Abstract

Coherent beam combining in tiled-aperture configuration is demonstrated on seven femtosecond fiber amplifiers using an interferometric phase measurement technique. The residual phase error between two fibers is as low as λ/55 RMS and a combination efficiency of 48% has been achieved. The combined pulses are compressed to 216 fs, delivering 71 W average power at a repetition rate of 55 MHz. Operating the laser system in a nonlinear regime with an estimated B-integral of 5 rad yields a combining efficiency of 45% with the same phase stability. These results pave the way to very large high-power and high energy coherent beam combining systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier

Lourdes Patricia Ramirez, Marc Hanna, Géraud Bouwmans, Hicham El Hamzaoui, Mohamed Bouazaoui, Damien Labat, Karen Delplace, Julien Pouysegur, Florent Guichard, Philippe Rigaud, Vincent Kermène, Agnès Desfarges-Berthelemot, Alain Barthélémy, Florian Prévost, Laurent Lombard, Yoann Zaouter, Frédéric Druon, and Patrick Georges
Opt. Express 23(5) 5406-5416 (2015)

Coherent femtosecond pulse combining of multiple parallel chirped pulse fiber amplifiers

Leo A. Siiman, Wei-zung Chang, Tong Zhou, and Almantas Galvanauskas
Opt. Express 20(16) 18097-18116 (2012)

Coherent combining of pulsed fiber amplifiers in the nonlinear chirp regime with intra-pulse phase control

Stephen Palese, Eric Cheung, Gregory Goodno, Chun-Ching Shih, Fabio Di Teodoro, Timothy McComb, and Mark Weber
Opt. Express 20(7) 7422-7435 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).
    [Crossref]
  2. S. J. Augst, T. Y. Fan, and A. Sanchez, “Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,” Opt. Lett. 29, 474–476 (2004).
    [Crossref] [PubMed]
  3. G. D. Goodno, C.-C. Shih, and J. E. Rothenberg, “Perturbative analysis of coherent combining efficiency with mismatched lasers,” Opt. Express 18, 25403–25414 (2010).
    [Crossref] [PubMed]
  4. G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7, 258 (2013).
    [Crossref]
  5. M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kw 1 mj eight-channel ultrafast fiber laser,” Opt. Lett. 41, 3439–3442 (2016).
    [Crossref]
  6. M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mj kw class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41, 3343–3346 (2016).
    [Crossref] [PubMed]
  7. A. Klenke, M. Müller, H. Stark, F. Stutzki, C. Hupel, T. Schreiber, A. Tünnermann, and J. Limpert, “Coherently combined 16-channel multicore fiber laser system,” Opt. Lett. 43, 1519–1522 (2018).
    [Crossref] [PubMed]
  8. J. Bourderionnet, C. Bellanger, J. Primot, and A. Brignon, “Collective coherent phase combining of 64 fibers,” Opt. Express 19, 17053–17058 (2011).
    [Crossref] [PubMed]
  9. L. Daniault, M. Hanna, L. Lombard, Y. Zaouter, E. Mottay, D. Goular, P. Bourdon, F. Druon, and P. Georges, “Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers,” Opt. Lett. 36, 621–623 (2011).
    [Crossref]
  10. E. Seise, A. Klenke, S. Breitkopf, M. Plötner, J. Limpert, and A. Tünnermann, “Coherently combined fiber laser system delivering 120 μj femtosecond pulses,” Opt. Lett. 36, 439–441 (2011).
    [Crossref] [PubMed]
  11. M. Antier, J. Bourderionnet, C. Larat, E. Lallier, E. Lenormand, J. Primot, and A. Brignon, “khz closed loop interferometric technique for coherent fiber beam combining,” IEEE J. Sel. Top. Quantum Electron. 20, 182–187 (2014).
    [Crossref]
  12. J. Le Dortz, A. Heilmann, M. Antier, J. Bourderionnet, C. Larat, I. Fsaifes, L. Daniault, S. Bellanger, C. Simon Boisson, J.-C. Chanteloup, E. Lallier, and A. Brignon, “Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers,” Opt. Lett. 42, 1887–1890 (2017).
    [Crossref] [PubMed]
  13. C. Bellanger, A. Brignon, B. Toulon, J. Primot, F. Bouamrane, T. Bouvet, S. Megtert, L. Quetel, and T. Allain, “Design of a fiber-collimated array for beam combining,” Opt. Eng. 50, 025005 (2011).
    [Crossref]

2018 (1)

2017 (1)

2016 (2)

2014 (1)

M. Antier, J. Bourderionnet, C. Larat, E. Lallier, E. Lenormand, J. Primot, and A. Brignon, “khz closed loop interferometric technique for coherent fiber beam combining,” IEEE J. Sel. Top. Quantum Electron. 20, 182–187 (2014).
[Crossref]

2013 (1)

G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7, 258 (2013).
[Crossref]

2011 (4)

2010 (1)

2005 (1)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).
[Crossref]

2004 (1)

Allain, T.

C. Bellanger, A. Brignon, B. Toulon, J. Primot, F. Bouamrane, T. Bouvet, S. Megtert, L. Quetel, and T. Allain, “Design of a fiber-collimated array for beam combining,” Opt. Eng. 50, 025005 (2011).
[Crossref]

Antier, M.

J. Le Dortz, A. Heilmann, M. Antier, J. Bourderionnet, C. Larat, I. Fsaifes, L. Daniault, S. Bellanger, C. Simon Boisson, J.-C. Chanteloup, E. Lallier, and A. Brignon, “Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers,” Opt. Lett. 42, 1887–1890 (2017).
[Crossref] [PubMed]

M. Antier, J. Bourderionnet, C. Larat, E. Lallier, E. Lenormand, J. Primot, and A. Brignon, “khz closed loop interferometric technique for coherent fiber beam combining,” IEEE J. Sel. Top. Quantum Electron. 20, 182–187 (2014).
[Crossref]

Augst, S. J.

Bellanger, C.

C. Bellanger, A. Brignon, B. Toulon, J. Primot, F. Bouamrane, T. Bouvet, S. Megtert, L. Quetel, and T. Allain, “Design of a fiber-collimated array for beam combining,” Opt. Eng. 50, 025005 (2011).
[Crossref]

J. Bourderionnet, C. Bellanger, J. Primot, and A. Brignon, “Collective coherent phase combining of 64 fibers,” Opt. Express 19, 17053–17058 (2011).
[Crossref] [PubMed]

Bellanger, S.

Bouamrane, F.

C. Bellanger, A. Brignon, B. Toulon, J. Primot, F. Bouamrane, T. Bouvet, S. Megtert, L. Quetel, and T. Allain, “Design of a fiber-collimated array for beam combining,” Opt. Eng. 50, 025005 (2011).
[Crossref]

Bourderionnet, J.

Bourdon, P.

Bouvet, T.

C. Bellanger, A. Brignon, B. Toulon, J. Primot, F. Bouamrane, T. Bouvet, S. Megtert, L. Quetel, and T. Allain, “Design of a fiber-collimated array for beam combining,” Opt. Eng. 50, 025005 (2011).
[Crossref]

Breitkopf, S.

Brignon, A.

J. Le Dortz, A. Heilmann, M. Antier, J. Bourderionnet, C. Larat, I. Fsaifes, L. Daniault, S. Bellanger, C. Simon Boisson, J.-C. Chanteloup, E. Lallier, and A. Brignon, “Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers,” Opt. Lett. 42, 1887–1890 (2017).
[Crossref] [PubMed]

M. Antier, J. Bourderionnet, C. Larat, E. Lallier, E. Lenormand, J. Primot, and A. Brignon, “khz closed loop interferometric technique for coherent fiber beam combining,” IEEE J. Sel. Top. Quantum Electron. 20, 182–187 (2014).
[Crossref]

C. Bellanger, A. Brignon, B. Toulon, J. Primot, F. Bouamrane, T. Bouvet, S. Megtert, L. Quetel, and T. Allain, “Design of a fiber-collimated array for beam combining,” Opt. Eng. 50, 025005 (2011).
[Crossref]

J. Bourderionnet, C. Bellanger, J. Primot, and A. Brignon, “Collective coherent phase combining of 64 fibers,” Opt. Express 19, 17053–17058 (2011).
[Crossref] [PubMed]

Brocklesby, B.

G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7, 258 (2013).
[Crossref]

Chanteloup, J.-C.

Daniault, L.

Druon, F.

Fan, T. Y.

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).
[Crossref]

S. J. Augst, T. Y. Fan, and A. Sanchez, “Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,” Opt. Lett. 29, 474–476 (2004).
[Crossref] [PubMed]

Fsaifes, I.

Georges, P.

Goodno, G. D.

Gottschall, T.

Goular, D.

Hanna, M.

Heilmann, A.

Hupel, C.

Kienel, M.

Klenke, A.

Lallier, E.

J. Le Dortz, A. Heilmann, M. Antier, J. Bourderionnet, C. Larat, I. Fsaifes, L. Daniault, S. Bellanger, C. Simon Boisson, J.-C. Chanteloup, E. Lallier, and A. Brignon, “Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers,” Opt. Lett. 42, 1887–1890 (2017).
[Crossref] [PubMed]

M. Antier, J. Bourderionnet, C. Larat, E. Lallier, E. Lenormand, J. Primot, and A. Brignon, “khz closed loop interferometric technique for coherent fiber beam combining,” IEEE J. Sel. Top. Quantum Electron. 20, 182–187 (2014).
[Crossref]

Larat, C.

J. Le Dortz, A. Heilmann, M. Antier, J. Bourderionnet, C. Larat, I. Fsaifes, L. Daniault, S. Bellanger, C. Simon Boisson, J.-C. Chanteloup, E. Lallier, and A. Brignon, “Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers,” Opt. Lett. 42, 1887–1890 (2017).
[Crossref] [PubMed]

M. Antier, J. Bourderionnet, C. Larat, E. Lallier, E. Lenormand, J. Primot, and A. Brignon, “khz closed loop interferometric technique for coherent fiber beam combining,” IEEE J. Sel. Top. Quantum Electron. 20, 182–187 (2014).
[Crossref]

Le Dortz, J.

Lenormand, E.

M. Antier, J. Bourderionnet, C. Larat, E. Lallier, E. Lenormand, J. Primot, and A. Brignon, “khz closed loop interferometric technique for coherent fiber beam combining,” IEEE J. Sel. Top. Quantum Electron. 20, 182–187 (2014).
[Crossref]

Limpert, J.

Lombard, L.

Megtert, S.

C. Bellanger, A. Brignon, B. Toulon, J. Primot, F. Bouamrane, T. Bouvet, S. Megtert, L. Quetel, and T. Allain, “Design of a fiber-collimated array for beam combining,” Opt. Eng. 50, 025005 (2011).
[Crossref]

Mottay, E.

Mourou, G.

G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7, 258 (2013).
[Crossref]

Müller, M.

Plötner, M.

Primot, J.

M. Antier, J. Bourderionnet, C. Larat, E. Lallier, E. Lenormand, J. Primot, and A. Brignon, “khz closed loop interferometric technique for coherent fiber beam combining,” IEEE J. Sel. Top. Quantum Electron. 20, 182–187 (2014).
[Crossref]

C. Bellanger, A. Brignon, B. Toulon, J. Primot, F. Bouamrane, T. Bouvet, S. Megtert, L. Quetel, and T. Allain, “Design of a fiber-collimated array for beam combining,” Opt. Eng. 50, 025005 (2011).
[Crossref]

J. Bourderionnet, C. Bellanger, J. Primot, and A. Brignon, “Collective coherent phase combining of 64 fibers,” Opt. Express 19, 17053–17058 (2011).
[Crossref] [PubMed]

Quetel, L.

C. Bellanger, A. Brignon, B. Toulon, J. Primot, F. Bouamrane, T. Bouvet, S. Megtert, L. Quetel, and T. Allain, “Design of a fiber-collimated array for beam combining,” Opt. Eng. 50, 025005 (2011).
[Crossref]

Rothenberg, J. E.

Sanchez, A.

Schreiber, T.

Seise, E.

Shestaev, E.

Shih, C.-C.

Simon Boisson, C.

Stark, H.

Stutzki, F.

Tajima, T.

G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7, 258 (2013).
[Crossref]

Toulon, B.

C. Bellanger, A. Brignon, B. Toulon, J. Primot, F. Bouamrane, T. Bouvet, S. Megtert, L. Quetel, and T. Allain, “Design of a fiber-collimated array for beam combining,” Opt. Eng. 50, 025005 (2011).
[Crossref]

Tünnermann, A.

Zaouter, Y.

IEEE J. Sel. Top. Quantum Electron. (2)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).
[Crossref]

M. Antier, J. Bourderionnet, C. Larat, E. Lallier, E. Lenormand, J. Primot, and A. Brignon, “khz closed loop interferometric technique for coherent fiber beam combining,” IEEE J. Sel. Top. Quantum Electron. 20, 182–187 (2014).
[Crossref]

Nat. Photonics (1)

G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7, 258 (2013).
[Crossref]

Opt. Eng. (1)

C. Bellanger, A. Brignon, B. Toulon, J. Primot, F. Bouamrane, T. Bouvet, S. Megtert, L. Quetel, and T. Allain, “Design of a fiber-collimated array for beam combining,” Opt. Eng. 50, 025005 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

L. Daniault, M. Hanna, L. Lombard, Y. Zaouter, E. Mottay, D. Goular, P. Bourdon, F. Druon, and P. Georges, “Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers,” Opt. Lett. 36, 621–623 (2011).
[Crossref]

E. Seise, A. Klenke, S. Breitkopf, M. Plötner, J. Limpert, and A. Tünnermann, “Coherently combined fiber laser system delivering 120 μj femtosecond pulses,” Opt. Lett. 36, 439–441 (2011).
[Crossref] [PubMed]

S. J. Augst, T. Y. Fan, and A. Sanchez, “Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,” Opt. Lett. 29, 474–476 (2004).
[Crossref] [PubMed]

M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kw 1 mj eight-channel ultrafast fiber laser,” Opt. Lett. 41, 3439–3442 (2016).
[Crossref]

M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mj kw class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41, 3343–3346 (2016).
[Crossref] [PubMed]

A. Klenke, M. Müller, H. Stark, F. Stutzki, C. Hupel, T. Schreiber, A. Tünnermann, and J. Limpert, “Coherently combined 16-channel multicore fiber laser system,” Opt. Lett. 43, 1519–1522 (2018).
[Crossref] [PubMed]

J. Le Dortz, A. Heilmann, M. Antier, J. Bourderionnet, C. Larat, I. Fsaifes, L. Daniault, S. Bellanger, C. Simon Boisson, J.-C. Chanteloup, E. Lallier, and A. Brignon, “Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers,” Opt. Lett. 42, 1887–1890 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Combination efficiency as a function of microlens transmission and relative power contained in the main lobe of the far field.
Fig. 2
Fig. 2 Example far fields for three different wavelengths from the center (a) to the edge (c) of the spectrum. On each beam, a spectral phase of first order randomly drawn from a Gaussian distribution with standard deviation Δφ1 = 250 fs is applied.
Fig. 3
Fig. 3 Coherent combination efficiency for average and peak power of 61 beams as a function of errors on the spectral phase of each individual beam. Their spatial arrangement is supposed to be ideal.
Fig. 4
Fig. 4 Schematic of the experimental setup.
Fig. 5
Fig. 5 (a) Simulation of an ideal far field (b), simulated far field including the measured microlens fill factor τr and alignment errors in the fiber array, (c) measured far field in linear regime, (d) measured far field in nonlinear regime at an estimated B-integral of 5 rad. Each far field is normalized with respect to its maximum intensity.
Fig. 6
Fig. 6 Phase noise spectral density for open and closed loop in (a) linear and (b) nonlinear regime.
Fig. 7
Fig. 7 Power noise spectrum of the combined beam.
Fig. 8
Fig. 8 (a) Combined beam in the far field, (b) lineout of the intensity profile and fitted Airy function, (c) near field of the combined beam obtained by optical Fourier transform of the spatially filtered far field, (d) lineout and fitted Gaussian function.
Fig. 9
Fig. 9 M2 measurement of the combined beam.
Fig. 10
Fig. 10 Autocorrelation functions (left) and spectra (right) of the combined beam in linear (top) and nonlinear (bottom) regime.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , ω ) = E spatial ( x , y ) × E 0 ( ω ) e i φ ( ω )
φ ( ω ) = φ 0 + φ 1 ( ω ω 0 ) + φ 2 2 ( ω ω 0 ) 2 + 𝒪 ( ( ω ω 0 ) 3 )

Metrics