Abstract

Simultaneously obtaining high photon emission rate and collection efficiency is highly desirable for applications of single photon sources. However, it remains great challenging and is seldom reported before. Here, we demonstrate that highly enhanced radiation of the emitter and efficient collection of the emitted photons can be simultaneously fulfilled in a hybrid photonic-plasmonic cavity which comprises of an Au nanorod dimer and a photonic crystal nanobeam cavity with a collecting waveguide, where the resonance wavelength of nanobeam cavity is red-detuned from that of the Au nanorod dimer. Our calculations show that the spontaneous emission rate of a single emitter can be enhanced by 5060 -folds, correspondingly, the far-field radiation efficiency and collection efficiency into a dielectric waveguide reaches ~97% and ~67%, respectively. The proposed mechanism paves the way towards the practical applications in ultra-bright on-chip single photon sources and plasmon-based nanolasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Controlling collective spontaneous emission with plasmonic waveguides

Ying Li and Christos Argyropoulos
Opt. Express 24(23) 26696-26708 (2016)

Hyperbolic metamaterial resonator–antenna scheme for large, broadband emission enhancement and single-photon collection

Faraz A. Inam, Nadeem Ahmed, Michael J. Steel, and Stefania Castelletto
J. Opt. Soc. Am. B 35(9) 2153-2162 (2018)

Dark dimer mode excitation and strong coupling with a nanorod dipole

Yixiao Gao, Ning Zhou, Zhangxing Shi, Xin Guo, and Limin Tong
Photon. Res. 6(9) 887-892 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. R. N. Gisin, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  2. D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics — photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
    [Crossref]
  3. T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
    [Crossref] [PubMed]
  4. M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
    [Crossref] [PubMed]
  5. E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69(1-2), 37–38 (1946).
    [Crossref]
  6. H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, “High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity,” Opt. Express 12(8), 1708–1719 (2004).
    [Crossref] [PubMed]
  7. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
    [Crossref] [PubMed]
  8. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290(5500), 2282–2285 (2000).
    [Crossref] [PubMed]
  9. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
    [Crossref]
  10. T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities,” Nano Lett. 16(1), 270–275 (2016).
    [Crossref] [PubMed]
  11. S.-H. Kwon, “Deep subwavelength plasmonic whispering-gallery-mode cavity,” Opt. Express 20(22), 24918–24924 (2012).
    [Crossref] [PubMed]
  12. Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
    [Crossref]
  13. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
    [Crossref]
  14. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
    [Crossref] [PubMed]
  15. K. J. Russell and E. L. Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97(16), 163115 (2010).
    [Crossref]
  16. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  17. J.-H. Kang, Y.-S. No, S.-H. Kwon, and H.-G. Park, “Ultrasmall subwavelength nanorod plasmonic cavity,” Opt. Lett. 36(11), 2011–2013 (2011).
    [Crossref] [PubMed]
  18. R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2(12), 1739–1744 (2015).
    [Crossref]
  19. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
    [Crossref] [PubMed]
  20. J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
    [Crossref] [PubMed]
  21. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
    [Crossref] [PubMed]
  22. V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69(1), 013812 (2004).
    [Crossref]
  23. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
    [Crossref] [PubMed]
  24. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
    [Crossref] [PubMed]
  25. T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
    [Crossref] [PubMed]
  26. A. E. Eter, T. Grosjean, P. Viktorovitch, X. Letartre, T. Benyattou, and F. I. Baida, “Huge light-enhancement by coupling a Bowtie Nano-antenna’s plasmonic resonance to a photonic crystal mode,” Opt. Express 22(12), 14464–14472 (2014).
    [Crossref] [PubMed]
  27. H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
    [Crossref]
  28. H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient single photon emission and collection based on excitation of gap surface plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
    [Crossref] [PubMed]
  29. K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
    [Crossref]
  30. J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, and Q. Gong, “Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection,” Phys. Rev. Lett. 118(7), 073604 (2017).
    [Crossref] [PubMed]
  31. B. Gurlek, V. Sandoghdar, and D. Martín-Cano, “Manipulation of quenching in nanoantenna–emitter systems enabled by external detuned cavities: a path to enhance strong-coupling,” ACS Photonics 5(2), 456–461 (2018).
    [Crossref]
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  33. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]
  34. G. Chen, Y.-C. Yu, X.-L. Zhuo, Y.-G. Huang, H. Jiang, J.-F. Liu, C.-J. Jin, and X.-H. Wang, “Ab initiodetermination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 87(19), 195138 (2013).
    [Crossref]
  35. V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
    [Crossref] [PubMed]
  36. D. Conteduca, C. Reardon, M. G. Scullion, F. Dell’Olio, M. N. Armenise, T. F. Krauss, and C. Ciminelli, “Ultra-high Q/V hybrid cavity for strong light-matter interaction,” APL Photonics 2(8), 086101 (2017).
    [Crossref]
  37. M. Kamandar Dezfouli, R. Gordon, and S. Hughes, “Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system,” Phys. Rev. A (Coll. Park) 95(1), 013846 (2017).
    [Crossref]
  38. F. I. Baida and T. Grosjean, “Double-way spectral tunability for the control of optical nanocavity resonance,” Sci. Rep. 5(1), 17907 (2016).
    [Crossref] [PubMed]
  39. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95(15), 153904 (2005).
    [Crossref] [PubMed]
  40. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35(24), 4208–4210 (2010).
    [Crossref] [PubMed]
  41. P. T. Kristensen, C. Van Vlack, and S. Hughes, “Generalized effective mode volume for leaky optical cavities,” Opt. Lett. 37(10), 1649–1651 (2012).
    [Crossref] [PubMed]
  42. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
    [Crossref] [PubMed]
  43. A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
    [Crossref] [PubMed]

2018 (1)

B. Gurlek, V. Sandoghdar, and D. Martín-Cano, “Manipulation of quenching in nanoantenna–emitter systems enabled by external detuned cavities: a path to enhance strong-coupling,” ACS Photonics 5(2), 456–461 (2018).
[Crossref]

2017 (3)

J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, and Q. Gong, “Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection,” Phys. Rev. Lett. 118(7), 073604 (2017).
[Crossref] [PubMed]

D. Conteduca, C. Reardon, M. G. Scullion, F. Dell’Olio, M. N. Armenise, T. F. Krauss, and C. Ciminelli, “Ultra-high Q/V hybrid cavity for strong light-matter interaction,” APL Photonics 2(8), 086101 (2017).
[Crossref]

M. Kamandar Dezfouli, R. Gordon, and S. Hughes, “Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system,” Phys. Rev. A (Coll. Park) 95(1), 013846 (2017).
[Crossref]

2016 (4)

F. I. Baida and T. Grosjean, “Double-way spectral tunability for the control of optical nanocavity resonance,” Sci. Rep. 5(1), 17907 (2016).
[Crossref] [PubMed]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
[Crossref]

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

2015 (4)

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient single photon emission and collection based on excitation of gap surface plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref] [PubMed]

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2(12), 1739–1744 (2015).
[Crossref]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

2014 (8)

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

A. E. Eter, T. Grosjean, P. Viktorovitch, X. Letartre, T. Benyattou, and F. I. Baida, “Huge light-enhancement by coupling a Bowtie Nano-antenna’s plasmonic resonance to a photonic crystal mode,” Opt. Express 22(12), 14464–14472 (2014).
[Crossref] [PubMed]

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics — photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

2013 (1)

G. Chen, Y.-C. Yu, X.-L. Zhuo, Y.-G. Huang, H. Jiang, J.-F. Liu, C.-J. Jin, and X.-H. Wang, “Ab initiodetermination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 87(19), 195138 (2013).
[Crossref]

2012 (4)

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

S.-H. Kwon, “Deep subwavelength plasmonic whispering-gallery-mode cavity,” Opt. Express 20(22), 24918–24924 (2012).
[Crossref] [PubMed]

P. T. Kristensen, C. Van Vlack, and S. Hughes, “Generalized effective mode volume for leaky optical cavities,” Opt. Lett. 37(10), 1649–1651 (2012).
[Crossref] [PubMed]

2011 (2)

J.-H. Kang, Y.-S. No, S.-H. Kwon, and H.-G. Park, “Ultrasmall subwavelength nanorod plasmonic cavity,” Opt. Lett. 36(11), 2011–2013 (2011).
[Crossref] [PubMed]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

2010 (6)

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

K. J. Russell and E. L. Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97(16), 163115 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35(24), 4208–4210 (2010).
[Crossref] [PubMed]

2008 (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

2007 (1)

2005 (1)

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95(15), 153904 (2005).
[Crossref] [PubMed]

2004 (2)

2002 (2)

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

G. R. N. Gisin, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1946 (1)

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69(1-2), 37–38 (1946).
[Crossref]

Aichele, T.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Arakawa, Y.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Arcari, M.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Argyropoulos, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Arita, M.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Armenise, M. N.

D. Conteduca, C. Reardon, M. G. Scullion, F. Dell’Olio, M. N. Armenise, T. F. Krauss, and C. Ciminelli, “Ultra-high Q/V hybrid cavity for strong light-matter interaction,” APL Photonics 2(8), 086101 (2017).
[Crossref]

Baba, T.

Babinec, T. M.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Badolato, A.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Baida, F. I.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barrow, S. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Barth, M.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Baumberg, J. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Becker, J.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Belarouci, A.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Benson, O.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Benyattou, T.

Benz, F.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Bleuse, J.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Bravo-Abad, J.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Buchler, B. C.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95(15), 153904 (2005).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Callard, S.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Carminati, R.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Castanié, E.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Chang, D. E.

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics — photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

Chen, G.

G. Chen, Y.-C. Yu, X.-L. Zhuo, Y.-G. Huang, H. Jiang, J.-F. Liu, C.-J. Jin, and X.-H. Wang, “Ab initiodetermination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 87(19), 195138 (2013).
[Crossref]

Chevalier, C.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Chikkaraddy, R.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Choi, K.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ciminelli, C.

D. Conteduca, C. Reardon, M. G. Scullion, F. Dell’Olio, M. N. Armenise, T. F. Krauss, and C. Ciminelli, “Ultra-high Q/V hybrid cavity for strong light-matter interaction,” APL Photonics 2(8), 086101 (2017).
[Crossref]

Ciracì, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Claudon, J.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Conteduca, D.

D. Conteduca, C. Reardon, M. G. Scullion, F. Dell’Olio, M. N. Armenise, T. F. Krauss, and C. Ciminelli, “Ultra-high Q/V hybrid cavity for strong light-matter interaction,” APL Photonics 2(8), 086101 (2017).
[Crossref]

Creasey, M.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Cui, S.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

de Nijs, B.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

De Wilde, Y.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Delga, A.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

Dell’Olio, F.

D. Conteduca, C. Reardon, M. G. Scullion, F. Dell’Olio, M. N. Armenise, T. F. Krauss, and C. Ciminelli, “Ultra-high Q/V hybrid cavity for strong light-matter interaction,” APL Photonics 2(8), 086101 (2017).
[Crossref]

Demetriadou, A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Doeleman, H. M.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
[Crossref]

Ducloy, M.

V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69(1), 013812 (2004).
[Crossref]

Eter, A. E.

Faggiani, R.

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2(12), 1739–1744 (2015).
[Crossref]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Feist, J.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

Feng, D.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Fischer, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Fox, P.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Galli, M.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Garcia-Vidal, F. J.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

Gerace, D.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Gérard, J. M.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Gisin, G. R. N.

G. R. N. Gisin, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Gong, Q.

J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, and Q. Gong, “Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection,” Phys. Rev. Lett. 118(7), 073604 (2017).
[Crossref] [PubMed]

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient single photon emission and collection based on excitation of gap surface plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref] [PubMed]

Gordon, R.

M. Kamandar Dezfouli, R. Gordon, and S. Hughes, “Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system,” Phys. Rev. A (Coll. Park) 95(1), 013846 (2017).
[Crossref]

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Grosjean, T.

Gu, Y.

J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, and Q. Gong, “Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection,” Phys. Rev. Lett. 118(7), 073604 (2017).
[Crossref] [PubMed]

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient single photon emission and collection based on excitation of gap surface plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref] [PubMed]

Gurlek, B.

B. Gurlek, V. Sandoghdar, and D. Martín-Cano, “Manipulation of quenching in nanoantenna–emitter systems enabled by external detuned cavities: a path to enhance strong-coupling,” ACS Photonics 5(2), 456–461 (2018).
[Crossref]

Hakuta, K.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

Hausmann, B. J.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Hemmer, P. R.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Hess, O.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Holmes, M. J.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Hu, E. L.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

K. J. Russell and E. L. Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97(16), 163115 (2010).
[Crossref]

Huang, J.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Huang, Y.-G.

G. Chen, Y.-C. Yu, X.-L. Zhuo, Y.-G. Huang, H. Jiang, J.-F. Liu, C.-J. Jin, and X.-H. Wang, “Ab initiodetermination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 87(19), 195138 (2013).
[Crossref]

Hughes, S.

M. Kamandar Dezfouli, R. Gordon, and S. Hughes, “Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system,” Phys. Rev. A (Coll. Park) 95(1), 013846 (2017).
[Crossref]

P. T. Kristensen, C. Van Vlack, and S. Hughes, “Generalized effective mode volume for leaky optical cavities,” Opt. Lett. 37(10), 1649–1651 (2012).
[Crossref] [PubMed]

Hugonin, J. P.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Jamois, C.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Javadi, A.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Jiang, H.

G. Chen, Y.-C. Yu, X.-L. Zhuo, Y.-G. Huang, H. Jiang, J.-F. Liu, C.-J. Jin, and X.-H. Wang, “Ab initiodetermination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 87(19), 195138 (2013).
[Crossref]

Jin, C.-J.

G. Chen, Y.-C. Yu, X.-L. Zhuo, Y.-G. Huang, H. Jiang, J.-F. Liu, C.-J. Jin, and X.-H. Wang, “Ab initiodetermination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 87(19), 195138 (2013).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kafesaki, M.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95(15), 153904 (2005).
[Crossref] [PubMed]

Kako, S.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Kamandar Dezfouli, M.

M. Kamandar Dezfouli, R. Gordon, and S. Hughes, “Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system,” Phys. Rev. A (Coll. Park) 95(1), 013846 (2017).
[Crossref]

Kang, J.-H.

Khan, M.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

Kim, G. H.

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Kita, S.

Klimov, V. V.

V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69(1), 013812 (2004).
[Crossref]

Koenderink, A. F.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
[Crossref]

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35(24), 4208–4210 (2010).
[Crossref] [PubMed]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95(15), 153904 (2005).
[Crossref] [PubMed]

Krachmalnicoff, V.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Krauss, T. F.

D. Conteduca, C. Reardon, M. G. Scullion, F. Dell’Olio, M. N. Armenise, T. F. Krauss, and C. Ciminelli, “Ultra-high Q/V hybrid cavity for strong light-matter interaction,” APL Photonics 2(8), 086101 (2017).
[Crossref]

Kristensen, P. T.

Kwon, S.-H.

Lai, Y.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Lalanne, P.

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2(12), 1739–1744 (2015).
[Crossref]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Le Kien, F.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

Lee, E. H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Lee, Y. H.

Letartre, X.

Lian, H.

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient single photon emission and collection based on excitation of gap surface plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref] [PubMed]

Lindskov Hansen, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Liu, J.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Liu, J.-F.

G. Chen, Y.-C. Yu, X.-L. Zhuo, Y.-G. Huang, H. Jiang, J.-F. Liu, C.-J. Jin, and X.-H. Wang, “Ab initiodetermination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 87(19), 195138 (2013).
[Crossref]

Liu, T.-L.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Löchel, B.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Lodahl, P.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Loncar, M.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Lukin, M. D.

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics — photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Maksymov, I.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Malik, N. S.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Martín-Cano, D.

B. Gurlek, V. Sandoghdar, and D. Martín-Cano, “Manipulation of quenching in nanoantenna–emitter systems enabled by external detuned cavities: a path to enhance strong-coupling,” ACS Photonics 5(2), 456–461 (2018).
[Crossref]

Maze, J. R.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Minkov, M.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

No, Y.-S.

Notomi, M.

Nozaki, K.

Nüsse, N.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Park, H.-G.

Pelton, M.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Pirotta, S.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Plant, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Pound, R. V.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69(1-2), 37–38 (1946).
[Crossref]

Purcell, E. M.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69(1-2), 37–38 (1946).
[Crossref]

Reardon, C.

D. Conteduca, C. Reardon, M. G. Scullion, F. Dell’Olio, M. N. Armenise, T. F. Krauss, and C. Ciminelli, “Ultra-high Q/V hybrid cavity for strong light-matter interaction,” APL Photonics 2(8), 086101 (2017).
[Crossref]

Ren, J.

J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, and Q. Gong, “Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection,” Phys. Rev. Lett. 118(7), 073604 (2017).
[Crossref] [PubMed]

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient single photon emission and collection based on excitation of gap surface plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref] [PubMed]

Rosta, E.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Russell, K. J.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

K. J. Russell and E. L. Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97(16), 163115 (2010).
[Crossref]

Ryu, H. Y.

Sandoghdar, V.

B. Gurlek, V. Sandoghdar, and D. Martín-Cano, “Manipulation of quenching in nanoantenna–emitter systems enabled by external detuned cavities: a path to enhance strong-coupling,” ACS Photonics 5(2), 456–461 (2018).
[Crossref]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95(15), 153904 (2005).
[Crossref] [PubMed]

Santori, C.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Savona, V.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Scherman, O. A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Schietinger, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Scullion, M. G.

D. Conteduca, C. Reardon, M. G. Scullion, F. Dell’Olio, M. N. Armenise, T. F. Krauss, and C. Ciminelli, “Ultra-high Q/V hybrid cavity for strong light-matter interaction,” APL Photonics 2(8), 086101 (2017).
[Crossref]

Smith, D. R.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Söllner, I.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Solomon, G. S.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Song, J. D.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Sönnichsen, C.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Stobbe, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Thyrrestrup, H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Tittel, W.

G. R. N. Gisin, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Torrey, H. C.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69(1-2), 37–38 (1946).
[Crossref]

Urbinati, G.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Van Vlack, C.

Verhagen, E.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
[Crossref]

Viktorovitch, P.

Vuckovic, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Vuletic, V.

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics — photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

Wang, L.

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient single photon emission and collection based on excitation of gap surface plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref] [PubMed]

Wang, X.-H.

G. Chen, Y.-C. Yu, X.-L. Zhuo, Y.-G. Huang, H. Jiang, J.-F. Liu, C.-J. Jin, and X.-H. Wang, “Ab initiodetermination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 87(19), 195138 (2013).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Yalla, R.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Yang, J.

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2(12), 1739–1744 (2015).
[Crossref]

Yu, Y.-C.

G. Chen, Y.-C. Yu, X.-L. Zhuo, Y.-G. Huang, H. Jiang, J.-F. Liu, C.-J. Jin, and X.-H. Wang, “Ab initiodetermination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 87(19), 195138 (2013).
[Crossref]

Zbinden, H.

G. R. N. Gisin, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Zhang, B.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Zhang, F.

J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, and Q. Gong, “Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection,” Phys. Rev. Lett. 118(7), 073604 (2017).
[Crossref] [PubMed]

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient single photon emission and collection based on excitation of gap surface plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Zhang, T.

J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, and Q. Gong, “Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection,” Phys. Rev. Lett. 118(7), 073604 (2017).
[Crossref] [PubMed]

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Zhang, Y.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Zhao, D.

J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, and Q. Gong, “Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection,” Phys. Rev. Lett. 118(7), 073604 (2017).
[Crossref] [PubMed]

Zhuo, X.-L.

G. Chen, Y.-C. Yu, X.-L. Zhuo, Y.-G. Huang, H. Jiang, J.-F. Liu, C.-J. Jin, and X.-H. Wang, “Ab initiodetermination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 87(19), 195138 (2013).
[Crossref]

ACS Photonics (3)

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2(12), 1739–1744 (2015).
[Crossref]

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
[Crossref]

B. Gurlek, V. Sandoghdar, and D. Martín-Cano, “Manipulation of quenching in nanoantenna–emitter systems enabled by external detuned cavities: a path to enhance strong-coupling,” ACS Photonics 5(2), 456–461 (2018).
[Crossref]

APL Photonics (1)

D. Conteduca, C. Reardon, M. G. Scullion, F. Dell’Olio, M. N. Armenise, T. F. Krauss, and C. Ciminelli, “Ultra-high Q/V hybrid cavity for strong light-matter interaction,” APL Photonics 2(8), 086101 (2017).
[Crossref]

Appl. Phys. Lett. (2)

K. J. Russell and E. L. Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97(16), 163115 (2010).
[Crossref]

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Nano Lett. (3)

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Nat. Photonics (3)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics — photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Nature (1)

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. (1)

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69(1-2), 37–38 (1946).
[Crossref]

Phys. Rev. A (1)

V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69(1), 013812 (2004).
[Crossref]

Phys. Rev. A (Coll. Park) (1)

M. Kamandar Dezfouli, R. Gordon, and S. Hughes, “Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system,” Phys. Rev. A (Coll. Park) 95(1), 013846 (2017).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

G. Chen, Y.-C. Yu, X.-L. Zhuo, Y.-G. Huang, H. Jiang, J.-F. Liu, C.-J. Jin, and X.-H. Wang, “Ab initiodetermination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 87(19), 195138 (2013).
[Crossref]

Phys. Rev. Lett. (9)

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, and Q. Gong, “Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection,” Phys. Rev. Lett. 118(7), 073604 (2017).
[Crossref] [PubMed]

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient single photon emission and collection based on excitation of gap surface plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref] [PubMed]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95(15), 153904 (2005).
[Crossref] [PubMed]

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

G. R. N. Gisin, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Sci. Rep. (1)

F. I. Baida and T. Grosjean, “Double-way spectral tunability for the control of optical nanocavity resonance,” Sci. Rep. 5(1), 17907 (2016).
[Crossref] [PubMed]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of an Au nanorod dimer coupled with a photonic crystal nanobeam cavity with a collecting waveguide. The nanobeam cavity is composed of a tapering region, two mirror sections and a collecting waveguide. (b), (c) Details of an Au nanorod dimer directly placed on the nanobeam and on a dielectric spacer, respectively. The cross section length s of the Au nanorod is 40 nm and the length l of the Au nanorod and the gap distance d of the Au nanorod dimer is tunable. The two ends of the Au nanorod are ground with a radius of 8 nm. The width ws of the spacer layer in (c) is set to 90 nm. (d) The electric field | E |distribution of the eigenmode of the nanobeam cavity. (e) The energy band structure of the nanobeam with the lattice constant Λ=394 nm, the width w=460 nm and the height h=220 nm. The black and red lines denote the cases of the air holes with radius r to be 118 and 133 nm, respectively. (f) The extinction cross section of the Au nanorod dimer on Si substrate, the parameters d and l are set to be 20 nm and 80 nm, respectively. The insert shows the electric field distribution around the Au nanorod dimer.
Fig. 2
Fig. 2 Purcell factor F p of the emitter as a function of emission wavelength. (a) F p of the emitter placed into the gap of the bare Au nanorod dimer on Si substrate and 20 nm above the Si substrate surface (the blue line), and between the two central air holes of the bare nanobeam cavity and 20 nm above the surface of the nanobeam cavity (the orange and magenta lines). (b) F p of the emitter placed into the gap of the Au nanorod dimer in the photonic-plasmonic hybrid cavity and 20 nm above the surface of the nanobeam. The other parameters are set as follows: l=80 nm, d=20 nm, N=1.
Fig. 3
Fig. 3 Electric field distribution in hybrid cavity. (a) at y=240 nm plane (at the mid-plane of Au nanorod dimer), (b) at y=220 nm plane (at the beam surface), (c) at y=110 nm plane (in the middle of the photonic crystal nanobeam). Since the field intensity in dimer gap is several orders of magnitude larger than in nanobeam, the logarithmic value scale of lg( | E | ) is used to better highlight the spatial distribution of the electric field. The parameters are set as follows: l=80 nm, d=20 nm, N=1.
Fig. 4
Fig. 4 Purcell factor F p , radiation efficiency and collection efficiency as a function of l. (a) Purcell factor F p of the emitter in the hybrid cavity as a function of l. (b) Far-field radiation efficiency as a function of l. (c) Collection efficiency of the photons into the collecting waveguide as a function of l. The black circle dot lines represent the case that there have no spacer between the Au nanorod dimer and the nanobeam. The magenta hexagon dot lines and the cyan rhomboidal dot lines represent the cases of hs=10 nm and hs=20 nm, respectively. The other parameters are set as follows: d=20 nm and N=1.
Fig. 5
Fig. 5 Purcell factor F p , radiation and collection efficiency as a function of the gap distance d. (a) Purcell factor F p of the emitter in the hybrid cavity. (b) Radiation and collection efficiency. The magenta rhomboidal dot line and orange circle dot line in (b) represent the radiation efficiency and collection efficiency, respectively. The geometrical parameters are set as follows: hs=10 nm, l=80 nm and N=1.
Fig. 6
Fig. 6 Purcell factor F p , radiation and collection efficiency as a function of the air holes number N of left mirror. (a) Purcell factor F p of the emitter in the hybrid cavity as a function of N. (b) Radiation and collection efficiency as a function of N. The orange circle dot line and the cyan rhomboidal dot line in (b) represent the radiation efficiency and collection efficiency, respectively. The parameters are set as follows: hs=10 nm, d=20 nm and l=80 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Γ( r 0 ,ω,d)= Γ 0 F p ( r 0 ,ω,d),
η c = Γ c Γ ,
η r = Γ r Γ ,
V eff = v ε(r) | E(r) | 2 dv ε( r 0 ) | E( r 0 ) | 2 ,
V eff = 3 4 π 2 ε( r 0 ) Q F P λ 3 ,

Metrics