Abstract

We propose an analytical model to investigate the intrinsic frequency chirp with the method of 4-level pulse-amplitude-modulation (PAM-4) optical modulation by driving a single dual-drive silicon optical modulator. With the analytical model, we calculate the chirp parameters of this PAM-4 generation numerically. The intensity and phase of output signal changes with the PAM levels’ switching, which results in the frequency chirp. We find that the modulator operating at different quadrature points (Q- and Q+) will have different frequency chirp behavior. The Q- modulator has mainly negative chirp parameters while Q+ modulator has mainly positive chirp parameters. We characterize the eye diagrams and BER of the optical PAM-4 signals generated by the Q- and Q+ modulator at the modulation rates of 25 Gbaud and 32 Gbaud, respectively, for both back-to-back and 2 km transmission in single mode fiber. The BER results show the Q- modulator has a small power penalty attribute to the positive fiber dispersion, which is suited for the short-distance transmission in data center application.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission

Rui Li, David Patel, Eslam El-Fiky, Alireza Samani, Zhenping Xing, Yun Wang, and David V. Plant
Opt. Express 26(5) 5395-5407 (2018)

Optical single side-band Nyquist PAM-4 transmission using dual-drive MZM modulation and direct detection

Mingyue Zhu, Jing Zhang, Xingwen Yi, Hao Ying, Xiang Li, Ming Luo, Yingxiong Song, Xiatao Huang, and Kun Qiu
Opt. Express 26(6) 6629-6638 (2018)

High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators

Rui Li, David Patel, Eslam El-Fiky, Alireza Samani, Zhenping Xing, Mohamed Morsy-Osman, and David V. Plant
Opt. Express 25(12) 13222-13229 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Padmaraju, N. Ophir, Q. Xu, B. Schmidt, J. Shakya, S. Manipatruni, M. Lipson, and K. Bergman, “Error-free transmission of microring-modulated BPSK,” Opt. Express 20(8), 8681–8688 (2012).
    [Crossref] [PubMed]
  2. P. Dong, L. Chen, C. Xie, L. L. Buhl, and Y. K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20(19), 21181–21186 (2012).
    [Crossref] [PubMed]
  3. K. Xu, L.-G. Yang, J.-Y. Song, Y. M. Chen, Z. Z. Cheng, C.-W. Chow, C.-H. Yeh, and H. K. Tsang, “Compatibility of silicon Mach-Zehnder modulators for advanced modulation formats,” J. Lightwave Technol. 31(15), 2550–2554 (2013).
    [Crossref]
  4. D. Korn, R. Palmer, H. Yu, P. C. Schindler, L. Alloatti, M. Baier, R. Schmogrow, W. Bogaerts, S. K. Selvaraja, G. Lepage, M. Pantouvaki, J. M. D. Wouters, P. Verheyen, J. Van Campenhout, B. Chen, R. Baets, P. Absil, R. Dinu, C. Koos, W. Freude, and J. Leuthold, “Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s,” Opt. Express 21(11), 13219–13227 (2013).
    [Crossref] [PubMed]
  5. X. Ruan, K. Li, D. J. Thomson, C. Lacava, F. Meng, I. Demirtzioglou, P. Petropoulos, Y. Zhu, G. T. Reed, and F. Zhang, “Experimental comparison of direct detection Nyquist SSB transmission based on silicon dual-drive and IQ Mach-Zehnder modulators with electrical packaging,” Opt. Express 25(16), 19332–19342 (2017).
    [Crossref] [PubMed]
  6. C. Xiong, D. M. Gill, J. E. Proesel, J. S. Orcutt, W. Haensch, and W. M. J. Green, “Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter,” Optica 3(10), 1060–1065 (2016).
    [Crossref]
  7. IEEE, “200 Gb/s and 400 Gb/s ethernet task force,” IEEE P802.3bs 400GbE Task Force, 2017, available at http://www.ieee802.org/3/bs/index.html .
  8. J. Wei, J. Ingham, D. Cunningham, R. Penty, and I. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
    [Crossref]
  9. M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications,” Photon. Res. 6(2), 109–116 (2018).
    [Crossref]
  10. R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  11. B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006).
    [Crossref]
  12. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
    [Crossref] [PubMed]
  13. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [Crossref] [PubMed]
  14. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21(4), 4116–4125 (2013).
    [Crossref] [PubMed]
  15. R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32(12), 2240–2247 (2014).
    [Crossref]
  16. E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).
    [Crossref] [PubMed]
  17. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
    [Crossref]
  18. D. Gostimirovic and W. N. Ye, “Ultracompact CMOS-compatible optical logic using carrier depletion in microdisk resonators,” Sci. Rep. 7(1), 12603 (2017).
    [Crossref] [PubMed]
  19. X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J.-H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards Terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
    [Crossref]
  20. C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communication Conference (2015), paper Th4A.5.
    [Crossref]
  21. C. Tseng, J. Yeh, P. Chen, W. Chung, T. Yeh, K. Feng, M. Wu, and M. Lee, “A dual-drive PAM-4 Si Mach–Zehnder modulator for 50 Gb/s data transmission at 1550 nm wavelength,” in Conference on Lasers and Electro-Optics (2017), paper SM2O.7.
  22. A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
    [Crossref]
  23. B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
    [Crossref]
  24. L. Chen, P. Dong, and Y. K. Chen, “Chirp and dispersion tolerance of a single-drive push–pull silicon modulator at 28 Gb/s,” IEEE Photonics Technol. Lett. 24(11), 936–938 (2012).
    [Crossref]
  25. F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
    [Crossref]
  26. Y. Wei, Y. Zhao, J. Yang, M. Wang, and X. Jiang, “Chirp characteristics of silicon Mach–Zehnder modulator under small-signal modulation,” J. Lightwave Technol. 29(7), 1011–1017 (2011).
    [Crossref]
  27. H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photonics Technol. Lett. 14(3), 298–300 (2002).
    [Crossref]
  28. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  29. H. Yi, Q. Long, W. Tan, L. Li, X. Wang, and Z. Zhou, “Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission,” Opt. Express 20(25), 27562–27568 (2012).
    [Crossref] [PubMed]

2018 (2)

M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications,” Photon. Res. 6(2), 109–116 (2018).
[Crossref]

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (2)

C. Xiong, D. M. Gill, J. E. Proesel, J. S. Orcutt, W. Haensch, and W. M. J. Green, “Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter,” Optica 3(10), 1060–1065 (2016).
[Crossref]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

2014 (1)

2013 (4)

2012 (5)

2011 (1)

2009 (2)

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

2006 (2)

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006).
[Crossref]

2005 (1)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

2002 (1)

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photonics Technol. Lett. 14(3), 298–300 (2002).
[Crossref]

1988 (1)

F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Absil, P.

Alloatti, L.

Asghari, M.

Avramopoulos, H.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Baehr-Jones, T.

Baets, R.

Baier, M.

Bakopoulos, P.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Bauwelinck, J.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Beling, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bergman, K.

Bogaerts, W.

Bowers, J. E.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Buhl, L. L.

Campbell, J. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Chen, B.

Chen, C.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communication Conference (2015), paper Th4A.5.
[Crossref]

Chen, H.-W.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Chen, L.

L. Chen, P. Dong, and Y. K. Chen, “Chirp and dispersion tolerance of a single-drive push–pull silicon modulator at 28 Gb/s,” IEEE Photonics Technol. Lett. 24(11), 936–938 (2012).
[Crossref]

P. Dong, L. Chen, C. Xie, L. L. Buhl, and Y. K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20(19), 21181–21186 (2012).
[Crossref] [PubMed]

Chen, P.

C. Tseng, J. Yeh, P. Chen, W. Chung, T. Yeh, K. Feng, M. Wu, and M. Lee, “A dual-drive PAM-4 Si Mach–Zehnder modulator for 50 Gb/s data transmission at 1550 nm wavelength,” in Conference on Lasers and Electro-Optics (2017), paper SM2O.7.

Chen, R. T.

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).
[Crossref] [PubMed]

Chen, Y. K.

L. Chen, P. Dong, and Y. K. Chen, “Chirp and dispersion tolerance of a single-drive push–pull silicon modulator at 28 Gb/s,” IEEE Photonics Technol. Lett. 24(11), 936–938 (2012).
[Crossref]

P. Dong, L. Chen, C. Xie, L. L. Buhl, and Y. K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20(19), 21181–21186 (2012).
[Crossref] [PubMed]

Chen, Y. M.

Cheng, Z. Z.

Chow, C.-W.

Chu, T.

Chung, W.

C. Tseng, J. Yeh, P. Chen, W. Chung, T. Yeh, K. Feng, M. Wu, and M. Lee, “A dual-drive PAM-4 Si Mach–Zehnder modulator for 50 Gb/s data transmission at 1550 nm wavelength,” in Conference on Lasers and Electro-Optics (2017), paper SM2O.7.

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Cunningham, D.

Cunningham, J. E.

Demirtzioglou, I.

Ding, R.

Dinu, R.

Djordjevic, S. S.

Dong, P.

Dris, S.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

El-Fiky, E.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Feng, D.

Feng, K.

C. Tseng, J. Yeh, P. Chen, W. Chung, T. Yeh, K. Feng, M. Wu, and M. Lee, “A dual-drive PAM-4 Si Mach–Zehnder modulator for 50 Gb/s data transmission at 1550 nm wavelength,” in Conference on Lasers and Electro-Optics (2017), paper SM2O.7.

Freude, W.

Gao, Q.

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).
[Crossref] [PubMed]

Gill, D. M.

Gnauck, A. H.

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photonics Technol. Lett. 14(3), 298–300 (2002).
[Crossref]

Gostimirovic, D.

D. Gostimirovic and W. N. Ye, “Ultracompact CMOS-compatible optical logic using carrier depletion in microdisk resonators,” Sci. Rep. 7(1), 12603 (2017).
[Crossref] [PubMed]

Green, W. M. J.

Haensch, W.

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Hochberg, M.

Iga, K.

F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[Crossref]

Iliadis, N.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Ingham, J.

Jalali, B.

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006).
[Crossref]

Jiang, X.

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Kalavrouziotis, D.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Kanakis, G.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Kang, Y.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Kim, H.

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photonics Technol. Lett. 14(3), 298–300 (2002).
[Crossref]

Koos, C.

Korn, D.

Koyama, F.

F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[Crossref]

Krishnamoorthy, A. V.

Kung, C.-C.

Kuo, Y.-H.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Lacava, C.

Lee, J.-H.

Lee, M.

C. Tseng, J. Yeh, P. Chen, W. Chung, T. Yeh, K. Feng, M. Wu, and M. Lee, “A dual-drive PAM-4 Si Mach–Zehnder modulator for 50 Gb/s data transmission at 1550 nm wavelength,” in Conference on Lasers and Electro-Optics (2017), paper SM2O.7.

Lepage, G.

Leuthold, J.

Li, E.

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).
[Crossref] [PubMed]

Li, G.

Li, K.

Li, L.

Li, M.

Li, Q.

Li, X.

Li, Z.

Liang, H.

Liao, S.

Lim, A. E.-J.

Lin, S.

Lipson, M.

Litski, S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Liu, H.-D.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Liu, Y.

Lo, G.-Q.

Long, Q.

Luo, Y.

Ma, Y.

Manipatruni, S.

McIntosh, D. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Meng, F.

Mentovich, E.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Moeneclaey, B.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Morse, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Ophir, N.

Orcutt, J. S.

Padmaraju, K.

Palmer, R.

Paniccia, M.

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006).
[Crossref]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Paniccia, M. J.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Pantouvaki, M.

Patel, D.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Pauchard, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Penty, R.

Petropoulos, P.

Plant, D. V.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Proesel, J. E.

Qian, W.

Raj, K.

Reed, G.

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006).
[Crossref]

Reed, G. T.

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Ruan, X.

Samani, A.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Sarid, G.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Schindler, P. C.

Schmidt, B.

Schmogrow, R.

Selvaraja, S. K.

Shafiiha, R.

Shakya, J.

Shubin, I.

Soenen, W.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Song, J.-Y.

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Soref, R. A.

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Spatharakis, C.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Tan, W.

Tang, X.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communication Conference (2015), paper Th4A.5.
[Crossref]

Thacker, H. D.

Thomson, D. J.

Tsang, H. K.

Tseng, C.

C. Tseng, J. Yeh, P. Chen, W. Chung, T. Yeh, K. Feng, M. Wu, and M. Lee, “A dual-drive PAM-4 Si Mach–Zehnder modulator for 50 Gb/s data transmission at 1550 nm wavelength,” in Conference on Lasers and Electro-Optics (2017), paper SM2O.7.

Van Campenhout, J.

Veerasubramanian, V.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Verbrugghe, J.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Verheyen, P.

Wang, A. X.

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).
[Crossref] [PubMed]

Wang, L.

Wang, M.

Wang, X.

Wei, J.

Wei, Y.

White, I.

Wouters, J. M. D.

Wu, M.

C. Tseng, J. Yeh, P. Chen, W. Chung, T. Yeh, K. Feng, M. Wu, and M. Lee, “A dual-drive PAM-4 Si Mach–Zehnder modulator for 50 Gb/s data transmission at 1550 nm wavelength,” in Conference on Lasers and Electro-Optics (2017), paper SM2O.7.

Xiao, X.

Xie, C.

Xiong, C.

Xu, H.

Xu, K.

Xu, Q.

Yang, J.

Yang, L.-G.

Yang, Y.

Yao, J.

Ye, W. N.

D. Gostimirovic and W. N. Ye, “Ultracompact CMOS-compatible optical logic using carrier depletion in microdisk resonators,” Sci. Rep. 7(1), 12603 (2017).
[Crossref] [PubMed]

Yeh, C.-H.

Yeh, J.

C. Tseng, J. Yeh, P. Chen, W. Chung, T. Yeh, K. Feng, M. Wu, and M. Lee, “A dual-drive PAM-4 Si Mach–Zehnder modulator for 50 Gb/s data transmission at 1550 nm wavelength,” in Conference on Lasers and Electro-Optics (2017), paper SM2O.7.

Yeh, T.

C. Tseng, J. Yeh, P. Chen, W. Chung, T. Yeh, K. Feng, M. Wu, and M. Lee, “A dual-drive PAM-4 Si Mach–Zehnder modulator for 50 Gb/s data transmission at 1550 nm wavelength,” in Conference on Lasers and Electro-Optics (2017), paper SM2O.7.

Yi, H.

Yin, X.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Yu, H.

Yu, J.

Yu, S.

Yu, Y.

Zadka, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Zaoui, W. S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Zhang, F.

Zhang, Z.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communication Conference (2015), paper Th4A.5.
[Crossref]

Zhao, Y.

Zheng, D.

Zheng, X.

Zhou, Z.

Zhu, Y.

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE Microw. Mag. (1)

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006).
[Crossref]

IEEE Photonics J. (1)

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Chen, P. Dong, and Y. K. Chen, “Chirp and dispersion tolerance of a single-drive push–pull silicon modulator at 28 Gb/s,” IEEE Photonics Technol. Lett. 24(11), 936–938 (2012).
[Crossref]

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photonics Technol. Lett. 14(3), 298–300 (2002).
[Crossref]

J. Lightwave Technol. (6)

Nano Lett. (1)

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Nature (1)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Opt. Express (7)

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[Crossref] [PubMed]

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21(4), 4116–4125 (2013).
[Crossref] [PubMed]

K. Padmaraju, N. Ophir, Q. Xu, B. Schmidt, J. Shakya, S. Manipatruni, M. Lipson, and K. Bergman, “Error-free transmission of microring-modulated BPSK,” Opt. Express 20(8), 8681–8688 (2012).
[Crossref] [PubMed]

P. Dong, L. Chen, C. Xie, L. L. Buhl, and Y. K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20(19), 21181–21186 (2012).
[Crossref] [PubMed]

D. Korn, R. Palmer, H. Yu, P. C. Schindler, L. Alloatti, M. Baier, R. Schmogrow, W. Bogaerts, S. K. Selvaraja, G. Lepage, M. Pantouvaki, J. M. D. Wouters, P. Verheyen, J. Van Campenhout, B. Chen, R. Baets, P. Absil, R. Dinu, C. Koos, W. Freude, and J. Leuthold, “Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s,” Opt. Express 21(11), 13219–13227 (2013).
[Crossref] [PubMed]

X. Ruan, K. Li, D. J. Thomson, C. Lacava, F. Meng, I. Demirtzioglou, P. Petropoulos, Y. Zhu, G. T. Reed, and F. Zhang, “Experimental comparison of direct detection Nyquist SSB transmission based on silicon dual-drive and IQ Mach-Zehnder modulators with electrical packaging,” Opt. Express 25(16), 19332–19342 (2017).
[Crossref] [PubMed]

H. Yi, Q. Long, W. Tan, L. Li, X. Wang, and Z. Zhou, “Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission,” Opt. Express 20(25), 27562–27568 (2012).
[Crossref] [PubMed]

Optica (1)

Photon. Res. (1)

Sci. Rep. (1)

D. Gostimirovic and W. N. Ye, “Ultracompact CMOS-compatible optical logic using carrier depletion in microdisk resonators,” Sci. Rep. 7(1), 12603 (2017).
[Crossref] [PubMed]

Other (4)

IEEE, “200 Gb/s and 400 Gb/s ethernet task force,” IEEE P802.3bs 400GbE Task Force, 2017, available at http://www.ieee802.org/3/bs/index.html .

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communication Conference (2015), paper Th4A.5.
[Crossref]

C. Tseng, J. Yeh, P. Chen, W. Chung, T. Yeh, K. Feng, M. Wu, and M. Lee, “A dual-drive PAM-4 Si Mach–Zehnder modulator for 50 Gb/s data transmission at 1550 nm wavelength,” in Conference on Lasers and Electro-Optics (2017), paper SM2O.7.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, and J. Bauwelinck, “A 64 Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (2015), paper M3C.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) The structure of the silicon PAM-4 optical modulator, (b) the cross-section of the silicon MZM electro-optic phase shifter.
Fig. 2
Fig. 2 Simulated (a) propagation loss versus bias voltage, (b) the effective refractive index versus bias voltage of the silicon electro-optic phase shifter.
Fig. 3
Fig. 3 (a) Transmission function of the MZM under four different driving conditions, (b) the frequency chirp between different PAM levels’ switching for the Q+ and Q- modulator.
Fig. 4
Fig. 4 The transmission intensity and output phase variation versus time of Q- modulator under the PAM levels’ switching from level (a) ‘3′ to ‘2’, (b) ‘3′ to ‘1’, (c) ‘3′ to ‘0’, (d) ‘2’ to ‘1’, (e) ‘2’ to ‘0’ and (f) ‘1’ to ‘0’.
Fig. 5
Fig. 5 The transmission intensity and output phase variation versus time of Q+ modulator under the PAM levels’ switching from level (a) ‘3′ to ‘2’, (b) ‘3′ to ‘1’, (c) ‘3′ to ‘0’, (d) ‘2’ to ‘1’, (e) ‘2’ to ‘0’ and (f) ‘1’ to ‘0’.
Fig. 6
Fig. 6 The chirp parameters of the (a) Q- modulator and (b) Q+ modulator under different bias voltages (vbias1 = vbias2).
Fig. 7
Fig. 7 Experimental setup used to characterize the device (ASE: amplified spontaneous emission; LD: laser diode; PC: polarization controller; DUT: device under test; EDFA: erbium-doped fiber amplifier; OSA: optical spectrum analyzer; DCA: digital communication analyzer; LCA: lightwave component analyzer; PPG: pulse pattern generator; AMP: amplifier; PA: power attenuator; VOA: variable optical attenuator; RTO: real-time oscilloscope).
Fig. 8
Fig. 8 (a) Measured frequency response of the modulator under a reverse bias voltage of 2.5 V, measured optical spectra of the PAM-4 optical signal at the modulation rates of (b) 25 Gbaud and (c) 32 Gbaud for the Q- and Q+ modulator.
Fig. 9
Fig. 9 The eye diagrams of the (a) Q+ modulator in B2B transmission, (b) Q+ modulator after 2 km of SSMF transmission, (c) Q- modulator in B2B transmission, and (d) Q- modulator after 2 km of SSMF transmission at the modulation rate of 25 Gbaud.
Fig. 10
Fig. 10 The eye diagrams of the (a) Q+ modulator in B2B transmission, (b) Q+ modulator after 2 km of SSMF transmission, (c) Q- modulator in B2B transmission, and (d) Q- modulator after 2 km of SSMF transmission at the modulation rate of 32 Gbaud.
Fig. 11
Fig. 11 BERs performance of the Q- and Q+ modulator at the modulation rates of (a) 25 Gbaud and (b) 32 Gbaud.

Tables (1)

Tables Icon

Table 1 The chirp parameters of two-level switching for the Q- and Q+ modulator.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E = E 0 2 ( A 1 e j ( φ 1 + φ b i a s ) + A 2 e j φ 2 )
A 1 = 10 α ( V 1 ) L / 10 , A 2 = 10 α ( V 2 ) L / 10
φ 1 = n e f f ( V 1 ) L 2 π λ , φ 2 = n e f f ( V 2 ) L 2 π λ
I = E 0 2 4 [ A 1 2 + A 2 2 + 2 A 1 A 2 cos ( φ 1 + φ b i a s φ 2 ) ]
ϕ = tan 1 A 1 sin ( φ 1 + φ b i a s ) + A 2 sin φ 2 A 1 cos ( φ 1 + φ b i a s ) + A 2 cos φ 2
α c h i r p = 2 I ( d ϕ / d t ) / ( d I / d t )

Metrics