Abstract

We theoretically investigate the optical characteristics of a thin-film photonic crystal structure with a complete photonic bandgap for both polarization of the transverse electric and transverse magnetic modes for any in-plane direction. The structure consists of three-layer stacked two-dimensional photonic crystal slabs, and the thickness of the structure is less than a few wavelengths. We show that a wide complete photonic bandgap can be obtained in the asymmetrically stacked photonic crystal structure. In addition, we designed a waveguide with a broad bandwidth of 100 nm and a nanocavity with a quality factor of 3.7 × 107 in the structures.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Small-hole waveguides in silicon photonic crystal slabs: efficient use of the complete photonic bandgap

Christian Bayer and Martin Straub
Appl. Opt. 48(27) 5050-5054 (2009)

Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap

Michael Bahriz, Virginie Moreau, Raffaele Colombelli, Orion Crisafulli, and Oskar Painter
Opt. Express 15(10) 5948-5965 (2007)

Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab

Amir H. Safavi-Naeini and Oskar Painter
Opt. Express 18(14) 14926-14943 (2010)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  2. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [Crossref]
  3. K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, M. Mori, T. Asano, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25(15), 18165–18174 (2017).
    [Crossref] [PubMed]
  4. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
    [Crossref] [PubMed]
  5. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
    [Crossref] [PubMed]
  6. B. S. Song, S. Noda, and T. Asano, “Photonic Devices Based on in-plane Hetero Photonic Crystals,” Science 300(5625), 1537 (2003).
    [Crossref] [PubMed]
  7. H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
    [Crossref] [PubMed]
  8. E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
    [Crossref]
  9. Y. Ooka, T. Tetsumoto, N. A. B. Daud, and T. Tanabe, “Ultrasmall in-plane photonic crystal demultiplexers fabricated with photolithography,” Opt. Express 25(2), 1521–1528 (2017).
    [Crossref] [PubMed]
  10. R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Nature of the photonic band gap: some insights from a field analysis,” J. Opt. Soc. Am. B 10(2), 328–332 (1993).
    [Crossref]
  11. U. G. Yasa, M. Turduev, I. H. Giden, and H. Kurt, “High extinction ratio polarization beam splitter design by low-symmetric photonic crystals,” J. Lightwave Technol. 35(9), 1677–1683 (2017).
    [Crossref]
  12. H. M. Kim, H. Jang, P. Pramudita, M. K. Kim, and Y. H. Lee, “Monolithic integration of self-aligned nanoisland laser with shifted-air-hole waveguide,” Opt. Express 26(10), 12569–12578 (2018).
    [Crossref] [PubMed]
  13. M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
    [Crossref]
  14. D. D. Kang, T. Inoue, T. Asano, and S. Noda, “Demonstration of a mid-wavelength infrared narrowband thermal emitter based on GaN/AlGaN quantum wells and a photonic crystal,” Appl. Phys. Lett. 110(18), 181109 (2017).
    [Crossref]
  15. Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
    [Crossref]
  16. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
    [Crossref]
  17. K. Ohlinger, Y. Lin, and J. S. Qualls, “Maximum and overlapped photonic band gaps in both transverse electric and transverse magnetic polarizations in two-dimensional photonic crystals with low symmetry,” J. Appl. Phys. 106(6), 063520 (2009).
    [Crossref]
  18. P. Shi, K. Huang, X. L. Kang, and Y. P. Li, “Creation of large band gap with anisotropic annular photonic crystal slab structure,” Opt. Express 18(5), 5221–5228 (2010).
    [Crossref] [PubMed]
  19. H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
    [Crossref]
  20. A. Cerjan and S. Fan, “Complete photonic band gaps in supercell photonic crystals,” Phys. Rev. A (Coll. Park) 96(5), 051802 (2017).
    [Crossref]
  21. F. Meng, Y. Li, S. Li, H. Lin, B. Jia, and X. Huang, “Achieving large band gaps in 2D symmetric and asymmetric photonic crystals,” J. Lightwave Technol. 35(9), 1670–1676 (2017).
    [Crossref]
  22. T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, “Spectrally selective thermal radiation based on intersubband transitions and photonic crystals,” Opt. Express 17(21), 19190–19203 (2009).
    [Crossref] [PubMed]
  23. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 60(8), 5751–5758 (1999).
    [Crossref]
  24. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
    [Crossref]
  25. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [Crossref] [PubMed]
  26. M. Loncar, J. Vuckovic, and A. Scherer, “Methods for controlling positions of guided modes of phoonic-crystal waveguides,” J. Opt. Soc. Am. B 18(9), 1362–1368 (2001).
    [Crossref]
  27. M. K. Moghadam, M. M. Mirsalehi, and A. R. Attari, “Design of a novel wideband single-mode waveguide in a photonic crystal slab structure,” Photon. Nanostructures 6(2), 142–147 (2008).
    [Crossref]
  28. H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
    [Crossref] [PubMed]
  29. T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25(3), 1769–1777 (2017).
    [Crossref] [PubMed]

2018 (1)

2017 (7)

2015 (1)

H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
[Crossref]

2014 (2)

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

2013 (2)

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
[Crossref] [PubMed]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

2012 (1)

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

2010 (1)

2009 (2)

K. Ohlinger, Y. Lin, and J. S. Qualls, “Maximum and overlapped photonic band gaps in both transverse electric and transverse magnetic polarizations in two-dimensional photonic crystals with low symmetry,” J. Appl. Phys. 106(6), 063520 (2009).
[Crossref]

T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, “Spectrally selective thermal radiation based on intersubband transitions and photonic crystals,” Opt. Express 17(21), 19190–19203 (2009).
[Crossref] [PubMed]

2008 (1)

M. K. Moghadam, M. M. Mirsalehi, and A. R. Attari, “Design of a novel wideband single-mode waveguide in a photonic crystal slab structure,” Photon. Nanostructures 6(2), 142–147 (2008).
[Crossref]

2006 (1)

2005 (2)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[Crossref]

2003 (3)

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
[Crossref] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic Devices Based on in-plane Hetero Photonic Crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

2001 (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

M. Loncar, J. Vuckovic, and A. Scherer, “Methods for controlling positions of guided modes of phoonic-crystal waveguides,” J. Opt. Soc. Am. B 18(9), 1362–1368 (2001).
[Crossref]

1999 (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 60(8), 5751–5758 (1999).
[Crossref]

1993 (1)

1987 (1)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

Asano, T.

D. D. Kang, T. Inoue, T. Asano, and S. Noda, “Demonstration of a mid-wavelength infrared narrowband thermal emitter based on GaN/AlGaN quantum wells and a photonic crystal,” Appl. Phys. Lett. 110(18), 181109 (2017).
[Crossref]

K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, M. Mori, T. Asano, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25(15), 18165–18174 (2017).
[Crossref] [PubMed]

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25(3), 1769–1777 (2017).
[Crossref] [PubMed]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, “Spectrally selective thermal radiation based on intersubband transitions and photonic crystals,” Opt. Express 17(21), 19190–19203 (2009).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[Crossref]

B. S. Song, S. Noda, and T. Asano, “Photonic Devices Based on in-plane Hetero Photonic Crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

Ashida, K.

Attari, A. R.

M. K. Moghadam, M. M. Mirsalehi, and A. R. Attari, “Design of a novel wideband single-mode waveguide in a photonic crystal slab structure,” Photon. Nanostructures 6(2), 142–147 (2008).
[Crossref]

Bauters, J. F.

Bowers, J. E.

Brommer, K. D.

Cerjan, A.

A. Cerjan and S. Fan, “Complete photonic band gaps in supercell photonic crystals,” Phys. Rev. A (Coll. Park) 96(5), 051802 (2017).
[Crossref]

Chaminda, M.

Chen, A.

Citrin, D. S.

H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
[Crossref]

Daud, N. A. B.

Davenport, M. L.

Doylend, J. K.

Fan, S.

A. Cerjan and S. Fan, “Complete photonic band gaps in supercell photonic crystals,” Phys. Rev. A (Coll. Park) 96(5), 051802 (2017).
[Crossref]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 60(8), 5751–5758 (1999).
[Crossref]

Fang, A. W.

Giden, I. H.

Gondaira, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Heck, M. J. R.

Huang, K.

Huang, X.

Inoue, T.

D. D. Kang, T. Inoue, T. Asano, and S. Noda, “Demonstration of a mid-wavelength infrared narrowband thermal emitter based on GaN/AlGaN quantum wells and a photonic crystal,” Appl. Phys. Lett. 110(18), 181109 (2017).
[Crossref]

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Ishizaki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Jang, H.

Jia, B.

Jiang, L.

H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
[Crossref]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 60(8), 5751–5758 (1999).
[Crossref]

R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Nature of the photonic band gap: some insights from a field analysis,” J. Opt. Soc. Am. B 10(2), 328–332 (1993).
[Crossref]

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 60(8), 5751–5758 (1999).
[Crossref]

Kang, D. D.

D. D. Kang, T. Inoue, T. Asano, and S. Noda, “Demonstration of a mid-wavelength infrared narrowband thermal emitter based on GaN/AlGaN quantum wells and a photonic crystal,” Appl. Phys. Lett. 110(18), 181109 (2017).
[Crossref]

Kang, X. L.

Kim, H. M.

Kim, M. K.

Kishimoto, K.

Kitagawa, H.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[Crossref]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 60(8), 5751–5758 (1999).
[Crossref]

Koshino, K.

Koumura, M.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Kuramochi, E.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Kurt, H.

Lee, Y. H.

Li, S.

Li, X.

H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
[Crossref]

Li, Y.

Li, Y. P.

Lin, H.

Lin, Y.

K. Ohlinger, Y. Lin, and J. S. Qualls, “Maximum and overlapped photonic band gaps in both transverse electric and transverse magnetic polarizations in two-dimensional photonic crystals with low symmetry,” J. Appl. Phys. 106(6), 063520 (2009).
[Crossref]

Loncar, M.

Matsuo, S.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

McNab, S.

Meade, R. D.

Meng, F.

Mirsalehi, M. M.

M. K. Moghadam, M. M. Mirsalehi, and A. R. Attari, “Design of a novel wideband single-mode waveguide in a photonic crystal slab structure,” Photon. Nanostructures 6(2), 142–147 (2008).
[Crossref]

Mochizuki, K.

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, “Spectrally selective thermal radiation based on intersubband transitions and photonic crystals,” Opt. Express 17(21), 19190–19203 (2009).
[Crossref] [PubMed]

Moghadam, M. K.

M. K. Moghadam, M. M. Mirsalehi, and A. R. Attari, “Design of a novel wideband single-mode waveguide in a photonic crystal slab structure,” Photon. Nanostructures 6(2), 142–147 (2008).
[Crossref]

Moll, N.

Mori, M.

Noda, S.

K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, M. Mori, T. Asano, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25(15), 18165–18174 (2017).
[Crossref] [PubMed]

D. D. Kang, T. Inoue, T. Asano, and S. Noda, “Demonstration of a mid-wavelength infrared narrowband thermal emitter based on GaN/AlGaN quantum wells and a photonic crystal,” Appl. Phys. Lett. 110(18), 181109 (2017).
[Crossref]

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25(3), 1769–1777 (2017).
[Crossref] [PubMed]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, “Spectrally selective thermal radiation based on intersubband transitions and photonic crystals,” Opt. Express 17(21), 19190–19203 (2009).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[Crossref]

B. S. Song, S. Noda, and T. Asano, “Photonic Devices Based on in-plane Hetero Photonic Crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

Notomi, M.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Nozaki, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Ochi, Y.

Ohlinger, K.

K. Ohlinger, Y. Lin, and J. S. Qualls, “Maximum and overlapped photonic band gaps in both transverse electric and transverse magnetic polarizations in two-dimensional photonic crystals with low symmetry,” J. Appl. Phys. 106(6), 063520 (2009).
[Crossref]

Ohtsuka, M.

Okano, M.

Ooka, Y.

Oskooi, A.

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Pramudita, P.

Qualls, J. S.

K. Ohlinger, Y. Lin, and J. S. Qualls, “Maximum and overlapped photonic band gaps in both transverse electric and transverse magnetic polarizations in two-dimensional photonic crystals with low symmetry,” J. Appl. Phys. 106(6), 063520 (2009).
[Crossref]

Rappe, A. M.

Sato, T.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Scherer, A.

Seki, M.

Sekoguchi, H.

Shi, P.

Shinya, A.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Song, B. S.

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

B. S. Song, S. Noda, and T. Asano, “Photonic Devices Based on in-plane Hetero Photonic Crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

Sumikura, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Suzuki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Takahashi, Y.

Takano, H.

Takayama, S.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[Crossref]

Takeda, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Tanabe, T.

Tanaka, Y.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

Taniyama, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Tetsumoto, T.

Turduev, M.

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 60(8), 5751–5758 (1999).
[Crossref]

Vlasov, Y.

Vuckovic, J.

Wu, H.

H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Yamaguchi, M.

Yasa, U. G.

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Yokoyama, N.

Zoysa, M. D.

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Appl. Phys. Lett. (3)

D. D. Kang, T. Inoue, T. Asano, and S. Noda, “Demonstration of a mid-wavelength infrared narrowband thermal emitter based on GaN/AlGaN quantum wells and a photonic crystal,” Appl. Phys. Lett. 110(18), 181109 (2017).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
[Crossref]

J. Appl. Phys. (1)

K. Ohlinger, Y. Lin, and J. S. Qualls, “Maximum and overlapped photonic band gaps in both transverse electric and transverse magnetic polarizations in two-dimensional photonic crystals with low symmetry,” J. Appl. Phys. 106(6), 063520 (2009).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Nat. Photonics (3)

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Opt. Express (10)

T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, “Spectrally selective thermal radiation based on intersubband transitions and photonic crystals,” Opt. Express 17(21), 19190–19203 (2009).
[Crossref] [PubMed]

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
[Crossref] [PubMed]

P. Shi, K. Huang, X. L. Kang, and Y. P. Li, “Creation of large band gap with anisotropic annular photonic crystal slab structure,” Opt. Express 18(5), 5221–5228 (2010).
[Crossref] [PubMed]

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25(3), 1769–1777 (2017).
[Crossref] [PubMed]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
[Crossref] [PubMed]

K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, M. Mori, T. Asano, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25(15), 18165–18174 (2017).
[Crossref] [PubMed]

H. M. Kim, H. Jang, P. Pramudita, M. K. Kim, and Y. H. Lee, “Monolithic integration of self-aligned nanoisland laser with shifted-air-hole waveguide,” Opt. Express 26(10), 12569–12578 (2018).
[Crossref] [PubMed]

Y. Ooka, T. Tetsumoto, N. A. B. Daud, and T. Tanabe, “Ultrasmall in-plane photonic crystal demultiplexers fabricated with photolithography,” Opt. Express 25(2), 1521–1528 (2017).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

Photon. Nanostructures (1)

M. K. Moghadam, M. M. Mirsalehi, and A. R. Attari, “Design of a novel wideband single-mode waveguide in a photonic crystal slab structure,” Photon. Nanostructures 6(2), 142–147 (2008).
[Crossref]

Phys. Rev. A (Coll. Park) (1)

A. Cerjan and S. Fan, “Complete photonic band gaps in supercell photonic crystals,” Phys. Rev. A (Coll. Park) 96(5), 051802 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 60(8), 5751–5758 (1999).
[Crossref]

Phys. Rev. Lett. (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Science (1)

B. S. Song, S. Noda, and T. Asano, “Photonic Devices Based on in-plane Hetero Photonic Crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematics of (a) vertically symmetric and (c) asymmetric thin-film three-layer photonic crystals (here, r1 = 0.3a, r2 = 0.2a, r3 = 0.3a, t1 = 0.29a, t2 = 0.21a, t3 = 0.29a) (b) and (d) Calculated band diagrams of photonic crystal structures depicted in (a) and (c), respectively. (e) Respective Hz and Ez distributions of main components for TE and TM polarizations at the position of the dashed line in (c) and at the J point (marked by a circle) of the bandgap-edge modes in (d).
Fig. 2
Fig. 2 (a) Schematic of a waveguide with a row of air holes with altered radius (r’) in the top-layer. (b) Calculated band diagrams for a W1 waveguide (black dots) and a waveguide with an altered radius line defect (red dots). (c) Schematic of a waveguide with a row of reduced rods in the middle-layer photonic crystal. (d) Calculated band diagrams for a waveguide (black dots) and a waveguide with shifted rods (red dots).
Fig. 3
Fig. 3 (a) Schematics of (a) L3 nanocavity and (b) heterostructure nanocavity with three different lattice constants (a1 = 1.017a3, a2 = 1.007a3, and a3). Calculated field distributions of (c) L3 nanocavity and (d) heterostructure nanocavity.

Metrics