Abstract

A focusing device is one of the key elements for terahertz applications, including homeland security, medicine, industrial inspection, and other fields. Sub-wavelength tight-focusing of terahertz waves is attractive for microscopy and spectroscopy. Flat optical lenses based on metasurfaces have shown potential in diffraction-limit focusing and advantages of ultrathin thickness and lightweight for large-aperture optics. However previously reported THz metalenses suffered from either polarization-dependency or small numerical aperture (NA), which greatly limits their focusing performance. In this paper, to achieve high-NA and polarization-free operation, we proposed a polarization-independent dielectric metasurface with a sub-wavelength period of 0.4λ. A planar terahertz lens based on such metasurface was designed for a wavelength of λ = 118.8 μm with a focal length of 100λ, a radius of 300λ, and a high NA of 0.95, which was fabricated with a silicon-on-insulator wafer. The experimental results demonstrate a tight focal spot with sub-wavelength full widths at half-maxima of 0.45λ and 0.61λ in the x and y directions, respectively, on the focal plane. In the x direction, the size of 0.45λ is even smaller than the diffraction limit 0.526λ (0.5λ/NA). Such a metalens is favorable for sub-wavelength tight-focusing terahertz waves with different polarizations, due to its polarization independence. The metalens has potential applications in THz imaging, spectroscopy, information processing, and communications, among others.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-dielectric metalens for terahertz wave imaging

Xue Jiang, Hao Chen, Zeyu Li, Hongkuan Yuan, Luyao Cao, Zhenfei Luo, Kun Zhang, Zhihai Zhang, Zhongquan Wen, Li-guo Zhu, Xun Zhou, Gaofeng Liang, Desheng Ruan, Lianghui Du, Lingfang Wang, and Gang Chen
Opt. Express 26(11) 14132-14142 (2018)

Thin high numerical aperture metalens

V. V. Kotlyar, A. G. Nalimov, S. S. Stafeev, Changyu Hu, L. O’Faolain, M. V. Kotlyar, D. Gibson, and S. Song
Opt. Express 25(7) 8158-8167 (2017)

Graphene aperture-based metalens for dynamic focusing of terahertz waves

Pei Ding, Yan Li, Li Shao, Ximin Tian, Junqiao Wang, and Chunzhen Fan
Opt. Express 26(21) 28038-28050 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. P. J. Parrott, Y. Sun, and E. P. MacPherson, “Terahertz spectroscopy: Its future role in medical diagnoses,” J. Mol. Struct. 1006(1-3), 66–76 (2011).
    [Crossref]
  2. Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83(4), 800–802 (2003).
    [Crossref]
  3. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [Crossref] [PubMed]
  4. H. Zhong, A. Redo-Sanchez, and X. C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system,” Opt. Express 14(20), 9130–9141 (2006).
    [Crossref] [PubMed]
  5. D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and Applications of Terahertz Imaging Non-Destructive Examination: Inspection of Space Shuttle Sprayed On Foam Insulation,” AIP Conf. Proc. 760, 570–577 (2005).
    [Crossref]
  6. K. Krügener, S. F. Busch, A. Soltani, E. C. Camus, M. Koch, and W. Viöl, “Non-destructive Analysis of Material Detachments from Polychromatically Glazed Terracotta Artwork by THz Time-of-Flight Spectroscopy,” J. Infrared Millim. THz Waves 38(4), 495–502 (2017).
  7. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  8. G. Chen, Y. Y. Li, X. Y. Wang, Z. Q. Wen, F. Lin, L. R. Dai, L. Chen, Y. H. He, and S. Liu, “Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array,” IEEE Photonic Tech. Lett. 28(3), 335–338 (2016).
    [Crossref]
  9. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
    [Crossref] [PubMed]
  10. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
    [Crossref] [PubMed]
  11. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  12. C. Pfeiffer and A. Grbic, “Bianisotropic Metasurfaces for Optimal Polarization Control: Analysis and Synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
    [Crossref]
  13. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  14. Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz All-Dielectric Magnetic Mirror Metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
    [Crossref]
  15. Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
    [Crossref]
  16. J. Ding, S. An, B. Zheng, and H. L. Zhang, “Multiwavelength Metasurfaces Based on Single-Layer Dual-Wavelength Meta-Atoms: Toward Complete Phase and Amplitude Modulations at Two Wavelengths,” Adv. Opt. Mater. 5(10), 1700079 (2017).
    [Crossref]
  17. R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz Artificial Dielectric Lens,” Sci. Rep. 6(1), 23023 (2016).
    [Crossref] [PubMed]
  18. Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, S. Zhang, J. G. Han, and W. L. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
    [Crossref]
  19. Q. L. Yang, J. Q. Gu, Y. H. Xu, X. Q. Zhang, Y. F. Li, C. M. Ouyang, Z. Tian, J. G. Han, and W. L. Zhang, “Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
    [Crossref]
  20. H. Yi, S. W. Qu, B. J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Flat Terahertz Reflective Focusing Metasurface with Scanning Ability,” Sci. Rep. 7(1), 3478 (2017).
    [Crossref] [PubMed]
  21. D. Jia, Y. Tian, W. Ma, X. Gong, J. Yu, G. Zhao, and X. Yu, “Transmissive terahertz metalens with full phase control based on a dielectric metasurface,” Opt. Lett. 42(21), 4494–4497 (2017).
    [Crossref] [PubMed]
  22. J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, “Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express 18(26), 27748–27757 (2010).
    [Crossref] [PubMed]
  23. A. Kannegulla and L. J. Cheng, “Subwavelength focusing of terahertz waves in silicon hyperbolic metamaterials,” Opt. Lett. 41(15), 3539–3542 (2016).
    [Crossref] [PubMed]
  24. L. M. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
    [Crossref]
  25. F. Gaufillet, S. Marcellin, and É. Akmansoy, “Dielectric Metamaterial-Based Gradient Index Lens in the Terahertz Frequency Range,” IEEE J. Quantum Electron. 23(4), 4700605 (2017).
  26. H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
    [Crossref]
  27. X. Jiang, H. Chen, Z. Li, H. Yuan, L. Cao, Z. Luo, K. Zhang, Z. Zhang, Z. Wen, L. G. Zhu, X. Zhou, G. Liang, D. Ruan, L. Du, L. Wang, and G. Chen, “All-dielectric metalens for terahertz wave imaging,” Opt. Express 26(11), 14132–14142 (2018).
    [Crossref] [PubMed]
  28. K. Khare, Fourier Optics and Computational Imaging (John Wiley & Sons, Ltd, 2015), Chap.10.
  29. T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: Effect on image structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046611 (2003).
    [Crossref] [PubMed]
  30. K. Huang, H. P. Ye, J. H. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
    [Crossref]
  31. E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. A 15(9), 094008 (2013).
    [Crossref]

2018 (2)

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

X. Jiang, H. Chen, Z. Li, H. Yuan, L. Cao, Z. Luo, K. Zhang, Z. Zhang, Z. Wen, L. G. Zhu, X. Zhou, G. Liang, D. Ruan, L. Du, L. Wang, and G. Chen, “All-dielectric metalens for terahertz wave imaging,” Opt. Express 26(11), 14132–14142 (2018).
[Crossref] [PubMed]

2017 (7)

Q. L. Yang, J. Q. Gu, Y. H. Xu, X. Q. Zhang, Y. F. Li, C. M. Ouyang, Z. Tian, J. G. Han, and W. L. Zhang, “Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

H. Yi, S. W. Qu, B. J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Flat Terahertz Reflective Focusing Metasurface with Scanning Ability,” Sci. Rep. 7(1), 3478 (2017).
[Crossref] [PubMed]

D. Jia, Y. Tian, W. Ma, X. Gong, J. Yu, G. Zhao, and X. Yu, “Transmissive terahertz metalens with full phase control based on a dielectric metasurface,” Opt. Lett. 42(21), 4494–4497 (2017).
[Crossref] [PubMed]

F. Gaufillet, S. Marcellin, and É. Akmansoy, “Dielectric Metamaterial-Based Gradient Index Lens in the Terahertz Frequency Range,” IEEE J. Quantum Electron. 23(4), 4700605 (2017).

K. Krügener, S. F. Busch, A. Soltani, E. C. Camus, M. Koch, and W. Viöl, “Non-destructive Analysis of Material Detachments from Polychromatically Glazed Terracotta Artwork by THz Time-of-Flight Spectroscopy,” J. Infrared Millim. THz Waves 38(4), 495–502 (2017).

Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
[Crossref]

J. Ding, S. An, B. Zheng, and H. L. Zhang, “Multiwavelength Metasurfaces Based on Single-Layer Dual-Wavelength Meta-Atoms: Toward Complete Phase and Amplitude Modulations at Two Wavelengths,” Adv. Opt. Mater. 5(10), 1700079 (2017).
[Crossref]

2016 (6)

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz Artificial Dielectric Lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz All-Dielectric Magnetic Mirror Metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

G. Chen, Y. Y. Li, X. Y. Wang, Z. Q. Wen, F. Lin, L. R. Dai, L. Chen, Y. H. He, and S. Liu, “Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array,” IEEE Photonic Tech. Lett. 28(3), 335–338 (2016).
[Crossref]

A. Kannegulla and L. J. Cheng, “Subwavelength focusing of terahertz waves in silicon hyperbolic metamaterials,” Opt. Lett. 41(15), 3539–3542 (2016).
[Crossref] [PubMed]

L. M. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

2015 (1)

Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, S. Zhang, J. G. Han, and W. L. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

2014 (2)

C. Pfeiffer and A. Grbic, “Bianisotropic Metasurfaces for Optimal Polarization Control: Analysis and Synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
[Crossref]

K. Huang, H. P. Ye, J. H. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

2013 (2)

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. A 15(9), 094008 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

2012 (2)

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

2011 (1)

E. P. J. Parrott, Y. Sun, and E. P. MacPherson, “Terahertz spectroscopy: Its future role in medical diagnoses,” J. Mol. Struct. 1006(1-3), 66–76 (2011).
[Crossref]

2010 (2)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, “Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express 18(26), 27748–27757 (2010).
[Crossref] [PubMed]

2006 (1)

2005 (1)

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and Applications of Terahertz Imaging Non-Destructive Examination: Inspection of Space Shuttle Sprayed On Foam Insulation,” AIP Conf. Proc. 760, 570–577 (2005).
[Crossref]

2003 (2)

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83(4), 800–802 (2003).
[Crossref]

T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: Effect on image structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046611 (2003).
[Crossref] [PubMed]

1995 (1)

Aieta, F.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

Akmansoy, É.

F. Gaufillet, S. Marcellin, and É. Akmansoy, “Dielectric Metamaterial-Based Gradient Index Lens in the Terahertz Frequency Range,” IEEE J. Quantum Electron. 23(4), 4700605 (2017).

Albella, P.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz All-Dielectric Magnetic Mirror Metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

An, S.

J. Ding, S. An, B. Zheng, and H. L. Zhang, “Multiwavelength Metasurfaces Based on Single-Layer Dual-Wavelength Meta-Atoms: Toward Complete Phase and Amplitude Modulations at Two Wavelengths,” Adv. Opt. Mater. 5(10), 1700079 (2017).
[Crossref]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Bai, X.

H. Yi, S. W. Qu, B. J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Flat Terahertz Reflective Focusing Metasurface with Scanning Ability,” Sci. Rep. 7(1), 3478 (2017).
[Crossref] [PubMed]

Beigang, R.

Busch, S. F.

K. Krügener, S. F. Busch, A. Soltani, E. C. Camus, M. Koch, and W. Viöl, “Non-destructive Analysis of Material Detachments from Polychromatically Glazed Terracotta Artwork by THz Time-of-Flight Spectroscopy,” J. Infrared Millim. THz Waves 38(4), 495–502 (2017).

Camus, E. C.

K. Krügener, S. F. Busch, A. Soltani, E. C. Camus, M. Koch, and W. Viöl, “Non-destructive Analysis of Material Detachments from Polychromatically Glazed Terracotta Artwork by THz Time-of-Flight Spectroscopy,” J. Infrared Millim. THz Waves 38(4), 495–502 (2017).

Cao, L.

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

Chan, C. H.

H. Yi, S. W. Qu, B. J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Flat Terahertz Reflective Focusing Metasurface with Scanning Ability,” Sci. Rep. 7(1), 3478 (2017).
[Crossref] [PubMed]

Chen, B. J.

H. Yi, S. W. Qu, B. J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Flat Terahertz Reflective Focusing Metasurface with Scanning Ability,” Sci. Rep. 7(1), 3478 (2017).
[Crossref] [PubMed]

Chen, G.

X. Jiang, H. Chen, Z. Li, H. Yuan, L. Cao, Z. Luo, K. Zhang, Z. Zhang, Z. Wen, L. G. Zhu, X. Zhou, G. Liang, D. Ruan, L. Du, L. Wang, and G. Chen, “All-dielectric metalens for terahertz wave imaging,” Opt. Express 26(11), 14132–14142 (2018).
[Crossref] [PubMed]

G. Chen, Y. Y. Li, X. Y. Wang, Z. Q. Wen, F. Lin, L. R. Dai, L. Chen, Y. H. He, and S. Liu, “Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array,” IEEE Photonic Tech. Lett. 28(3), 335–338 (2016).
[Crossref]

Chen, H.

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, L.

G. Chen, Y. Y. Li, X. Y. Wang, Z. Q. Wen, F. Lin, L. R. Dai, L. Chen, Y. H. He, and S. Liu, “Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array,” IEEE Photonic Tech. Lett. 28(3), 335–338 (2016).
[Crossref]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Cheng, L. J.

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Courjon, D.

T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: Effect on image structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046611 (2003).
[Crossref] [PubMed]

Dai, L. R.

G. Chen, Y. Y. Li, X. Y. Wang, Z. Q. Wen, F. Lin, L. R. Dai, L. Chen, Y. H. He, and S. Liu, “Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array,” IEEE Photonic Tech. Lett. 28(3), 335–338 (2016).
[Crossref]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Ding, J.

J. Ding, S. An, B. Zheng, and H. L. Zhang, “Multiwavelength Metasurfaces Based on Single-Layer Dual-Wavelength Meta-Atoms: Toward Complete Phase and Amplitude Modulations at Two Wavelengths,” Adv. Opt. Mater. 5(10), 1700079 (2017).
[Crossref]

Du, L.

Gaburro, Z.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

Gaufillet, F.

F. Gaufillet, S. Marcellin, and É. Akmansoy, “Dielectric Metamaterial-Based Gradient Index Lens in the Terahertz Frequency Range,” IEEE J. Quantum Electron. 23(4), 4700605 (2017).

Genevet, P.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

Gong, X.

Gong, Y. D.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz All-Dielectric Magnetic Mirror Metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Grbic, A.

C. Pfeiffer and A. Grbic, “Bianisotropic Metasurfaces for Optimal Polarization Control: Analysis and Synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
[Crossref]

Grosjean, T.

T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: Effect on image structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046611 (2003).
[Crossref] [PubMed]

Gu, J. Q.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, X. Q. Zhang, Y. F. Li, C. M. Ouyang, Z. Tian, J. G. Han, and W. L. Zhang, “Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, S. Zhang, J. G. Han, and W. L. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Han, J. G.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, X. Q. Zhang, Y. F. Li, C. M. Ouyang, Z. Tian, J. G. Han, and W. L. Zhang, “Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, S. Zhang, J. G. Han, and W. L. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Hanham, S. M.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz All-Dielectric Magnetic Mirror Metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Hattori, H. T.

L. M. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

He, Y. H.

G. Chen, Y. Y. Li, X. Y. Wang, Z. Q. Wen, F. Lin, L. R. Dai, L. Chen, Y. H. He, and S. Liu, “Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array,” IEEE Photonic Tech. Lett. 28(3), 335–338 (2016).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hong, M. H.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz All-Dielectric Magnetic Mirror Metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Hu, B. B.

Hu, C.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Huang, K.

K. Huang, H. P. Ye, J. H. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Ikari, T.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83(4), 800–802 (2003).
[Crossref]

Ishikawa, Y.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83(4), 800–802 (2003).
[Crossref]

Ito, H.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83(4), 800–802 (2003).
[Crossref]

Jia, D.

Jiang, X.

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Kannegulla, A.

Karl, N.

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz Artificial Dielectric Lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Kats, M. A.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

Kawase, K.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83(4), 800–802 (2003).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Koch, M.

K. Krügener, S. F. Busch, A. Soltani, E. C. Camus, M. Koch, and W. Viöl, “Non-destructive Analysis of Material Detachments from Polychromatically Glazed Terracotta Artwork by THz Time-of-Flight Spectroscopy,” J. Infrared Millim. THz Waves 38(4), 495–502 (2017).

Krolla, B.

Krügener, K.

K. Krügener, S. F. Busch, A. Soltani, E. C. Camus, M. Koch, and W. Viöl, “Non-destructive Analysis of Material Detachments from Polychromatically Glazed Terracotta Artwork by THz Time-of-Flight Spectroscopy,” J. Infrared Millim. THz Waves 38(4), 495–502 (2017).

Li, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Li, Y. F.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, X. Q. Zhang, Y. F. Li, C. M. Ouyang, Z. Tian, J. G. Han, and W. L. Zhang, “Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
[Crossref]

Li, Y. Y.

G. Chen, Y. Y. Li, X. Y. Wang, Z. Q. Wen, F. Lin, L. R. Dai, L. Chen, Y. H. He, and S. Liu, “Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array,” IEEE Photonic Tech. Lett. 28(3), 335–338 (2016).
[Crossref]

Li, Z.

Liang, G.

Lin, F.

G. Chen, Y. Y. Li, X. Y. Wang, Z. Q. Wen, F. Lin, L. R. Dai, L. Chen, Y. H. He, and S. Liu, “Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array,” IEEE Photonic Tech. Lett. 28(3), 335–338 (2016).
[Crossref]

Liu, L. M.

L. M. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

Liu, S.

G. Chen, Y. Y. Li, X. Y. Wang, Z. Q. Wen, F. Lin, L. R. Dai, L. Chen, Y. H. He, and S. Liu, “Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array,” IEEE Photonic Tech. Lett. 28(3), 335–338 (2016).
[Crossref]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Lu, H. T.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz All-Dielectric Magnetic Mirror Metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Luk’yanchuk, B.

K. Huang, H. P. Ye, J. H. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

Luo, Z.

Ma, W.

Ma, Z. J.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz All-Dielectric Magnetic Mirror Metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

MacPherson, E. P.

E. P. J. Parrott, Y. Sun, and E. P. MacPherson, “Terahertz spectroscopy: Its future role in medical diagnoses,” J. Mol. Struct. 1006(1-3), 66–76 (2011).
[Crossref]

Madaras, E. I.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and Applications of Terahertz Imaging Non-Destructive Examination: Inspection of Space Shuttle Sprayed On Foam Insulation,” AIP Conf. Proc. 760, 570–577 (2005).
[Crossref]

Maier, S. A.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz All-Dielectric Magnetic Mirror Metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Marcellin, S.

F. Gaufillet, S. Marcellin, and É. Akmansoy, “Dielectric Metamaterial-Based Gradient Index Lens in the Terahertz Frequency Range,” IEEE J. Quantum Electron. 23(4), 4700605 (2017).

Mendis, R.

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz Artificial Dielectric Lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Minamide, H.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83(4), 800–802 (2003).
[Crossref]

Mittleman, D. M.

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz Artificial Dielectric Lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Nagai, M.

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz Artificial Dielectric Lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Neshev, D. N.

L. M. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

Neu, J.

Ng, B. H.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz All-Dielectric Magnetic Mirror Metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Ng, K. B.

H. Yi, S. W. Qu, B. J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Flat Terahertz Reflective Focusing Metasurface with Scanning Ability,” Sci. Rep. 7(1), 3478 (2017).
[Crossref] [PubMed]

Nuss, M. C.

O’Hara, J. F.

Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Ouyang, C. M.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, X. Q. Zhang, Y. F. Li, C. M. Ouyang, Z. Tian, J. G. Han, and W. L. Zhang, “Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

Padilla, W. J.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Parrott, E. P. J.

E. P. J. Parrott, Y. Sun, and E. P. MacPherson, “Terahertz spectroscopy: Its future role in medical diagnoses,” J. Mol. Struct. 1006(1-3), 66–76 (2011).
[Crossref]

Paul, O.

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Bianisotropic Metasurfaces for Optimal Polarization Control: Analysis and Synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
[Crossref]

Powell, D. A.

L. M. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

Qiu, C. W.

K. Huang, H. P. Ye, J. H. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

Qu, S. W.

H. Yi, S. W. Qu, B. J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Flat Terahertz Reflective Focusing Metasurface with Scanning Ability,” Sci. Rep. 7(1), 3478 (2017).
[Crossref] [PubMed]

Rahm, M.

Redo-Sanchez, A.

Reinhard, B.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Rogers, E. T. F.

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. A 15(9), 094008 (2013).
[Crossref]

Ruan, D.

Shadrivov, I. V.

L. M. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

Soltani, A.

K. Krügener, S. F. Busch, A. Soltani, E. C. Camus, M. Koch, and W. Viöl, “Non-destructive Analysis of Material Detachments from Polychromatically Glazed Terracotta Artwork by THz Time-of-Flight Spectroscopy,” J. Infrared Millim. THz Waves 38(4), 495–502 (2017).

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Stuk, G.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and Applications of Terahertz Imaging Non-Destructive Examination: Inspection of Space Shuttle Sprayed On Foam Insulation,” AIP Conf. Proc. 760, 570–577 (2005).
[Crossref]

Sun, Y.

E. P. J. Parrott, Y. Sun, and E. P. MacPherson, “Terahertz spectroscopy: Its future role in medical diagnoses,” J. Mol. Struct. 1006(1-3), 66–76 (2011).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Teng, J. H.

K. Huang, H. P. Ye, J. H. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

Tian, C. X.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Tian, Y.

Tian, Z.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, X. Q. Zhang, Y. F. Li, C. M. Ouyang, Z. Tian, J. G. Han, and W. L. Zhang, “Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, S. Zhang, J. G. Han, and W. L. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Valdmanis, J. A.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and Applications of Terahertz Imaging Non-Destructive Examination: Inspection of Space Shuttle Sprayed On Foam Insulation,” AIP Conf. Proc. 760, 570–577 (2005).
[Crossref]

Viöl, W.

K. Krügener, S. F. Busch, A. Soltani, E. C. Camus, M. Koch, and W. Viöl, “Non-destructive Analysis of Material Detachments from Polychromatically Glazed Terracotta Artwork by THz Time-of-Flight Spectroscopy,” J. Infrared Millim. THz Waves 38(4), 495–502 (2017).

Wang, L.

Wang, Q.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, S. Zhang, J. G. Han, and W. L. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Wang, X. Y.

G. Chen, Y. Y. Li, X. Y. Wang, Z. Q. Wen, F. Lin, L. R. Dai, L. Chen, Y. H. He, and S. Liu, “Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array,” IEEE Photonic Tech. Lett. 28(3), 335–338 (2016).
[Crossref]

Wang, Y.

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz Artificial Dielectric Lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Watanabe, Y.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83(4), 800–802 (2003).
[Crossref]

Wen, Z.

Wen, Z. Q.

G. Chen, Y. Y. Li, X. Y. Wang, Z. Q. Wen, F. Lin, L. R. Dai, L. Chen, Y. H. He, and S. Liu, “Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array,” IEEE Photonic Tech. Lett. 28(3), 335–338 (2016).
[Crossref]

White, J. S.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and Applications of Terahertz Imaging Non-Destructive Examination: Inspection of Space Shuttle Sprayed On Foam Insulation,” AIP Conf. Proc. 760, 570–577 (2005).
[Crossref]

Williamson, S.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and Applications of Terahertz Imaging Non-Destructive Examination: Inspection of Space Shuttle Sprayed On Foam Insulation,” AIP Conf. Proc. 760, 570–577 (2005).
[Crossref]

Winfree, W. P.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and Applications of Terahertz Imaging Non-Destructive Examination: Inspection of Space Shuttle Sprayed On Foam Insulation,” AIP Conf. Proc. 760, 570–577 (2005).
[Crossref]

Xu, Q.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Xu, Y. H.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, X. Q. Zhang, Y. F. Li, C. M. Ouyang, Z. Tian, J. G. Han, and W. L. Zhang, “Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, S. Zhang, J. G. Han, and W. L. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Yang, Q. L.

Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, X. Q. Zhang, Y. F. Li, C. M. Ouyang, Z. Tian, J. G. Han, and W. L. Zhang, “Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

Ye, H. P.

K. Huang, H. P. Ye, J. H. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

Yeo, S. P.

K. Huang, H. P. Ye, J. H. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

Yi, H.

H. Yi, S. W. Qu, B. J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Flat Terahertz Reflective Focusing Metasurface with Scanning Ability,” Sci. Rep. 7(1), 3478 (2017).
[Crossref] [PubMed]

Yu, J.

Yu, N.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

Yu, Q.

Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
[Crossref]

Yu, X.

Yuan, H.

Yue, W. S.

Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, S. Zhang, J. G. Han, and W. L. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Zarate, Y.

L. M. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Zhang, H. F.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Zhang, H. L.

J. Ding, S. An, B. Zheng, and H. L. Zhang, “Multiwavelength Metasurfaces Based on Single-Layer Dual-Wavelength Meta-Atoms: Toward Complete Phase and Amplitude Modulations at Two Wavelengths,” Adv. Opt. Mater. 5(10), 1700079 (2017).
[Crossref]

Zhang, K.

Zhang, S.

Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, S. Zhang, J. G. Han, and W. L. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Zhang, W. L.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, X. Q. Zhang, Y. F. Li, C. M. Ouyang, Z. Tian, J. G. Han, and W. L. Zhang, “Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, S. Zhang, J. G. Han, and W. L. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Zhang, X. C.

Zhang, X. Q.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, X. Q. Zhang, Y. F. Li, C. M. Ouyang, Z. Tian, J. G. Han, and W. L. Zhang, “Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, S. Zhang, J. G. Han, and W. L. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Zhang, X. X.

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Zhang, Y.

Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
[Crossref]

Zhang, Z.

Zhao, G.

Zheludev, N. I.

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. A 15(9), 094008 (2013).
[Crossref]

Zheng, B.

J. Ding, S. An, B. Zheng, and H. L. Zhang, “Multiwavelength Metasurfaces Based on Single-Layer Dual-Wavelength Meta-Atoms: Toward Complete Phase and Amplitude Modulations at Two Wavelengths,” Adv. Opt. Mater. 5(10), 1700079 (2017).
[Crossref]

Zhong, H.

Zhou, X.

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Zhu, L. G.

Zimdars, D.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and Applications of Terahertz Imaging Non-Destructive Examination: Inspection of Space Shuttle Sprayed On Foam Insulation,” AIP Conf. Proc. 760, 570–577 (2005).
[Crossref]

ACS Photonics (1)

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz All-Dielectric Magnetic Mirror Metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Adv. Opt. Mater. (4)

J. Ding, S. An, B. Zheng, and H. L. Zhang, “Multiwavelength Metasurfaces Based on Single-Layer Dual-Wavelength Meta-Atoms: Toward Complete Phase and Amplitude Modulations at Two Wavelengths,” Adv. Opt. Mater. 5(10), 1700079 (2017).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, S. Zhang, J. G. Han, and W. L. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, X. Q. Zhang, Y. F. Li, C. M. Ouyang, Z. Tian, J. G. Han, and W. L. Zhang, “Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

AIP Conf. Proc. (1)

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and Applications of Terahertz Imaging Non-Destructive Examination: Inspection of Space Shuttle Sprayed On Foam Insulation,” AIP Conf. Proc. 760, 570–577 (2005).
[Crossref]

Appl. Phys. Lett. (2)

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83(4), 800–802 (2003).
[Crossref]

L. M. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

F. Gaufillet, S. Marcellin, and É. Akmansoy, “Dielectric Metamaterial-Based Gradient Index Lens in the Terahertz Frequency Range,” IEEE J. Quantum Electron. 23(4), 4700605 (2017).

IEEE Photonic Tech. Lett. (1)

G. Chen, Y. Y. Li, X. Y. Wang, Z. Q. Wen, F. Lin, L. R. Dai, L. Chen, Y. H. He, and S. Liu, “Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array,” IEEE Photonic Tech. Lett. 28(3), 335–338 (2016).
[Crossref]

IEEE Photonics J. (1)

Q. Yu, J. Q. Gu, Q. L. Yang, Y. Zhang, Y. F. Li, Z. Tian, C. M. Ouyang, J. G. Han, J. F. O’Hara, and W. L. Zhang, “All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas,” IEEE Photonics J. 9(4), 5900609 (2017).
[Crossref]

J. Infrared Millim. THz Waves (1)

K. Krügener, S. F. Busch, A. Soltani, E. C. Camus, M. Koch, and W. Viöl, “Non-destructive Analysis of Material Detachments from Polychromatically Glazed Terracotta Artwork by THz Time-of-Flight Spectroscopy,” J. Infrared Millim. THz Waves 38(4), 495–502 (2017).

J. Mol. Struct. (1)

E. P. J. Parrott, Y. Sun, and E. P. MacPherson, “Terahertz spectroscopy: Its future role in medical diagnoses,” J. Mol. Struct. 1006(1-3), 66–76 (2011).
[Crossref]

J. Opt. A (1)

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. A 15(9), 094008 (2013).
[Crossref]

Laser Photonics Rev. (1)

K. Huang, H. P. Ye, J. H. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

Nano Lett. (2)

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Appl. (1)

C. Pfeiffer and A. Grbic, “Bianisotropic Metasurfaces for Optimal Polarization Control: Analysis and Synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: Effect on image structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046611 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Sci. Rep. (2)

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz Artificial Dielectric Lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

H. Yi, S. W. Qu, B. J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Flat Terahertz Reflective Focusing Metasurface with Scanning Ability,” Sci. Rep. 7(1), 3478 (2017).
[Crossref] [PubMed]

Science (2)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Other (1)

K. Khare, Fourier Optics and Computational Imaging (John Wiley & Sons, Ltd, 2015), Chap.10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Cube-shaped Si metasurface structure on a SiO2-Si substrate.
Fig. 2
Fig. 2 (a) Amplitude and (b) phase-shift (in rads) dependence on the parameters of metasurface period P and metasurface structure size L.
Fig. 3
Fig. 3 Phase shift and amplitude transmittance of the eight metasurface structures, listed in Table 1, at normal incident wave.
Fig. 4
Fig. 4 (a) Amplitude transmittance and phase shift of transmitted wave with respect to THz-wave wavelength for the eight different metasurface elements under study; (b) amplitude transmittance and phase shift of transmitted wave at different incident angles, i.e., 0°,22.5°, 45°, and 67.5°, for the eight different metasurface elements.
Fig. 5
Fig. 5 Theoretical simulation results: the optical intensity on the focal plane obtained under the illumination of linearly polarized (in y-direction) plane wave using the angular spectrum method. (a)-(d) Two-dimensional intensity profile on the focal plane for different α value of 1, 2, 3 and 4 ; The inset of (a) is the focal plane intensity distribution with transverse electrical fields only; (e) and (f) are the intensity curves on the x and y axis, respectively, for different α value of 1, 2, 3 and 4, where Etrans and Etotal denote transverse and total electrical field components, respectively
Fig. 6
Fig. 6 The major parameters of the focused transverse electrical field: the peak intensity (red), FWHM (blue), and sidelobe ratio (green) along the optical axis, where the corresponding lens diffraction limit (blacked-dashed) and super-oscillation criteria (brawn-dashed) were also plotted for comparison.
Fig. 7
Fig. 7 (a) Photograph of the metalens based on a dielectric metasurface; (b) optical microscope image of central area of metalens; (c) diagram of the focusing experimental layout.
Fig. 8
Fig. 8 Experimental results: the optical intensity on the focal plane obtained under the illumination of a linearly polarized wave by a THz focal-plane-array microbolometer. (a) Two-dimensional intensity profile on the focal plane, and the inset is the beam profile before expansion; (b) and (c) are the intensity curves (blue) in the x and y directions, respectively, where the red curves are the corresponding Gaussian fits of the peaks.

Tables (1)

Tables Icon

Table 1 Major parameters of the eight elements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( x i , j , y i , j ) = 2 π n 2 π λ ( x i , j 2 + y i , j 2 + f 2 f ) ,

Metrics