Abstract

We report two-photon interferences on a silica-on-silicon chip of Mach-Zehnder interferometer using telecommunication-band correlated photon pairs. The photon pairs were generated by spontaneous four-waving mixing process in a dispersion-shifted fiber. The integrated chip, which was fabricated by standard silica-on-silicon planar lightwave circuit technology, contained a Mach-Zehnder interferometer with a thermo-optic phase shifter. The insertion loss of the interferometer was less than 1 dB. We demonstrated two-photon interferences with both degenerate- and non-degenerate-frequency photon pairs on the Mach-Zehnder interferometer chip. A high fringe visibility was achieved in the interference with nondegenerate-frequency photons. Properties of quantum interference were demonstrated in the interference with degenerate-frequency photon pairs, which is an important way to manipulate the quantum state. These results show great potential of silica-on-silicon photonic chips in applications for the fiber-chip scheme in quantum networks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Telecom-band degenerate-frequency photon pair generation in silicon microring cavities

Yuan Guo, Wei Zhang, Shuai Dong, Yidong Huang, and Jiangde Peng
Opt. Lett. 39(8) 2526-2529 (2014)

On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics

Imad I. Faruque, Gary F. Sinclair, Damien Bonneau, John G. Rarity, and Mark G. Thompson
Opt. Express 26(16) 20379-20395 (2018)

Fiber-based frequency-degenerate polarization entangled photon pair sources for information encoding

Feng Zhu, Wei Zhang, and Yidong Huang
Opt. Express 24(22) 25619-25628 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
    [Crossref]
  2. X.-L. Zhao, J.-L. Li, P.-H. Niu, H.-Y. Ma, and D. Ruan, “Two-step quantum secure direct communication scheme with frequency coding,” Chin. Phys. B 26(3), 30302 (2017).
    [Crossref]
  3. W. Ruo-Peng and Z. Hui-Rong, “Quantum analysis on the four-photon interference,” Chin. Phys. B 17(1), 194–198 (2008).
    [Crossref]
  4. G. Y. Xiang and G. C. Guo, “Quantum metrology,” Chin. Phys. B 22(11), 110601 (2013).
    [Crossref]
  5. C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
    [Crossref] [PubMed]
  6. M. A. Nielsen, I. Chuang, and L. K. Grover, “Quantum Computation and Quantum Information,” Cambridge University Press p558–559(2000).
  7. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
    [Crossref] [PubMed]
  8. D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer,” Proc. R. Soc. Lond. A 400(1818), 97–117 (1985).
    [Crossref]
  9. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Distribution of polarization-entangled photonpairs produced via spontaneous parametric down-conversion within a local-area fiber network: theoretical model and experiment,” Opt. Express 16(19), 14512–14523 (2008).
    [Crossref] [PubMed]
  10. S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
    [Crossref]
  11. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15(20), 12769–12776 (2007).
    [Crossref] [PubMed]
  12. Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
    [Crossref] [PubMed]
  13. J. Chen, K. F. Lee, C. Liang, and P. Kumar, “Fiber-based telecom-band degenerate-frequency source of entangled photon pairs,” Opt. Lett. 31(18), 2798–2800 (2006).
    [Crossref] [PubMed]
  14. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photonics Technol. Lett. 14(7), 983–985 (2002).
    [Crossref]
  15. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
    [Crossref] [PubMed]
  16. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
    [Crossref] [PubMed]
  17. W. T. Fang, Y. H. Li, Z. Y. Zhou, L. X. Xu, G. C. Guo, and B. S. Shi, “On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement,” Opt. Express 26(10), 12912–12921 (2018).
    [Crossref] [PubMed]
  18. Y. Li, Z. Zhou, Z. Xu, L. Xu, B. Shi, and G. Guo, “Multiplexed entangled photon sources for all fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
    [Crossref]
  19. Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
    [Crossref]
  20. J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107(16), 163602 (2011).
    [Crossref] [PubMed]
  21. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
    [Crossref] [PubMed]
  22. J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
    [Crossref] [PubMed]
  23. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
    [Crossref]
  24. D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
    [Crossref]
  25. L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
    [Crossref] [PubMed]
  26. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
    [Crossref]
  27. P. Yuan, Y. D. Wu, Y. Wang, J. An, and X. Hu, “Monolithic integration of a 16-channel VMUX on SOI platform,” J. Semicond. 36(8), 84005 (2015).
    [Crossref]
  28. L. Zhang, L. D. Lu, Z. Li, B. Pan, and L. Zhao, “C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate,” J. Semicond. 37(12), 124005 (2016).
    [Crossref]
  29. X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
    [Crossref] [PubMed]
  30. F. Zhu, W. Zhang, and Y. Huang, “Fiber-based frequency-degenerate polarization entangled photon pair sources for information encoding,” Opt. Express 24(22), 25619–25628 (2016).
    [Crossref] [PubMed]
  31. F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, “Experimental long-distance quantum secure direct communication,” Sci. Bull. (Beijing) 62(22), 1519–1524 (2017).
    [Crossref]

2018 (1)

2017 (3)

X.-L. Zhao, J.-L. Li, P.-H. Niu, H.-Y. Ma, and D. Ruan, “Two-step quantum secure direct communication scheme with frequency coding,” Chin. Phys. B 26(3), 30302 (2017).
[Crossref]

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, “Experimental long-distance quantum secure direct communication,” Sci. Bull. (Beijing) 62(22), 1519–1524 (2017).
[Crossref]

2016 (4)

F. Zhu, W. Zhang, and Y. Huang, “Fiber-based frequency-degenerate polarization entangled photon pair sources for information encoding,” Opt. Express 24(22), 25619–25628 (2016).
[Crossref] [PubMed]

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

L. Zhang, L. D. Lu, Z. Li, B. Pan, and L. Zhao, “C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate,” J. Semicond. 37(12), 124005 (2016).
[Crossref]

Y. Li, Z. Zhou, Z. Xu, L. Xu, B. Shi, and G. Guo, “Multiplexed entangled photon sources for all fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

2015 (3)

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref] [PubMed]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

P. Yuan, Y. D. Wu, Y. Wang, J. An, and X. Hu, “Monolithic integration of a 16-channel VMUX on SOI platform,” J. Semicond. 36(8), 84005 (2015).
[Crossref]

2014 (2)

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
[Crossref] [PubMed]

2013 (1)

G. Y. Xiang and G. C. Guo, “Quantum metrology,” Chin. Phys. B 22(11), 110601 (2013).
[Crossref]

2012 (1)

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

2011 (1)

J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107(16), 163602 (2011).
[Crossref] [PubMed]

2010 (1)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

2009 (1)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

2008 (4)

2007 (2)

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15(20), 12769–12776 (2007).
[Crossref] [PubMed]

2006 (1)

2004 (1)

2002 (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photonics Technol. Lett. 14(7), 983–985 (2002).
[Crossref]

2001 (1)

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

2000 (1)

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
[Crossref] [PubMed]

1985 (1)

D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer,” Proc. R. Soc. Lond. A 400(1818), 97–117 (1985).
[Crossref]

An, J.

P. Yuan, Y. D. Wu, Y. Wang, J. An, and X. Hu, “Monolithic integration of a 16-channel VMUX on SOI platform,” J. Semicond. 36(8), 84005 (2015).
[Crossref]

Baek, B.

Baldi, P.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Barbieri, C.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Bennett, C. H.

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
[Crossref] [PubMed]

Blauensteiner, B.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Bonneau, D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107(16), 163602 (2011).
[Crossref] [PubMed]

Carolan, J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Chen, J.

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

Dai, D. X.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

De Micheli, M.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

De Riedmatten, H.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Deutsch, D.

D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer,” Proc. R. Soc. Lond. A 400(1818), 97–117 (1985).
[Crossref]

Ding, D.

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Ding, D. S.

DiVincenzo, D. P.

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
[Crossref] [PubMed]

Dorenbos, S. N.

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Dyer, S. D.

Engin, E.

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Ezaki, M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Fang, W.

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Fang, W. T.

Feng, L.

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Feng, L. T.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photonics Technol. Lett. 14(7), 983–985 (2002).
[Crossref]

Fujii, G.

Fürst, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Gisin, N.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Guo, G.

Y. Li, Z. Zhou, Z. Xu, L. Xu, B. Shi, and G. Guo, “Multiplexed entangled photon sources for all fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Guo, G. C.

W. T. Fang, Y. H. Li, Z. Y. Zhou, L. X. Xu, G. C. Guo, and B. S. Shi, “On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement,” Opt. Express 26(10), 12912–12921 (2018).
[Crossref] [PubMed]

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

G. Y. Xiang and G. C. Guo, “Quantum metrology,” Chin. Phys. B 22(11), 110601 (2013).
[Crossref]

Guo, G. P.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Hadfield, R. H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Harrold, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Hashimoto, T.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Hu, X.

P. Yuan, Y. D. Wu, Y. Wang, J. An, and X. Hu, “Monolithic integration of a 16-channel VMUX on SOI platform,” J. Semicond. 36(8), 84005 (2015).
[Crossref]

Huang, Y.

F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, “Experimental long-distance quantum secure direct communication,” Sci. Bull. (Beijing) 62(22), 1519–1524 (2017).
[Crossref]

F. Zhu, W. Zhang, and Y. Huang, “Fiber-based frequency-degenerate polarization entangled photon pair sources for information encoding,” Opt. Express 24(22), 25619–25628 (2016).
[Crossref] [PubMed]

Hui-Rong, Z.

W. Ruo-Peng and Z. Hui-Rong, “Quantum analysis on the four-photon interference,” Chin. Phys. B 17(1), 194–198 (2008).
[Crossref]

Iizuka, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Inoue, S.

Itoh, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Jennewein, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Jiang, M.

Kikuchi, K.

Kumar, P.

Kurimura, S.

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Laing, A.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Lee, K. F.

Li, H.

Li, J.-L.

X.-L. Zhao, J.-L. Li, P.-H. Niu, H.-Y. Ma, and D. Ruan, “Two-step quantum secure direct communication scheme with frequency coding,” Chin. Phys. B 26(3), 30302 (2017).
[Crossref]

Li, M.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Li, X.

Li, Y.

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y. Li, Z. Zhou, Z. Xu, L. Xu, B. Shi, and G. Guo, “Multiplexed entangled photon sources for all fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref] [PubMed]

Li, Y. H.

Li, Z.

L. Zhang, L. D. Lu, Z. Li, B. Pan, and L. Zhao, “C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate,” J. Semicond. 37(12), 124005 (2016).
[Crossref]

Liang, C.

Lim, H. C.

Lindenthal, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Liu, S.

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Liu, X.

Lu, L. D.

L. Zhang, L. D. Lu, Z. Li, B. Pan, and L. Zhao, “C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate,” J. Semicond. 37(12), 124005 (2016).
[Crossref]

Ma, H.-Y.

X.-L. Zhao, J.-L. Li, P.-H. Niu, H.-Y. Ma, and D. Ruan, “Two-step quantum secure direct communication scheme with frequency coding,” Chin. Phys. B 26(3), 30302 (2017).
[Crossref]

Marshall, G. D.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Martín-López, E.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Matsuda, N.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Matthews, J. C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Matthews, J. C. F.

J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107(16), 163602 (2011).
[Crossref] [PubMed]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

Meyenburg, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Motoya, M.

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Nam, S. W.

Namekata, N.

Natarajan, C. M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Niu, P.-H.

X.-L. Zhao, J.-L. Li, P.-H. Niu, H.-Y. Ma, and D. Ruan, “Two-step quantum secure direct communication scheme with frequency coding,” Chin. Phys. B 26(3), 30302 (2017).
[Crossref]

O’Brien, J. L.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107(16), 163602 (2011).
[Crossref] [PubMed]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

Oguma, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Ohira, K.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Ömer, B.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Ostrowsky, D. B.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Pan, B.

L. Zhang, L. D. Lu, Z. Li, B. Pan, and L. Zhao, “C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate,” J. Semicond. 37(12), 124005 (2016).
[Crossref]

Peng, W.

Perdigues, J.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Politi, A.

J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107(16), 163602 (2011).
[Crossref] [PubMed]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

Rarity, J.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Rarity, J. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

Ren, X.

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Ren, X. F.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Ruan, D.

X.-L. Zhao, J.-L. Li, P.-H. Niu, H.-Y. Ma, and D. Ruan, “Two-step quantum secure direct communication scheme with frequency coding,” Chin. Phys. B 26(3), 30302 (2017).
[Crossref]

Ruo-Peng, W.

W. Ruo-Peng and Z. Hui-Rong, “Quantum analysis on the four-photon interference,” Chin. Phys. B 17(1), 194–198 (2008).
[Crossref]

Russell, N. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Scheidl, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Schmitt-Manderbach, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Shadbolt, P. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Sharping, J.

Sharping, J. E.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photonics Technol. Lett. 14(7), 983–985 (2002).
[Crossref]

Sheng, Y.

F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, “Experimental long-distance quantum secure direct communication,” Sci. Bull. (Beijing) 62(22), 1519–1524 (2017).
[Crossref]

Shi, B.

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y. Li, Z. Zhou, Z. Xu, L. Xu, B. Shi, and G. Guo, “Multiplexed entangled photon sources for all fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Shi, B. S.

Silverstone, J. W.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Sodnik, Z.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Sparrow, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Stefanov, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

Stevens, M. J.

Suzuki, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Tanner, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Tanzilli, S.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Thompson, M. G.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Tiefenbacher, F.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Tittel, H.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Trojek, P.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Tsuchida, H.

Ursin, R.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Voss, P.

Voss, P. L.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photonics Technol. Lett. 14(7), 983–985 (2002).
[Crossref]

Wang, K.

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Wang, Y.

P. Yuan, Y. D. Wu, Y. Wang, J. An, and X. Hu, “Monolithic integration of a 16-channel VMUX on SOI platform,” J. Semicond. 36(8), 84005 (2015).
[Crossref]

Wang, Z.

Weier, H.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Weinfurter, H.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Wu, Y. D.

P. Yuan, Y. D. Wu, Y. Wang, J. An, and X. Hu, “Monolithic integration of a 16-channel VMUX on SOI platform,” J. Semicond. 36(8), 84005 (2015).
[Crossref]

Xiang, G. Y.

G. Y. Xiang and G. C. Guo, “Quantum metrology,” Chin. Phys. B 22(11), 110601 (2013).
[Crossref]

Xie, X.

Xiong, X.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Xu, L.

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y. Li, Z. Zhou, Z. Xu, L. Xu, B. Shi, and G. Guo, “Multiplexed entangled photon sources for all fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Xu, L. X.

Xu, Z.

Y. Li, Z. Zhou, Z. Xu, L. Xu, B. Shi, and G. Guo, “Multiplexed entangled photon sources for all fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Yang, X.

Yoshida, H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Yoshizawa, A.

You, L.

Yu, L.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

Yuan, P.

P. Yuan, Y. D. Wu, Y. Wang, J. An, and X. Hu, “Monolithic integration of a 16-channel VMUX on SOI platform,” J. Semicond. 36(8), 84005 (2015).
[Crossref]

Zbinden, H.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Zeilinger, A.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Zhang, L.

L. Zhang, L. D. Lu, Z. Li, B. Pan, and L. Zhao, “C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate,” J. Semicond. 37(12), 124005 (2016).
[Crossref]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
[Crossref] [PubMed]

Zhang, M.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Zhang, W.

Zhao, L.

L. Zhang, L. D. Lu, Z. Li, B. Pan, and L. Zhao, “C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate,” J. Semicond. 37(12), 124005 (2016).
[Crossref]

Zhao, X.-L.

X.-L. Zhao, J.-L. Li, P.-H. Niu, H.-Y. Ma, and D. Ruan, “Two-step quantum secure direct communication scheme with frequency coding,” Chin. Phys. B 26(3), 30302 (2017).
[Crossref]

Zhou, Z.

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y. Li, Z. Zhou, Z. Xu, L. Xu, B. Shi, and G. Guo, “Multiplexed entangled photon sources for all fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Zhou, Z. Y.

Zhu, F.

F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, “Experimental long-distance quantum secure direct communication,” Sci. Bull. (Beijing) 62(22), 1519–1524 (2017).
[Crossref]

F. Zhu, W. Zhang, and Y. Huang, “Fiber-based frequency-degenerate polarization entangled photon pair sources for information encoding,” Opt. Express 24(22), 25619–25628 (2016).
[Crossref] [PubMed]

Zwiller, V.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Chin. Phys. B (3)

X.-L. Zhao, J.-L. Li, P.-H. Niu, H.-Y. Ma, and D. Ruan, “Two-step quantum secure direct communication scheme with frequency coding,” Chin. Phys. B 26(3), 30302 (2017).
[Crossref]

W. Ruo-Peng and Z. Hui-Rong, “Quantum analysis on the four-photon interference,” Chin. Phys. B 17(1), 194–198 (2008).
[Crossref]

G. Y. Xiang and G. C. Guo, “Quantum metrology,” Chin. Phys. B 22(11), 110601 (2013).
[Crossref]

Electron. Lett. (1)

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photonics Technol. Lett. 14(7), 983–985 (2002).
[Crossref]

J. Semicond. (2)

P. Yuan, Y. D. Wu, Y. Wang, J. An, and X. Hu, “Monolithic integration of a 16-channel VMUX on SOI platform,” J. Semicond. 36(8), 84005 (2015).
[Crossref]

L. Zhang, L. D. Lu, Z. Li, B. Pan, and L. Zhao, “C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate,” J. Semicond. 37(12), 124005 (2016).
[Crossref]

Nat. Commun. (1)

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Nat. Photonics (2)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Nat. Phys. (1)

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Nature (2)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
[Crossref] [PubMed]

New J. Phys. (1)

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012).
[Crossref]

Opt. Express (8)

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref] [PubMed]

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Distribution of polarization-entangled photonpairs produced via spontaneous parametric down-conversion within a local-area fiber network: theoretical model and experiment,” Opt. Express 16(19), 14512–14523 (2008).
[Crossref] [PubMed]

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
[Crossref] [PubMed]

F. Zhu, W. Zhang, and Y. Huang, “Fiber-based frequency-degenerate polarization entangled photon pair sources for information encoding,” Opt. Express 24(22), 25619–25628 (2016).
[Crossref] [PubMed]

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15(20), 12769–12776 (2007).
[Crossref] [PubMed]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
[Crossref] [PubMed]

W. T. Fang, Y. H. Li, Z. Y. Zhou, L. X. Xu, G. C. Guo, and B. S. Shi, “On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement,” Opt. Express 26(10), 12912–12921 (2018).
[Crossref] [PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (Coll. Park) (1)

Y. Li, Z. Zhou, Z. Xu, L. Xu, B. Shi, and G. Guo, “Multiplexed entangled photon sources for all fiber quantum networks,” Phys. Rev. A (Coll. Park) 94(4), 043810 (2016).
[Crossref]

Phys. Rev. Appl. (1)

Y. Li, Z. Zhou, L. Feng, W. Fang, S. Liu, S. Liu, K. Wang, X. Ren, D. Ding, L. Xu, and B. Shi, “On-Chip Multiplexed Multiple Entanglement Sources In a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Phys. Rev. Lett. (1)

J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107(16), 163602 (2011).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A (1)

D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer,” Proc. R. Soc. Lond. A 400(1818), 97–117 (1985).
[Crossref]

Sci. Bull. (Beijing) (1)

F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, “Experimental long-distance quantum secure direct communication,” Sci. Bull. (Beijing) 62(22), 1519–1524 (2017).
[Crossref]

Science (2)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Other (1)

M. A. Nielsen, I. Chuang, and L. K. Grover, “Quantum Computation and Quantum Information,” Cambridge University Press p558–559(2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SOS integrated photonic chip. (a) Schematic of the integrated chip with four MZI devices, where a MZI device consists of two directional couplers and a voltage controlled thermo-optic phase shifter. (b) The cross-section of waveguide at the part of thermo-optic phase shifter. (c) An optical image showing the central coupling region of the DC where the gap of the waveguides is 2.8 μm and the simulation of the optical field propagation at 1550 nm in the DC by BPM.
Fig. 2
Fig. 2 Schematic of the experimental setup with nondegenerate-frequency photon pairs. EDFA: erbium doped fiber amplifier, DWDM: dense wavelength division multiplexing, DSF: dispersion shifted fiber, DL: delay line; FPC: fiber polarization controller, SNSPD: superconducting nanowire single-photon detector, TCSPC: time-correlated single photon counting.
Fig. 3
Fig. 3 CARs under different pump power. The inset is a typical histogram of coincidence counting under a pump power of −1 dBm.
Fig. 4
Fig. 4 The measurement results of classical and single photon interference under different phase difference between the two arms of the MZI device. (a) Classical interference fringe measured by a continuous wave laser light, where the red line is the fitting curve of the output power at port c1. The x-axis represents the varied phase difference by the square of the applied voltage on the thermo-optic phase shifter, and the y-axis represents the output power of the port. (b) Measured single-photon count rate when only the signal photons were injected into the input port a1. The red line is the fitting curve for the single photon counting results at the output port c1. The y-axis represents the measured single photon count rate (kHz/s).
Fig. 5
Fig. 5 Measurements of signal-idler photon bunching and splitting, showing non-degenerate photons interference. (a) Single photon count rate as function of relative phase when measuring signal photon and idler photon in one output c1. (b) Non-degenerate photons bunching interference, when measuring signal photon and idler photon in one output c1. (c) Single photons counts rate when measuring signal photons in output c1 and idler photons in output c2. (d) Non-degenerate photons splitting interference, when measuring signal photons in output c1 and idler photons in c2. An asymmetric similar cosine fringe occurs due to nondegenerate frequency of two photons. Error bars are given by Poissonian statistics based on raw coincidences.
Fig. 6
Fig. 6 Schematic of the interference experiment with degenerate-frequency photons.
Fig. 7
Fig. 7 (a) Measurement result of Hong-Ou-Mandel interference with degenerate-frequency photons. (b) Measurement result of two-photon interference with degenerate photons using the MZI device.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

| ψ a 1 = | 1 s | 0 i
| ψ a 2 = | 0 s | 1 i
| ψ c 1 = 1 2 ( 1 + e i φ ) | ψ a 2 i 2 ( 1 e i φ ) | ψ a 1
| ψ c 2 = 1 2 ( 1 + e i φ ) | ψ a 1 i 2 ( 1 e i φ ) | ψ a 2
| ψ b u n c h = 1 2 ( | 1 s 1 i A | 0 s 0 i B | 0 s 0 i A | 1 s 1 i B )
| ψ s p l i t = 1 2 ( | 1 s 0 i A | 0 s 1 i B + | 0 s 1 i A | 1 s 0 i B )
P B s × A i = [ 1 2 ( 1 + e i φ ) ] 4 ( 1 + cos φ ) 2
P A s × B i = [ 1 2 ( 1 e i φ ) ] 4 ( 1 cos φ ) 2
P B s × B i = [ 1 4 ( 1 + e i φ ) 2 ( 1 e i φ ) 2 ] ( 1 cos 2 φ )

Metrics