).
    [Crossref]
  4. E. S. Lee and T.-I. Jeon, “THz filter using the transverse-electric (TE1) mode of the parallel-plate waveguide,” J. Opt. Soc. Korea 13(4), 423–427 (2009).
    [Crossref]
  5. E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T.-I. Jeon, “Terahertz band gaps induced by metal grooves inside parallel-plate waveguides,” Opt. Express 20(6), 6116–6123 (2012).
    [Crossref] [PubMed]
  6. E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express 19(16), 14852–14859 (2011).
    [Crossref] [PubMed]
  7. E. S. Lee and T.-I. Jeon, “Tunable THz notch filter with a single groove inside parallel-plate waveguides,” Opt. Express 20(28), 29605–29612 (2012).
    [Crossref] [PubMed]
  8. Y. J. Zhou and B. J. Yang, “Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves,” Appl. Opt. 54(14), 4529–4533 (2015).
    [Crossref] [PubMed]
  9. M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
    [Crossref]
  10. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  11. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and J. Antoinette, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  12. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
    [Crossref]
  13. J. Han and A. Lak, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
    [Crossref]
  14. H.-T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  15. J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16(19), 14390–14396 (2008).
    [Crossref] [PubMed]
  16. K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
    [Crossref]
  17. J.-B. Brückner, J. Le Rouzo, L. Escoubas, G. Berginc, O. Calvo-Perez, N. Vukadinovic, and F. Flory, “Metamaterial filters at optical-infrared frequencies,” Opt. Express 21(14), 16992–17006 (2013).
    [Crossref] [PubMed]
  18. J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, “Reconfigurable and tunable metamaterials: a review of the theory and applications,” Int. J. Antennas Propag. 2014, 429837 (2014).
    [Crossref]
  19. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
    [Crossref]
  20. T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, “Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies,” Appl. Phys. Lett. 83(26), 5362–5364 (2003).
    [Crossref]
  21. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
    [Crossref]
  22. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
    [Crossref]
  23. M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
    [Crossref]
  24. H. S. Bark, G. J. Kim, and T.-I. Jeon, “Transmission characteristics of all-dielectric guided-mode resonance filter in the THz region,” Sci. Rep. 8(1), 13570 (2018).
    [Crossref] [PubMed]
  25. M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
    [Crossref] [PubMed]
  26. M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
    [Crossref]
  27. D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt. 45(28), 7286–7293 (2006).
    [Crossref] [PubMed]
  28. L. Rayleigh, “On the dynamical theory of gratings,” Royal Soc. 79(532), 399–416 (1907).
    [Crossref]
  29. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  30. J. H. Barton, R. C. Rumpf, R. W. Smith, C. Kozikowsk, and P. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Prog. Electromagnetics Res. B 41, 269–283 (2012).
    [Crossref]
  31. T.-I. Jeon and D. Grischkowsky, “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Appl. Phys. Lett. 72(23), 3032–3034 (1998).
    [Crossref]
  32. R. R. Boye and R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39(21), 3649–3653 (2000).
    [Crossref] [PubMed]

2018 (1)

H. S. Bark, G. J. Kim, and T.-I. Jeon, “Transmission characteristics of all-dielectric guided-mode resonance filter in the THz region,” Sci. Rep. 8(1), 13570 (2018).
[Crossref] [PubMed]

2017 (2)

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref] [PubMed]

Y. Wen, D. Jia, W. Ma, Y. Feng, M. Liu, L. Dong, Y. Zhao, and X. Yu, “Photomechanical meta-molecule array for real-time terahertz imaging,” Microsyst. Nanoeng. 3, 17071 (2017).
[Crossref]

2016 (1)

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensor,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

2015 (2)

Y. J. Zhou and B. J. Yang, “Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves,” Appl. Opt. 54(14), 4529–4533 (2015).
[Crossref] [PubMed]

K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

2014 (2)

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, “Reconfigurable and tunable metamaterials: a review of the theory and applications,” Int. J. Antennas Propag. 2014, 429837 (2014).
[Crossref]

2013 (3)

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

J.-B. Brückner, J. Le Rouzo, L. Escoubas, G. Berginc, O. Calvo-Perez, N. Vukadinovic, and F. Flory, “Metamaterial filters at optical-infrared frequencies,” Opt. Express 21(14), 16992–17006 (2013).
[Crossref] [PubMed]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

2012 (4)

E. S. Lee and T.-I. Jeon, “Tunable THz notch filter with a single groove inside parallel-plate waveguides,” Opt. Express 20(28), 29605–29612 (2012).
[Crossref] [PubMed]

E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T.-I. Jeon, “Terahertz band gaps induced by metal grooves inside parallel-plate waveguides,” Opt. Express 20(6), 6116–6123 (2012).
[Crossref] [PubMed]

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

J. H. Barton, R. C. Rumpf, R. W. Smith, C. Kozikowsk, and P. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Prog. Electromagnetics Res. B 41, 269–283 (2012).
[Crossref]

2011 (1)

2010 (1)

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[Crossref]

2009 (3)

E. S. Lee and T.-I. Jeon, “THz filter using the transverse-electric (TE1) mode of the parallel-plate waveguide,” J. Opt. Soc. Korea 13(4), 423–427 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and J. Antoinette, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

J. Han and A. Lak, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
[Crossref]

2008 (4)

H.-T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16(19), 14390–14396 (2008).
[Crossref] [PubMed]

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

2006 (2)

D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt. 45(28), 7286–7293 (2006).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2004 (1)

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

2003 (1)

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, “Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies,” Appl. Phys. Lett. 83(26), 5362–5364 (2003).
[Crossref]

2000 (1)

1998 (1)

T.-I. Jeon and D. Grischkowsky, “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Appl. Phys. Lett. 72(23), 3032–3034 (1998).
[Crossref]

1993 (1)

1907 (1)

L. Rayleigh, “On the dynamical theory of gratings,” Royal Soc. 79(532), 399–416 (1907).
[Crossref]

Abbott, D.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Antoinette, J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and J. Antoinette, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and J. Antoinette, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

H.-T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and J. Antoinette, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Baker, C.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

Bark, H. S.

H. S. Bark, G. J. Kim, and T.-I. Jeon, “Transmission characteristics of all-dielectric guided-mode resonance filter in the THz region,” Sci. Rep. 8(1), 13570 (2018).
[Crossref] [PubMed]

Barton, J. H.

J. H. Barton, R. C. Rumpf, R. W. Smith, C. Kozikowsk, and P. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Prog. Electromagnetics Res. B 41, 269–283 (2012).
[Crossref]

Berginc, G.

Bhaskaran, M.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Bi, K.

K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Bingham, C. M.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Blaikie, R. J.

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, “Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies,” Appl. Phys. Lett. 83(26), 5362–5364 (2003).
[Crossref]

Bonache, J.

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

Bossard, J. A.

J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, “Reconfigurable and tunable metamaterials: a review of the theory and applications,” Int. J. Antennas Propag. 2014, 429837 (2014).
[Crossref]

Boye, R. R.

Bretin, S.

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref] [PubMed]

Brückner, J.-B.

Calvo-Perez, O.

Chang, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Chen, F.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and J. Antoinette, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, Q.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensor,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and J. Antoinette, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Cumming, D. R. S.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensor,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, “Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies,” Appl. Phys. Lett. 83(26), 5362–5364 (2003).
[Crossref]

Cunningham, B. T.

Dobbs, D. W.

Dong, L.

Y. Wen, D. Jia, W. Ma, Y. Feng, M. Liu, L. Dong, Y. Zhao, and X. Yu, “Photomechanical meta-molecule array for real-time terahertz imaging,” Microsyst. Nanoeng. 3, 17071 (2017).
[Crossref]

Drysdale, T. D.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, “Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies,” Appl. Phys. Lett. 83(26), 5362–5364 (2003).
[Crossref]

Ducournau, G.

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref] [PubMed]

Escoubas, L.

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Feng, Y.

Y. Wen, D. Jia, W. Ma, Y. Feng, M. Liu, L. Dong, Y. Zhao, and X. Yu, “Photomechanical meta-molecule array for real-time terahertz imaging,” Microsyst. Nanoeng. 3, 17071 (2017).
[Crossref]

Flory, F.

Gil, M.

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Gregory, I. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Appl. Phys. Lett. 72(23), 3032–3034 (1998).
[Crossref]

Han, J.

J. Han and A. Lak, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
[Crossref]

J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16(19), 14390–14396 (2008).
[Crossref] [PubMed]

Hu, X.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensor,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Jeon, T.-I.

Jia, D.

Y. Wen, D. Jia, W. Ma, Y. Feng, M. Liu, L. Dong, Y. Zhao, and X. Yu, “Photomechanical meta-molecule array for real-time terahertz imaging,” Microsyst. Nanoeng. 3, 17071 (2017).
[Crossref]

Karl, N. J.

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref] [PubMed]

Kee, C.-S.

Khaleque, T.

Kim, D.

Kim, G. J.

H. S. Bark, G. J. Kim, and T.-I. Jeon, “Transmission characteristics of all-dielectric guided-mode resonance filter in the THz region,” Sci. Rep. 8(1), 13570 (2018).
[Crossref] [PubMed]

Kostuk, R. K.

Kozikowsk, C.

J. H. Barton, R. C. Rumpf, R. W. Smith, C. Kozikowsk, and P. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Prog. Electromagnetics Res. B 41, 269–283 (2012).
[Crossref]

Lak, A.

J. Han and A. Lak, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
[Crossref]

Lakhtakia, A.

Le Rouzo, J.

Lee, E. S.

Lee, S.-G.

Lei, M.

K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Li, J.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Linfield, E. H.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

Liu, M.

Y. Wen, D. Jia, W. Ma, Y. Feng, M. Liu, L. Dong, Y. Zhao, and X. Yu, “Photomechanical meta-molecule array for real-time terahertz imaging,” Microsyst. Nanoeng. 3, 17071 (2017).
[Crossref]

Ma, J.

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref] [PubMed]

Ma, W.

Y. Wen, D. Jia, W. Ma, Y. Feng, M. Liu, L. Dong, Y. Zhao, and X. Yu, “Photomechanical meta-molecule array for real-time terahertz imaging,” Microsyst. Nanoeng. 3, 17071 (2017).
[Crossref]

Magnusson, R.

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[Crossref] [PubMed]

Martín, F.

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

Mendis, R.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[Crossref]

Mitchell, A.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Mittleman, D. M.

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref] [PubMed]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[Crossref]

Morgan, K. L.

J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, “Reconfigurable and tunable metamaterials: a review of the theory and applications,” Int. J. Antennas Propag. 2014, 429837 (2014).
[Crossref]

Nag, A.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[Crossref]

O’hara, J. F.

H.-T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and J. Antoinette, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

H.-T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Park, G.-S.

Qiu, C.-W.

Rayleigh, L.

L. Rayleigh, “On the dynamical theory of gratings,” Royal Soc. 79(532), 399–416 (1907).
[Crossref]

Rumpf, R. C.

J. H. Barton, R. C. Rumpf, R. W. Smith, C. Kozikowsk, and P. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Prog. Electromagnetics Res. B 41, 269–283 (2012).
[Crossref]

Shah, C. M.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Smith, R. W.

J. H. Barton, R. C. Rumpf, R. W. Smith, C. Kozikowsk, and P. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Prog. Electromagnetics Res. B 41, 269–283 (2012).
[Crossref]

So, J.-K.

Sriram, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Taylor, A. J.

H.-T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tribe, W. R.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

Turpin, J. P.

J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, “Reconfigurable and tunable metamaterials: a review of the theory and applications,” Int. J. Antennas Propag. 2014, 429837 (2014).
[Crossref]

Uddin, M. J.

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

Ung, B. S.-Y.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Vukadinovic, N.

Wang, H.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensor,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Wang, S. S.

Wen, L.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensor,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Wen, Y.

Y. Wen, D. Jia, W. Ma, Y. Feng, M. Liu, L. Dong, Y. Zhao, and X. Yu, “Photomechanical meta-molecule array for real-time terahertz imaging,” Microsyst. Nanoeng. 3, 17071 (2017).
[Crossref]

Werner, D. H.

J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, “Reconfigurable and tunable metamaterials: a review of the theory and applications,” Int. J. Antennas Propag. 2014, 429837 (2014).
[Crossref]

Werner, P. L.

J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, “Reconfigurable and tunable metamaterials: a review of the theory and applications,” Int. J. Antennas Propag. 2014, 429837 (2014).
[Crossref]

Withayachumnankul, W.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Xu, G.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensor,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Yang, B. J.

Yu, X.

Y. Wen, D. Jia, W. Ma, Y. Feng, M. Liu, L. Dong, Y. Zhao, and X. Yu, “Photomechanical meta-molecule array for real-time terahertz imaging,” Microsyst. Nanoeng. 3, 17071 (2017).
[Crossref]

Zellner, P.

J. H. Barton, R. C. Rumpf, R. W. Smith, C. Kozikowsk, and P. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Prog. Electromagnetics Res. B 41, 269–283 (2012).
[Crossref]

Zhang, X.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Zhang, Y.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensor,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Zhao, Y.

Y. Wen, D. Jia, W. Ma, Y. Feng, M. Liu, L. Dong, Y. Zhao, and X. Yu, “Photomechanical meta-molecule array for real-time terahertz imaging,” Microsyst. Nanoeng. 3, 17071 (2017).
[Crossref]

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensor,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Zhou, J.

K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Zhou, Y. J.

Zhu, W.

K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (6)

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, “Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies,” Appl. Phys. Lett. 83(26), 5362–5364 (2003).
[Crossref]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[Crossref]

K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

T.-I. Jeon and D. Grischkowsky, “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Appl. Phys. Lett. 72(23), 3032–3034 (1998).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

Int. J. Antennas Propag. (1)

J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, “Reconfigurable and tunable metamaterials: a review of the theory and applications,” Int. J. Antennas Propag. 2014, 429837 (2014).
[Crossref]

J. Mod. Opt. (1)

J. Han and A. Lak, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
[Crossref]

J. Opt. Soc. Korea (1)

J. Phys. D Appl. Phys. (1)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Laser Photonics Rev. (1)

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensor,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Metamaterials (Amst.) (1)

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

Microsyst. Nanoeng. (1)

Y. Wen, D. Jia, W. Ma, Y. Feng, M. Liu, L. Dong, Y. Zhao, and X. Yu, “Photomechanical meta-molecule array for real-time terahertz imaging,” Microsyst. Nanoeng. 3, 17071 (2017).
[Crossref]

Nat. Commun. (1)

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and J. Antoinette, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Express (6)

Prog. Electromagnetics Res. B (1)

J. H. Barton, R. C. Rumpf, R. W. Smith, C. Kozikowsk, and P. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Prog. Electromagnetics Res. B 41, 269–283 (2012).
[Crossref]

Royal Soc. (1)

L. Rayleigh, “On the dynamical theory of gratings,” Royal Soc. 79(532), 399–416 (1907).
[Crossref]

Sci. Rep. (1)

H. S. Bark, G. J. Kim, and T.-I. Jeon, “Transmission characteristics of all-dielectric guided-mode resonance filter in the THz region,” Sci. Rep. 8(1), 13570 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The region where resonance of the first mode exists according to frequency and grating period (ᴧ). The vertical arrows indicate the grating period ranges of sample-4, −5, and −6 as shown in Table 1.
Fig. 2
Fig. 2 (a) Schematic diagram of TGMR filter (sample-4). Each grating pattern consists of a groove height (D1) of 60 µm, substrate thickness (D2) of 168 µm, and a filling factor (F) of 32% as shown in the insert figure. The number of grooves is 76. The grating period gradually increases from top to bottom, from 385 µm to 535 µm. The grating period in the middle is 460 µm. The last and first grooves are tilted by ±11o from the center groove, respectively. (b) Cross section photo of the enlarged GMR filter with a grating period of 460 µm. The “R” indicates the inner corner radius of the groove.
Fig. 3
Fig. 3 Transmittance measurement for 400, 460, and 520 µm grating periods. (a) TE mode. (b) TM mode. Simulation image of resonance frequency shift according to grating period. The dots and dashed lines indicate the measured resonance frequencies and the boundary of the region where the first mode resonance exists, as shown in Fig. 1. (c) TE mode. (d) TM mode.
Fig. 4
Fig. 4 Resonance frequency difference between rectangular inner corner radius (R = 0) and rounded inner corner radius.
Fig. 5
Fig. 5 The amplitude of spectrum near the resonance frequency with different slit spacing. a) TE mode b) TM mode.
Fig. 6
Fig. 6 Schematic diagram of the TGMR filter setup for (a) TE mode and (b) TM mode measurement. Transmittance measurement using the TGMR filter (sample-4) for (c) TE mode and (d) TM mode. Measured resonance frequency shift according to the TGMR filter movement (filter position to center of slit) for (e) TE0,1 mode, (f) TE1,1 mode, and (g) TM0,1 mode. The frequency and grating period scales on the y axis indicate the end points of each data.
Fig. 7
Fig. 7 Schematic diagram of TGMR and GMR filter setup for (a) TE mode and (b) TM measurement. Transmittance measurement using TGMR and GMR filters for (c) TE mode and (d) TM mode. Measured resonance frequency shift with movement of the TGMR filter (filter position) for (e) TE mode and (f) TM mode. The frequency and period scales on the y axis indicate the end points of each data.

Tables (1)

Tables Icon

Table 1 Specifications of GMR filters.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε inc | ε inc sin θ inc m c fΛ |< ε avg ,

Metrics