Abstract

A series of single phase white light emitting CaSrAl2SiO7:Dy3+ phosphors were prepared by traditional high temperature solid state reaction method. Structural characterization was done by X-ray diffraction, field emission scanning electron microscopy and energy dispersive spectroscopy analyses. Optical characterization was performed from photoluminescence and thermoluminescence studies. When excited at 350 nm, CaSrAl2SiO7:Dy3+ phosphors showed two intense emission bands in the blue region (480 nm and 493 nm) corresponding to 4F9/26H15/2 transition and one in yellow region (576 nm) corresponding to 4F9/26H13/2 transition. The Commission Internationale de I’Eclairage diagram was drawn for entire series. It confirmed that by manipulating Dy3+ content the luminescence color of CaSrAl2SiO7:Dy3+ phosphors were tuned from blue to white region. Computation of correlated color temperature suggested that present phosphor was cool in appearance hence CaSrAl2SiO7:Dy3+ phosphor can serve as a white light emitting phosphor and may be useful in outdoor illumination. A detailed study on thermoluminescence of ultraviolet exposed samples was done and possible mechanism of thermoluminescence was discussed. TL emission spectrum was also measured.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable white-light emission in single-phase Ca9Gd(VO4)7:Tm3+, Eu3+

Ling Li, Hyeon Mi Noh, Byung Kee Moon, Jung Hyun Jeong, Byung Chun Choi, and Xiaoguang Liu
Opt. Mater. Express 4(1) 16-28 (2014)

Yellow-emitting γ-Ca2SiO4:Ce3+, Li+ phosphor for solid-state lighting: luminescent properties, electronic structure, and white light-emitting diode application

Ho Seong Jang, Hyun You Kim, Yang-Soo Kim, Hyuck Mo Lee, and Duk Young Jeon
Opt. Express 20(3) 2761-2771 (2012)

Multicolor bright Ln3+ (Ln = Eu, Dy, Sm) activated tungstate phosphor for multifunctional applications

Qian Wang, Zhipeng Ci, Ge Zhu, Shuangyu Xin, Wei Zeng, Meidan Que, and Yuhua Wang
Opt. Mater. Express 4(1) 142-154 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, and D. Haranath, “Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications,” Dalton Trans. 44(39), 17166–17174 (2015).
    [Crossref] [PubMed]
  2. M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
    [Crossref] [PubMed]
  3. G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. J. Dhoble, “A study on the luminescence properties of gamma-ray- irradiated white light emitting Ca2Al2SiO7:Dy3+ phosphors fabricated using a combustion-assisted method,” RSC Advances 6(55), 49317–49327 (2016).
    [Crossref]
  4. B. Liu, L. Kong, and C. Shi, “White-light long-lasting phosphor Sr2MgSi2O7:Dy3+,” J. Lumin. 122(1), 121–124 (2007).
    [Crossref]
  5. L. Lin, Z. Zhao, W. Zhang, Z. Zheng, and M. Yin, “Photo-luminescence properties and thermo-luminescence curve analysis of a new white long-lasting phosphor: Ca2MgSi2O7:Dy3+,” J. Rare Earths 27(5), 749–752 (2009).
    [Crossref]
  6. S. Miao, Z. Xia, M. S. Molokeev, J. Zhang, and Q. Liu, “Crystal structure refinement and luminescence properties of blue-green-emitting CaSrAl2SiO7:Ce3+,Li+,Eu2+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(32), 8322–8328 (2015).
    [Crossref]
  7. H. Y. Jiao and Y. H. Wang, “A potential red-emitting phosphor CaSrAl2SiO7:Eu3+ for near-ultraviolet light-emitting diodes,” Physica B 407(14), 2729–2733 (2012).
    [Crossref]
  8. Q. Zhang, J. Wang, M. Zhang, and Q. Su, “Tunable bluish green to yellowish green Ca2(1−x)Sr2xAl2SiO7:Eu2+ phosphors for potential LED application,” Appl. Phys. B 92(2), 195–198 (2008).
    [Crossref]
  9. S. Sharma, N. Brahme, D. P. Bisen, P. Dewangan, S. Tigga, G. Tiwari, and A. Khare, “Study on photoluminescence and thermoluminescence properties of UV-irradiated CaSrAl2SiO7:Ce3+ phosphors,” J. Mater. Sci. Mater. Electron. 29(2), 1412–1419 (2018).
    [Crossref]
  10. Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
    [Crossref] [PubMed]
  11. S. N. Anitha and I. Jayakumari, “Synthesis and Analysis of Nanocrystalline Fe2Mn2Ni0.5Zn1.5O9 at Different Treating Temperatures,” J. Nanosci. Technol. 1(1), 26–31 (2015).
  12. L. M. Chepyga, E. Hertle, A. Ali, L. Zigan, A. Osvet, C. J. Brabec, and M. Batentschuk, “Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor,” J. Lumin. 197, 23–30 (2018).
    [Crossref]
  13. G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. Tigga, “Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors,” Opt. Mater. 58, 234–242 (2016).
    [Crossref]
  14. N. N. Yamashita, “Luminescence centers of Ca(S: Se) phosphors activated with impurity ions having s2 configuration. I. Ca(S: Se): Sb3+ phosphors,” J. Phys. Soc. Jpn. 35(4), 1089–1097 (1973).
    [Crossref]
  15. G. S. Freiria, A. L. Ribeiro, M. Verelst, E. J. Nassar, and L. A. Rocha, “Effect of Dy3+ Amount on the Structural and Luminescence Properties of LaNbO4:Dy3+ Phosphor Obtained by One-Step Spray Pyrolysis Process,” J. Braz. Chem. Soc. 29(3), 594–601 (2018).
  16. Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
    [Crossref]
  17. P. Du, L. K. Bharat, X. Y. Guan, and J. S. Yu, “Synthesis and luminescence properties of color-tunable Dy3+-activated CaWO4 phosphors,” J. Appl. Phys. 117(8), 083112 (2015).
    [Crossref]
  18. E. F. Schubert, Light Emitting Diodes (Cambridge University Press, 2006).
  19. R. Chen, J. L. Lawless, and V. Pagonis, “A model for explaining the concentration quenching of thermoluminescence,” Radiat. Meas. 46(12), 1380–1384 (2011).
    [Crossref]
  20. K. Sharma, S. Bahl, B. Singh, P. Kumar, S. P. Lochab, and A. Pandey, “BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam,” Radiat. Phys. Chem. 145, 64–73 (2018).
    [Crossref]

2018 (4)

S. Sharma, N. Brahme, D. P. Bisen, P. Dewangan, S. Tigga, G. Tiwari, and A. Khare, “Study on photoluminescence and thermoluminescence properties of UV-irradiated CaSrAl2SiO7:Ce3+ phosphors,” J. Mater. Sci. Mater. Electron. 29(2), 1412–1419 (2018).
[Crossref]

G. S. Freiria, A. L. Ribeiro, M. Verelst, E. J. Nassar, and L. A. Rocha, “Effect of Dy3+ Amount on the Structural and Luminescence Properties of LaNbO4:Dy3+ Phosphor Obtained by One-Step Spray Pyrolysis Process,” J. Braz. Chem. Soc. 29(3), 594–601 (2018).

L. M. Chepyga, E. Hertle, A. Ali, L. Zigan, A. Osvet, C. J. Brabec, and M. Batentschuk, “Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor,” J. Lumin. 197, 23–30 (2018).
[Crossref]

K. Sharma, S. Bahl, B. Singh, P. Kumar, S. P. Lochab, and A. Pandey, “BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam,” Radiat. Phys. Chem. 145, 64–73 (2018).
[Crossref]

2017 (1)

Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
[Crossref]

2016 (3)

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. Tigga, “Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors,” Opt. Mater. 58, 234–242 (2016).
[Crossref]

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. J. Dhoble, “A study on the luminescence properties of gamma-ray- irradiated white light emitting Ca2Al2SiO7:Dy3+ phosphors fabricated using a combustion-assisted method,” RSC Advances 6(55), 49317–49327 (2016).
[Crossref]

2015 (4)

A. K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, and D. Haranath, “Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications,” Dalton Trans. 44(39), 17166–17174 (2015).
[Crossref] [PubMed]

S. N. Anitha and I. Jayakumari, “Synthesis and Analysis of Nanocrystalline Fe2Mn2Ni0.5Zn1.5O9 at Different Treating Temperatures,” J. Nanosci. Technol. 1(1), 26–31 (2015).

S. Miao, Z. Xia, M. S. Molokeev, J. Zhang, and Q. Liu, “Crystal structure refinement and luminescence properties of blue-green-emitting CaSrAl2SiO7:Ce3+,Li+,Eu2+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(32), 8322–8328 (2015).
[Crossref]

P. Du, L. K. Bharat, X. Y. Guan, and J. S. Yu, “Synthesis and luminescence properties of color-tunable Dy3+-activated CaWO4 phosphors,” J. Appl. Phys. 117(8), 083112 (2015).
[Crossref]

2014 (1)

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

2012 (1)

H. Y. Jiao and Y. H. Wang, “A potential red-emitting phosphor CaSrAl2SiO7:Eu3+ for near-ultraviolet light-emitting diodes,” Physica B 407(14), 2729–2733 (2012).
[Crossref]

2011 (1)

R. Chen, J. L. Lawless, and V. Pagonis, “A model for explaining the concentration quenching of thermoluminescence,” Radiat. Meas. 46(12), 1380–1384 (2011).
[Crossref]

2009 (1)

L. Lin, Z. Zhao, W. Zhang, Z. Zheng, and M. Yin, “Photo-luminescence properties and thermo-luminescence curve analysis of a new white long-lasting phosphor: Ca2MgSi2O7:Dy3+,” J. Rare Earths 27(5), 749–752 (2009).
[Crossref]

2008 (1)

Q. Zhang, J. Wang, M. Zhang, and Q. Su, “Tunable bluish green to yellowish green Ca2(1−x)Sr2xAl2SiO7:Eu2+ phosphors for potential LED application,” Appl. Phys. B 92(2), 195–198 (2008).
[Crossref]

2007 (1)

B. Liu, L. Kong, and C. Shi, “White-light long-lasting phosphor Sr2MgSi2O7:Dy3+,” J. Lumin. 122(1), 121–124 (2007).
[Crossref]

1973 (1)

N. N. Yamashita, “Luminescence centers of Ca(S: Se) phosphors activated with impurity ions having s2 configuration. I. Ca(S: Se): Sb3+ phosphors,” J. Phys. Soc. Jpn. 35(4), 1089–1097 (1973).
[Crossref]

Ali, A.

L. M. Chepyga, E. Hertle, A. Ali, L. Zigan, A. Osvet, C. J. Brabec, and M. Batentschuk, “Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor,” J. Lumin. 197, 23–30 (2018).
[Crossref]

Anitha, S. N.

S. N. Anitha and I. Jayakumari, “Synthesis and Analysis of Nanocrystalline Fe2Mn2Ni0.5Zn1.5O9 at Different Treating Temperatures,” J. Nanosci. Technol. 1(1), 26–31 (2015).

Bahl, S.

K. Sharma, S. Bahl, B. Singh, P. Kumar, S. P. Lochab, and A. Pandey, “BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam,” Radiat. Phys. Chem. 145, 64–73 (2018).
[Crossref]

Batentschuk, M.

L. M. Chepyga, E. Hertle, A. Ali, L. Zigan, A. Osvet, C. J. Brabec, and M. Batentschuk, “Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor,” J. Lumin. 197, 23–30 (2018).
[Crossref]

Bharat, L. K.

P. Du, L. K. Bharat, X. Y. Guan, and J. S. Yu, “Synthesis and luminescence properties of color-tunable Dy3+-activated CaWO4 phosphors,” J. Appl. Phys. 117(8), 083112 (2015).
[Crossref]

Bisen, D. P.

S. Sharma, N. Brahme, D. P. Bisen, P. Dewangan, S. Tigga, G. Tiwari, and A. Khare, “Study on photoluminescence and thermoluminescence properties of UV-irradiated CaSrAl2SiO7:Ce3+ phosphors,” J. Mater. Sci. Mater. Electron. 29(2), 1412–1419 (2018).
[Crossref]

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. Tigga, “Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors,” Opt. Mater. 58, 234–242 (2016).
[Crossref]

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. J. Dhoble, “A study on the luminescence properties of gamma-ray- irradiated white light emitting Ca2Al2SiO7:Dy3+ phosphors fabricated using a combustion-assisted method,” RSC Advances 6(55), 49317–49327 (2016).
[Crossref]

Brabec, C. J.

L. M. Chepyga, E. Hertle, A. Ali, L. Zigan, A. Osvet, C. J. Brabec, and M. Batentschuk, “Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor,” J. Lumin. 197, 23–30 (2018).
[Crossref]

Brahme, N.

S. Sharma, N. Brahme, D. P. Bisen, P. Dewangan, S. Tigga, G. Tiwari, and A. Khare, “Study on photoluminescence and thermoluminescence properties of UV-irradiated CaSrAl2SiO7:Ce3+ phosphors,” J. Mater. Sci. Mater. Electron. 29(2), 1412–1419 (2018).
[Crossref]

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. Tigga, “Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors,” Opt. Mater. 58, 234–242 (2016).
[Crossref]

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. J. Dhoble, “A study on the luminescence properties of gamma-ray- irradiated white light emitting Ca2Al2SiO7:Dy3+ phosphors fabricated using a combustion-assisted method,” RSC Advances 6(55), 49317–49327 (2016).
[Crossref]

Chen, L.

Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
[Crossref]

Chen, R.

R. Chen, J. L. Lawless, and V. Pagonis, “A model for explaining the concentration quenching of thermoluminescence,” Radiat. Meas. 46(12), 1380–1384 (2011).
[Crossref]

Chepyga, L. M.

L. M. Chepyga, E. Hertle, A. Ali, L. Zigan, A. Osvet, C. J. Brabec, and M. Batentschuk, “Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor,” J. Lumin. 197, 23–30 (2018).
[Crossref]

Dewangan, P.

S. Sharma, N. Brahme, D. P. Bisen, P. Dewangan, S. Tigga, G. Tiwari, and A. Khare, “Study on photoluminescence and thermoluminescence properties of UV-irradiated CaSrAl2SiO7:Ce3+ phosphors,” J. Mater. Sci. Mater. Electron. 29(2), 1412–1419 (2018).
[Crossref]

Dhoble, S. J.

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. J. Dhoble, “A study on the luminescence properties of gamma-ray- irradiated white light emitting Ca2Al2SiO7:Dy3+ phosphors fabricated using a combustion-assisted method,” RSC Advances 6(55), 49317–49327 (2016).
[Crossref]

Du, P.

P. Du, L. K. Bharat, X. Y. Guan, and J. S. Yu, “Synthesis and luminescence properties of color-tunable Dy3+-activated CaWO4 phosphors,” J. Appl. Phys. 117(8), 083112 (2015).
[Crossref]

Freiria, G. S.

G. S. Freiria, A. L. Ribeiro, M. Verelst, E. J. Nassar, and L. A. Rocha, “Effect of Dy3+ Amount on the Structural and Luminescence Properties of LaNbO4:Dy3+ Phosphor Obtained by One-Step Spray Pyrolysis Process,” J. Braz. Chem. Soc. 29(3), 594–601 (2018).

Gahtori, B.

A. K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, and D. Haranath, “Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications,” Dalton Trans. 44(39), 17166–17174 (2015).
[Crossref] [PubMed]

Gecevicius, M.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Guan, X. Y.

P. Du, L. K. Bharat, X. Y. Guan, and J. S. Yu, “Synthesis and luminescence properties of color-tunable Dy3+-activated CaWO4 phosphors,” J. Appl. Phys. 117(8), 083112 (2015).
[Crossref]

Haranath, D.

A. K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, and D. Haranath, “Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications,” Dalton Trans. 44(39), 17166–17174 (2015).
[Crossref] [PubMed]

Hertle, E.

L. M. Chepyga, E. Hertle, A. Ali, L. Zigan, A. Osvet, C. J. Brabec, and M. Batentschuk, “Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor,” J. Lumin. 197, 23–30 (2018).
[Crossref]

Hu, Y.

Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
[Crossref]

Jayakumari, I.

S. N. Anitha and I. Jayakumari, “Synthesis and Analysis of Nanocrystalline Fe2Mn2Ni0.5Zn1.5O9 at Different Treating Temperatures,” J. Nanosci. Technol. 1(1), 26–31 (2015).

Jayasimhadri, M.

A. K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, and D. Haranath, “Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications,” Dalton Trans. 44(39), 17166–17174 (2015).
[Crossref] [PubMed]

Jha, K.

A. K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, and D. Haranath, “Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications,” Dalton Trans. 44(39), 17166–17174 (2015).
[Crossref] [PubMed]

Jiang, Z.

Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
[Crossref]

Jiao, H. Y.

H. Y. Jiao and Y. H. Wang, “A potential red-emitting phosphor CaSrAl2SiO7:Eu3+ for near-ultraviolet light-emitting diodes,” Physica B 407(14), 2729–2733 (2012).
[Crossref]

Khare, A.

S. Sharma, N. Brahme, D. P. Bisen, P. Dewangan, S. Tigga, G. Tiwari, and A. Khare, “Study on photoluminescence and thermoluminescence properties of UV-irradiated CaSrAl2SiO7:Ce3+ phosphors,” J. Mater. Sci. Mater. Electron. 29(2), 1412–1419 (2018).
[Crossref]

Kong, L.

B. Liu, L. Kong, and C. Shi, “White-light long-lasting phosphor Sr2MgSi2O7:Dy3+,” J. Lumin. 122(1), 121–124 (2007).
[Crossref]

Kumar, P.

K. Sharma, S. Bahl, B. Singh, P. Kumar, S. P. Lochab, and A. Pandey, “BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam,” Radiat. Phys. Chem. 145, 64–73 (2018).
[Crossref]

Lawless, J. L.

R. Chen, J. L. Lawless, and V. Pagonis, “A model for explaining the concentration quenching of thermoluminescence,” Radiat. Meas. 46(12), 1380–1384 (2011).
[Crossref]

Li, C.

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

Li, Y.

Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
[Crossref]

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Lin, J.

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

Lin, L.

L. Lin, Z. Zhao, W. Zhang, Z. Zheng, and M. Yin, “Photo-luminescence properties and thermo-luminescence curve analysis of a new white long-lasting phosphor: Ca2MgSi2O7:Dy3+,” J. Rare Earths 27(5), 749–752 (2009).
[Crossref]

Liu, B.

B. Liu, L. Kong, and C. Shi, “White-light long-lasting phosphor Sr2MgSi2O7:Dy3+,” J. Lumin. 122(1), 121–124 (2007).
[Crossref]

Liu, Q.

S. Miao, Z. Xia, M. S. Molokeev, J. Zhang, and Q. Liu, “Crystal structure refinement and luminescence properties of blue-green-emitting CaSrAl2SiO7:Ce3+,Li+,Eu2+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(32), 8322–8328 (2015).
[Crossref]

Liu, R.

Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
[Crossref]

Liu, Y.

Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
[Crossref]

Lochab, S. P.

K. Sharma, S. Bahl, B. Singh, P. Kumar, S. P. Lochab, and A. Pandey, “BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam,” Radiat. Phys. Chem. 145, 64–73 (2018).
[Crossref]

Miao, S.

S. Miao, Z. Xia, M. S. Molokeev, J. Zhang, and Q. Liu, “Crystal structure refinement and luminescence properties of blue-green-emitting CaSrAl2SiO7:Ce3+,Li+,Eu2+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(32), 8322–8328 (2015).
[Crossref]

Molokeev, M. S.

S. Miao, Z. Xia, M. S. Molokeev, J. Zhang, and Q. Liu, “Crystal structure refinement and luminescence properties of blue-green-emitting CaSrAl2SiO7:Ce3+,Li+,Eu2+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(32), 8322–8328 (2015).
[Crossref]

Nassar, E. J.

G. S. Freiria, A. L. Ribeiro, M. Verelst, E. J. Nassar, and L. A. Rocha, “Effect of Dy3+ Amount on the Structural and Luminescence Properties of LaNbO4:Dy3+ Phosphor Obtained by One-Step Spray Pyrolysis Process,” J. Braz. Chem. Soc. 29(3), 594–601 (2018).

Osvet, A.

L. M. Chepyga, E. Hertle, A. Ali, L. Zigan, A. Osvet, C. J. Brabec, and M. Batentschuk, “Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor,” J. Lumin. 197, 23–30 (2018).
[Crossref]

Pagonis, V.

R. Chen, J. L. Lawless, and V. Pagonis, “A model for explaining the concentration quenching of thermoluminescence,” Radiat. Meas. 46(12), 1380–1384 (2011).
[Crossref]

Pandey, A.

K. Sharma, S. Bahl, B. Singh, P. Kumar, S. P. Lochab, and A. Pandey, “BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam,” Radiat. Phys. Chem. 145, 64–73 (2018).
[Crossref]

Qiu, J.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Ribeiro, A. L.

G. S. Freiria, A. L. Ribeiro, M. Verelst, E. J. Nassar, and L. A. Rocha, “Effect of Dy3+ Amount on the Structural and Luminescence Properties of LaNbO4:Dy3+ Phosphor Obtained by One-Step Spray Pyrolysis Process,” J. Braz. Chem. Soc. 29(3), 594–601 (2018).

Rocha, L. A.

G. S. Freiria, A. L. Ribeiro, M. Verelst, E. J. Nassar, and L. A. Rocha, “Effect of Dy3+ Amount on the Structural and Luminescence Properties of LaNbO4:Dy3+ Phosphor Obtained by One-Step Spray Pyrolysis Process,” J. Braz. Chem. Soc. 29(3), 594–601 (2018).

Sao, S. K.

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. Tigga, “Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors,” Opt. Mater. 58, 234–242 (2016).
[Crossref]

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. J. Dhoble, “A study on the luminescence properties of gamma-ray- irradiated white light emitting Ca2Al2SiO7:Dy3+ phosphors fabricated using a combustion-assisted method,” RSC Advances 6(55), 49317–49327 (2016).
[Crossref]

Shang, M.

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

Sharma, K.

K. Sharma, S. Bahl, B. Singh, P. Kumar, S. P. Lochab, and A. Pandey, “BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam,” Radiat. Phys. Chem. 145, 64–73 (2018).
[Crossref]

Sharma, R.

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. J. Dhoble, “A study on the luminescence properties of gamma-ray- irradiated white light emitting Ca2Al2SiO7:Dy3+ phosphors fabricated using a combustion-assisted method,” RSC Advances 6(55), 49317–49327 (2016).
[Crossref]

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. Tigga, “Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors,” Opt. Mater. 58, 234–242 (2016).
[Crossref]

Sharma, S.

S. Sharma, N. Brahme, D. P. Bisen, P. Dewangan, S. Tigga, G. Tiwari, and A. Khare, “Study on photoluminescence and thermoluminescence properties of UV-irradiated CaSrAl2SiO7:Ce3+ phosphors,” J. Mater. Sci. Mater. Electron. 29(2), 1412–1419 (2018).
[Crossref]

Shi, C.

B. Liu, L. Kong, and C. Shi, “White-light long-lasting phosphor Sr2MgSi2O7:Dy3+,” J. Lumin. 122(1), 121–124 (2007).
[Crossref]

Singh, B.

K. Sharma, S. Bahl, B. Singh, P. Kumar, S. P. Lochab, and A. Pandey, “BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam,” Radiat. Phys. Chem. 145, 64–73 (2018).
[Crossref]

Sivaiah, B.

A. K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, and D. Haranath, “Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications,” Dalton Trans. 44(39), 17166–17174 (2015).
[Crossref] [PubMed]

Su, Q.

Q. Zhang, J. Wang, M. Zhang, and Q. Su, “Tunable bluish green to yellowish green Ca2(1−x)Sr2xAl2SiO7:Eu2+ phosphors for potential LED application,” Appl. Phys. B 92(2), 195–198 (2008).
[Crossref]

Tigga, S.

S. Sharma, N. Brahme, D. P. Bisen, P. Dewangan, S. Tigga, G. Tiwari, and A. Khare, “Study on photoluminescence and thermoluminescence properties of UV-irradiated CaSrAl2SiO7:Ce3+ phosphors,” J. Mater. Sci. Mater. Electron. 29(2), 1412–1419 (2018).
[Crossref]

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. Tigga, “Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors,” Opt. Mater. 58, 234–242 (2016).
[Crossref]

Tiwari, G.

S. Sharma, N. Brahme, D. P. Bisen, P. Dewangan, S. Tigga, G. Tiwari, and A. Khare, “Study on photoluminescence and thermoluminescence properties of UV-irradiated CaSrAl2SiO7:Ce3+ phosphors,” J. Mater. Sci. Mater. Electron. 29(2), 1412–1419 (2018).
[Crossref]

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. Tigga, “Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors,” Opt. Mater. 58, 234–242 (2016).
[Crossref]

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. J. Dhoble, “A study on the luminescence properties of gamma-ray- irradiated white light emitting Ca2Al2SiO7:Dy3+ phosphors fabricated using a combustion-assisted method,” RSC Advances 6(55), 49317–49327 (2016).
[Crossref]

Verelst, M.

G. S. Freiria, A. L. Ribeiro, M. Verelst, E. J. Nassar, and L. A. Rocha, “Effect of Dy3+ Amount on the Structural and Luminescence Properties of LaNbO4:Dy3+ Phosphor Obtained by One-Step Spray Pyrolysis Process,” J. Braz. Chem. Soc. 29(3), 594–601 (2018).

Vishwakarma, A. K.

A. K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, and D. Haranath, “Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications,” Dalton Trans. 44(39), 17166–17174 (2015).
[Crossref] [PubMed]

Wang, J.

Q. Zhang, J. Wang, M. Zhang, and Q. Su, “Tunable bluish green to yellowish green Ca2(1−x)Sr2xAl2SiO7:Eu2+ phosphors for potential LED application,” Appl. Phys. B 92(2), 195–198 (2008).
[Crossref]

Wang, Y. H.

H. Y. Jiao and Y. H. Wang, “A potential red-emitting phosphor CaSrAl2SiO7:Eu3+ for near-ultraviolet light-emitting diodes,” Physica B 407(14), 2729–2733 (2012).
[Crossref]

Xia, Z.

S. Miao, Z. Xia, M. S. Molokeev, J. Zhang, and Q. Liu, “Crystal structure refinement and luminescence properties of blue-green-emitting CaSrAl2SiO7:Ce3+,Li+,Eu2+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(32), 8322–8328 (2015).
[Crossref]

Yamashita, N. N.

N. N. Yamashita, “Luminescence centers of Ca(S: Se) phosphors activated with impurity ions having s2 configuration. I. Ca(S: Se): Sb3+ phosphors,” J. Phys. Soc. Jpn. 35(4), 1089–1097 (1973).
[Crossref]

Yin, M.

L. Lin, Z. Zhao, W. Zhang, Z. Zheng, and M. Yin, “Photo-luminescence properties and thermo-luminescence curve analysis of a new white long-lasting phosphor: Ca2MgSi2O7:Dy3+,” J. Rare Earths 27(5), 749–752 (2009).
[Crossref]

Yu, J. S.

P. Du, L. K. Bharat, X. Y. Guan, and J. S. Yu, “Synthesis and luminescence properties of color-tunable Dy3+-activated CaWO4 phosphors,” J. Appl. Phys. 117(8), 083112 (2015).
[Crossref]

Zhang, J.

S. Miao, Z. Xia, M. S. Molokeev, J. Zhang, and Q. Liu, “Crystal structure refinement and luminescence properties of blue-green-emitting CaSrAl2SiO7:Ce3+,Li+,Eu2+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(32), 8322–8328 (2015).
[Crossref]

Zhang, M.

Q. Zhang, J. Wang, M. Zhang, and Q. Su, “Tunable bluish green to yellowish green Ca2(1−x)Sr2xAl2SiO7:Eu2+ phosphors for potential LED application,” Appl. Phys. B 92(2), 195–198 (2008).
[Crossref]

Zhang, Q.

Q. Zhang, J. Wang, M. Zhang, and Q. Su, “Tunable bluish green to yellowish green Ca2(1−x)Sr2xAl2SiO7:Eu2+ phosphors for potential LED application,” Appl. Phys. B 92(2), 195–198 (2008).
[Crossref]

Zhang, W.

L. Lin, Z. Zhao, W. Zhang, Z. Zheng, and M. Yin, “Photo-luminescence properties and thermo-luminescence curve analysis of a new white long-lasting phosphor: Ca2MgSi2O7:Dy3+,” J. Rare Earths 27(5), 749–752 (2009).
[Crossref]

Zhao, Z.

L. Lin, Z. Zhao, W. Zhang, Z. Zheng, and M. Yin, “Photo-luminescence properties and thermo-luminescence curve analysis of a new white long-lasting phosphor: Ca2MgSi2O7:Dy3+,” J. Rare Earths 27(5), 749–752 (2009).
[Crossref]

Zheng, Y.

Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
[Crossref]

Zheng, Z.

L. Lin, Z. Zhao, W. Zhang, Z. Zheng, and M. Yin, “Photo-luminescence properties and thermo-luminescence curve analysis of a new white long-lasting phosphor: Ca2MgSi2O7:Dy3+,” J. Rare Earths 27(5), 749–752 (2009).
[Crossref]

Zhong, J.

Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
[Crossref]

Zhou, Y.

Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
[Crossref]

Zhuang, W.

Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
[Crossref]

Zigan, L.

L. M. Chepyga, E. Hertle, A. Ali, L. Zigan, A. Osvet, C. J. Brabec, and M. Batentschuk, “Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor,” J. Lumin. 197, 23–30 (2018).
[Crossref]

Appl. Phys. B (1)

Q. Zhang, J. Wang, M. Zhang, and Q. Su, “Tunable bluish green to yellowish green Ca2(1−x)Sr2xAl2SiO7:Eu2+ phosphors for potential LED application,” Appl. Phys. B 92(2), 195–198 (2008).
[Crossref]

Chem. Soc. Rev. (2)

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Dalton Trans. (1)

A. K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, and D. Haranath, “Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications,” Dalton Trans. 44(39), 17166–17174 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (1)

P. Du, L. K. Bharat, X. Y. Guan, and J. S. Yu, “Synthesis and luminescence properties of color-tunable Dy3+-activated CaWO4 phosphors,” J. Appl. Phys. 117(8), 083112 (2015).
[Crossref]

J. Braz. Chem. Soc. (1)

G. S. Freiria, A. L. Ribeiro, M. Verelst, E. J. Nassar, and L. A. Rocha, “Effect of Dy3+ Amount on the Structural and Luminescence Properties of LaNbO4:Dy3+ Phosphor Obtained by One-Step Spray Pyrolysis Process,” J. Braz. Chem. Soc. 29(3), 594–601 (2018).

J. Lumin. (2)

L. M. Chepyga, E. Hertle, A. Ali, L. Zigan, A. Osvet, C. J. Brabec, and M. Batentschuk, “Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor,” J. Lumin. 197, 23–30 (2018).
[Crossref]

B. Liu, L. Kong, and C. Shi, “White-light long-lasting phosphor Sr2MgSi2O7:Dy3+,” J. Lumin. 122(1), 121–124 (2007).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

S. Miao, Z. Xia, M. S. Molokeev, J. Zhang, and Q. Liu, “Crystal structure refinement and luminescence properties of blue-green-emitting CaSrAl2SiO7:Ce3+,Li+,Eu2+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(32), 8322–8328 (2015).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

S. Sharma, N. Brahme, D. P. Bisen, P. Dewangan, S. Tigga, G. Tiwari, and A. Khare, “Study on photoluminescence and thermoluminescence properties of UV-irradiated CaSrAl2SiO7:Ce3+ phosphors,” J. Mater. Sci. Mater. Electron. 29(2), 1412–1419 (2018).
[Crossref]

J. Nanosci. Technol. (1)

S. N. Anitha and I. Jayakumari, “Synthesis and Analysis of Nanocrystalline Fe2Mn2Ni0.5Zn1.5O9 at Different Treating Temperatures,” J. Nanosci. Technol. 1(1), 26–31 (2015).

J. Phys. Soc. Jpn. (1)

N. N. Yamashita, “Luminescence centers of Ca(S: Se) phosphors activated with impurity ions having s2 configuration. I. Ca(S: Se): Sb3+ phosphors,” J. Phys. Soc. Jpn. 35(4), 1089–1097 (1973).
[Crossref]

J. Rare Earths (1)

L. Lin, Z. Zhao, W. Zhang, Z. Zheng, and M. Yin, “Photo-luminescence properties and thermo-luminescence curve analysis of a new white long-lasting phosphor: Ca2MgSi2O7:Dy3+,” J. Rare Earths 27(5), 749–752 (2009).
[Crossref]

Opt. Mater. (1)

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. Tigga, “Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors,” Opt. Mater. 58, 234–242 (2016).
[Crossref]

Physica B (1)

H. Y. Jiao and Y. H. Wang, “A potential red-emitting phosphor CaSrAl2SiO7:Eu3+ for near-ultraviolet light-emitting diodes,” Physica B 407(14), 2729–2733 (2012).
[Crossref]

Radiat. Meas. (1)

R. Chen, J. L. Lawless, and V. Pagonis, “A model for explaining the concentration quenching of thermoluminescence,” Radiat. Meas. 46(12), 1380–1384 (2011).
[Crossref]

Radiat. Phys. Chem. (1)

K. Sharma, S. Bahl, B. Singh, P. Kumar, S. P. Lochab, and A. Pandey, “BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam,” Radiat. Phys. Chem. 145, 64–73 (2018).
[Crossref]

RSC Advances (2)

G. Tiwari, N. Brahme, R. Sharma, D. P. Bisen, S. K. Sao, and S. J. Dhoble, “A study on the luminescence properties of gamma-ray- irradiated white light emitting Ca2Al2SiO7:Dy3+ phosphors fabricated using a combustion-assisted method,” RSC Advances 6(55), 49317–49327 (2016).
[Crossref]

Y. Zhou, W. Zhuang, Y. Hu, R. Liu, Z. Jiang, Y. Liu, Y. Li, Y. Zheng, L. Chen, and J. Zhong, “A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes,” RSC Advances 7(74), 46713–46720 (2017).
[Crossref]

Other (1)

E. F. Schubert, Light Emitting Diodes (Cambridge University Press, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 XRD pattern of CaSrAl2SiO7:0.01Dy3+ phosphor along with JCPDS file.
Fig. 2
Fig. 2 FESEM micrograph of CaSrAl2SiO7:0.01Dy3+ phosphor.
Fig. 3
Fig. 3 EDS spectrum of CaSrAl2SiO7:0.01Dy3+ phosphor.
Fig. 4
Fig. 4 PL excitation spectrum of CaSrAl2SiO7:0.01Dy3+ phosphor scanned with λem = 480 nm.
Fig. 5
Fig. 5 PL emission spectra of CaSrAl2SiO7:0.01Dy3+ phosphor under different excitation.
Fig. 6
Fig. 6 PL emission spectra of CaSrAl2SiO7:Dy3+ phosphors excited at λex = 350 nm. Inset represents Dy3+-concentration dependence emission intensity of peak at 480 nm.
Fig. 7
Fig. 7 lg (I/x) versus lg (x) plot for CaSrAl2SiO7:Dy3+ phosphor, when excited at 350 nm and luminescence monitored at 480 nm.
Fig. 8
Fig. 8 Schematic energy level diagram of Dy3+ ions.
Fig. 9
Fig. 9 CIE chromaticity diagram of CaSrAl2SiO7:Dy3+ phosphors excited by 350 nm.
Fig. 10
Fig. 10 Dy3+ concentration dependence on TL of CaSrAl2SiO7:Dy3+ phosphor exposed to 20 min UV-irradiation.
Fig. 11
Fig. 11 Total TL intensity versus Dy3+ concentration (x).
Fig. 12
Fig. 12 Effect of UV-exposure time on the TL of CaSrAl2SiO7:0.005Dy3+ phosphor. Inset shows TL intensity as a function of UV-exposure time.
Fig. 13
Fig. 13 Gaussian fitting of the glow curve for 20min UV-exposed CaSrAl2SiO7:0.005Dy3+ phosphor.
Fig. 14
Fig. 14 TL emission spectrum of CaSrAl2SiO7:0.005Dy3+ phosphor.

Tables (2)

Tables Icon

Table 1 CIE coordinates of CaSrAl2SiO7:Dy3+ phosphors

Tables Icon

Table 2 Kinetic parameters of CaSrAl2SiO7:0.005Dy3+ phosphor

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I/x=K [1+β (x) θ/3 ] 1
lg(I/x)=K' θ 3 lg(x) (withK'=lgKlgβ)
Color purity= (x x i ) 2 + (y y i ) 2 ( x d x i ) 2 + ( y d y i ) 2
CCT=499 n 3 +3525 n 2 6823.3n+5520.33

Metrics