Abstract

We report the demonstration of a novel in-fiber spatially integrated Michelson interferometer based on weakly coupled multicore fiber (MCF) for vibration sensing. The compact interferometer is constructed by using two separate cores of the MCF, where the fiber end is cleaved in order to generate strong Fresnel reflection, and independent light coupling between the cores of MCF and the single mode fibers (SMFs) is enabled by the fan-in coupler. Vibration gives rise to differential strain variation between cores which results in the modification of phase difference of the interferometer. A narrow linewidth laser is employed, in order to interrogate the phase change induced reflection power variation. Vibration event can be identified and the vibration frequency can be retrieved by processing the measured reflection power with fast Fourier transform (FFT). Broad vibration frequency response range up to 12 kHz (limited by the cut-off frequency of the voltage driver of the vibration source) has been achieved. Performance of the sensor has been shown to be independent of the selection of different core pairs, where the MCF is wound to a piezoelectric transducer (PZT). The proposed in-fiber integrated spatial interferometer does not require any special processing of the fiber (e.g., tapering, splicing, and so forth). The unique sensor structure provides some extraordinary merits, including ultra-compact size, high mechanical strength, high sensitivity and temperature insensitivity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing

Li Duan, Peng Zhang, Ming Tang, Ruoxu Wang, Zhiyong Zhao, Songnian Fu, Lin Gan, Benpeng Zhu, Weijun Tong, Deming Liu, and Perry Ping Shum
Opt. Express 24(18) 20210-20218 (2016)

Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing

Joel Villatoro, Enrique Antonio-Lopez, Joseba Zubia, Axel Schülzgen, and Rodrigo Amezcua-Correa
Opt. Express 25(21) 25734-25740 (2017)

Miniature multicore optical fiber vibration sensor

Joel Villatoro, Enrique Antonio-Lopez, Axel Schülzgen, and Rodrigo Amezcua-Correa
Opt. Lett. 42(10) 2022-2025 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, X. Wang, and X. Bao, “Sensitive acoustic vibration sensor using single-mode fiber tapers,” Appl. Opt. 50(13), 1873–1878 (2011).
    [Crossref] [PubMed]
  2. B. Xu, Y. Li, M. Sun, Z. W. Zhang, X. Y. Dong, Z. X. Zhang, and S. Z. Jin, “Acoustic vibration sensor based on nonadiabatic tapered fibers,” Opt. Lett. 37(22), 4768–4770 (2012).
    [Crossref] [PubMed]
  3. Y. Xu, P. Lu, Z. Qin, J. Harris, F. Baset, P. Lu, V. R. Bhardwaj, and X. Bao, “Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer,” Opt. Express 21(3), 3031–3042 (2013).
    [Crossref] [PubMed]
  4. S. Dass and R. Jha, “Tapered fiber attached nitrile diaphragm-based acoustic sensor,” J. Lightwave Technol. 35(24), 5411–5417 (2017).
    [Crossref]
  5. Y. Huang, T. Guo, C. Lu, and H. Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photonics Technol. Lett. 22(16), 1235–1237 (2010).
    [Crossref]
  6. Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2011).
    [Crossref]
  7. A. Wada, S. Tanaka, and N. Takahashi, “Optical fiber vibration sensor using FBG Fabry–Perot interferometer with wavelength scanning and Fourier analysis,” IEEE Sens. J. 12(1), 225–229 (2012).
    [Crossref]
  8. B. Luo, W. Yang, X. Hu, H. Lu, S. Shi, M. Zhao, Y. Lu, L. Xie, Z. Sun, and L. Zhang, “Study on vibration sensing performance of an equal strength cantilever beam based on an excessively tilted fiber grating,” Appl. Opt. 57(9), 2128–2134 (2018).
    [Crossref] [PubMed]
  9. Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
    [Crossref]
  10. J. Villatoro, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing,” Opt. Express 25(21), 25734–25740 (2017).
    [Crossref] [PubMed]
  11. J. Villatoro, E. Antonio-Lopez, A. Schülzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42(10), 2022–2025 (2017).
    [Crossref] [PubMed]
  12. Y. Zhao, F. Xia, M. Chen, and R. Lv, “Optical fiber low-frequency vibration sensor based on butterfly-shape Mach-Zehnder interferometer,” Sens. Actuators A Phys. 273, 107–112 (2018).
    [Crossref]
  13. Z. Zhao, Y. Dang, M. Tang, L. Duan, M. Wang, H. Wu, S. Fu, W. Tong, P. P. Shum, and D. Liu, “Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber,” Opt. Express 24(22), 25111–25118 (2016).
    [Crossref] [PubMed]
  14. W. C. Wong, C. C. Chan, L. H. Chen, Z. Q. Tou, and K. C. Leong, “Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation,” Opt. Lett. 36(9), 1731–1733 (2011).
    [Crossref] [PubMed]
  15. Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24(22), 25211–25223 (2016).
    [Crossref] [PubMed]
  16. L. Yuan, “Recent progress of in-fiber integrated interferometers,” Photonic Sens. 1(1), 1–5 (2011).
    [Crossref]
  17. B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
    [Crossref] [PubMed]
  18. M. Tang, Z. Zhao, L. Gan, H. Wu, R. Wang, B. Li, S. Fu, S. Liu, D. Liu, H. Wei, and W. Tong, “Spatial-division multiplexed optical sensing using MCF and FMF,” in Advanced Photonics, paper SoM2G.3 (2016).

2018 (2)

B. Luo, W. Yang, X. Hu, H. Lu, S. Shi, M. Zhao, Y. Lu, L. Xie, Z. Sun, and L. Zhang, “Study on vibration sensing performance of an equal strength cantilever beam based on an excessively tilted fiber grating,” Appl. Opt. 57(9), 2128–2134 (2018).
[Crossref] [PubMed]

Y. Zhao, F. Xia, M. Chen, and R. Lv, “Optical fiber low-frequency vibration sensor based on butterfly-shape Mach-Zehnder interferometer,” Sens. Actuators A Phys. 273, 107–112 (2018).
[Crossref]

2017 (3)

2016 (2)

2015 (2)

2013 (1)

2012 (2)

B. Xu, Y. Li, M. Sun, Z. W. Zhang, X. Y. Dong, Z. X. Zhang, and S. Z. Jin, “Acoustic vibration sensor based on nonadiabatic tapered fibers,” Opt. Lett. 37(22), 4768–4770 (2012).
[Crossref] [PubMed]

A. Wada, S. Tanaka, and N. Takahashi, “Optical fiber vibration sensor using FBG Fabry–Perot interferometer with wavelength scanning and Fourier analysis,” IEEE Sens. J. 12(1), 225–229 (2012).
[Crossref]

2011 (4)

L. Yuan, “Recent progress of in-fiber integrated interferometers,” Photonic Sens. 1(1), 1–5 (2011).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, Z. Q. Tou, and K. C. Leong, “Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation,” Opt. Lett. 36(9), 1731–1733 (2011).
[Crossref] [PubMed]

Y. Li, X. Wang, and X. Bao, “Sensitive acoustic vibration sensor using single-mode fiber tapers,” Appl. Opt. 50(13), 1873–1878 (2011).
[Crossref] [PubMed]

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2011).
[Crossref]

2010 (1)

Y. Huang, T. Guo, C. Lu, and H. Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photonics Technol. Lett. 22(16), 1235–1237 (2010).
[Crossref]

Amezcua-Correa, R.

Antonio-Lopez, E.

Bao, X.

Baset, F.

Bhardwaj, V. R.

Chan, C. C.

Chen, L. H.

Chen, M.

Y. Zhao, F. Xia, M. Chen, and R. Lv, “Optical fiber low-frequency vibration sensor based on butterfly-shape Mach-Zehnder interferometer,” Sens. Actuators A Phys. 273, 107–112 (2018).
[Crossref]

Dang, Y.

Dass, S.

Deng, L.

Dong, X. Y.

Duan, L.

Feng, Z.

Fu, S.

Guo, T.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2011).
[Crossref]

Y. Huang, T. Guo, C. Lu, and H. Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photonics Technol. Lett. 22(16), 1235–1237 (2010).
[Crossref]

Han, Y.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Harris, J.

Hu, M.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2011).
[Crossref]

Hu, X.

Huang, Y.

Y. Huang, T. Guo, C. Lu, and H. Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photonics Technol. Lett. 22(16), 1235–1237 (2010).
[Crossref]

Jha, R.

Jin, S. Z.

Leong, K. C.

Li, B.

Li, W.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Li, Y.

Liu, D.

Liu, S.

Lu, C.

Y. Huang, T. Guo, C. Lu, and H. Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photonics Technol. Lett. 22(16), 1235–1237 (2010).
[Crossref]

Lu, H.

Lu, P.

Lu, Y.

Luo, B.

Lv, R.

Y. Zhao, F. Xia, M. Chen, and R. Lv, “Optical fiber low-frequency vibration sensor based on butterfly-shape Mach-Zehnder interferometer,” Sens. Actuators A Phys. 273, 107–112 (2018).
[Crossref]

Qiao, X.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2011).
[Crossref]

Qin, Z.

Ran, Y.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Rohollahnejad, J.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Schülzgen, A.

Shi, S.

Shum, P. P.

Soto, M. A.

Sun, M.

Sun, Z.

Takahashi, N.

A. Wada, S. Tanaka, and N. Takahashi, “Optical fiber vibration sensor using FBG Fabry–Perot interferometer with wavelength scanning and Fourier analysis,” IEEE Sens. J. 12(1), 225–229 (2012).
[Crossref]

Tam, H. Y.

Y. Huang, T. Guo, C. Lu, and H. Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photonics Technol. Lett. 22(16), 1235–1237 (2010).
[Crossref]

Tanaka, S.

A. Wada, S. Tanaka, and N. Takahashi, “Optical fiber vibration sensor using FBG Fabry–Perot interferometer with wavelength scanning and Fourier analysis,” IEEE Sens. J. 12(1), 225–229 (2012).
[Crossref]

Tang, M.

Thévenaz, L.

Tong, W.

Tou, Z. Q.

Villatoro, J.

Wada, A.

A. Wada, S. Tanaka, and N. Takahashi, “Optical fiber vibration sensor using FBG Fabry–Perot interferometer with wavelength scanning and Fourier analysis,” IEEE Sens. J. 12(1), 225–229 (2012).
[Crossref]

Wang, M.

Wang, R.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2011).
[Crossref]

Wang, X.

Wen, Y.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Weng, Y.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2011).
[Crossref]

Wong, W. C.

Wu, H.

Wu, Q.

Xia, F.

Y. Zhao, F. Xia, M. Chen, and R. Lv, “Optical fiber low-frequency vibration sensor based on butterfly-shape Mach-Zehnder interferometer,” Sens. Actuators A Phys. 273, 107–112 (2018).
[Crossref]

Xia, L.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Xie, L.

Xu, B.

Xu, Y.

Xu, Z.

Yang, W.

Yuan, L.

L. Yuan, “Recent progress of in-fiber integrated interferometers,” Photonic Sens. 1(1), 1–5 (2011).
[Crossref]

Zhang, J.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2011).
[Crossref]

Zhang, L.

Zhang, Z. W.

Zhang, Z. X.

Zhao, M.

Zhao, Y.

Y. Zhao, F. Xia, M. Chen, and R. Lv, “Optical fiber low-frequency vibration sensor based on butterfly-shape Mach-Zehnder interferometer,” Sens. Actuators A Phys. 273, 107–112 (2018).
[Crossref]

Zhao, Z.

Zubia, J.

Appl. Opt. (2)

IEEE Photonics J. (1)

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Huang, T. Guo, C. Lu, and H. Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photonics Technol. Lett. 22(16), 1235–1237 (2010).
[Crossref]

IEEE Sens. J. (2)

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2011).
[Crossref]

A. Wada, S. Tanaka, and N. Takahashi, “Optical fiber vibration sensor using FBG Fabry–Perot interferometer with wavelength scanning and Fourier analysis,” IEEE Sens. J. 12(1), 225–229 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (5)

Opt. Lett. (3)

Photonic Sens. (1)

L. Yuan, “Recent progress of in-fiber integrated interferometers,” Photonic Sens. 1(1), 1–5 (2011).
[Crossref]

Sens. Actuators A Phys. (1)

Y. Zhao, F. Xia, M. Chen, and R. Lv, “Optical fiber low-frequency vibration sensor based on butterfly-shape Mach-Zehnder interferometer,” Sens. Actuators A Phys. 273, 107–112 (2018).
[Crossref]

Other (1)

M. Tang, Z. Zhao, L. Gan, H. Wu, R. Wang, B. Li, S. Fu, S. Liu, D. Liu, H. Wei, and W. Tong, “Spatial-division multiplexed optical sensing using MCF and FMF,” in Advanced Photonics, paper SoM2G.3 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Cross sectional view of the multi-core fiber used in the experiment.
Fig. 2
Fig. 2 Schematic diagram of the bent MCF with a bending radius of R. Core A and Core B represent the elongated outer side core and the compressed inner side core, respectively.
Fig. 3
Fig. 3 Experimental setup for the MCF based Michelson interferometer vibration sensor. PD: photodetector; PC: personal computer. The inset shows the packaged MCF fan-in coupler.
Fig. 4
Fig. 4 (a) The measured time-domain power signal of the MI within 1 second when 7 kHz vibration is applied on the MCF; (b) zoom-in view of the optical power spectrum; (c) the retrieved frequency spectrum obtained by FFT.
Fig. 5
Fig. 5 FFT spectra of the power signal measured by the MI vibration sensor when vibration is applied to the sensing fiber with vibration frequency from 1 kHz to 12 kHz at 1 kHz interval.
Fig. 6
Fig. 6 FFT spectra obtained by the MI sensors using different core pairs when 2 kHz vibration is applied to the MCF. The inset shows the zoom-in view of frequency spectrum around 2 kHz.
Fig. 7
Fig. 7 (a) The measured time-domain power signals of the MI when there is no vibration applied to the sensing fiber; (b) the retrieved frequency spectra obtained by FFT.

Tables (1)

Tables Icon

Table 1 The measured reflectivity of each core of the MCF

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(t)= | E 1 (t) | 2 + | E 2 (t) | 2 +2| E 1 (t) || E 2 (t) |cos(φ(t))
φ(t)= φ 1 (t) φ 2 (t)= 4πnl λ
ε i = d R cos( θ b θ i )

Metrics