Abstract

A photonics-based multi-band linearly frequency-modulated (LFM) waveform generator with reconfigurable center frequency, bandwidth and time duration is proposed and demonstrated. By introducing two coherent optical frequency combs (OFCs) with a frequency shift and different free spectral ranges (FSRs) as multi-frequency optical LOs, a set of LFM signals with different center frequencies will be generated if one of the combs is modulated by an intermediate-frequency (IF) LFM signal. The center frequencies of the generated RF-LFM signals can be flexibly tuned by adjusting the frequency shift between the two OFCs. In addition, by introducing a series of proper time delays to the LFM signals and combining them, a frequency-stepped LFM signal can be generated. Furthermore, when the bandwidth of the IF-LFM signal equals the difference of the comb FSRs, and the time duration of IF-LFM signal equals the time delay of the consecutive channels, a LFM signal with both bandwidth and time duration multiplied can be obtained. With N comb lines, the maximum achievable time-bandwidth product (TBWP) is N × N times of the applied IF LFM signal. A proof-of-concept experiment is carried out. A set of LFM signals with frequencies ranging from L to Ka bands are generated. By introducing proper time delays, a frequency-stepped LFM signal with frequency steps between 10 GHz and 20 GHz is also produced. In addition, LFM signals with the bandwidth and time duration multiplied by 2 and 5 are realized (4-GHz bandwidth, 2-μs time duration and 10-GHz bandwidth, 5-μs time duration), respectively. Correspondingly, the TBWPs are increased by 4 and 25 times.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of linear frequency-modulated signals with improved time-bandwidth product based on an optical frequency comb

Xiaochan Wang, Jianxin Ma, Qi Zhang, and Xiangjun Xin
Appl. Opt. 58(12) 3222-3228 (2019)

Reconfigurable multi-band microwave photonic radar transmitter with a wide operating frequency range

Xiangpeng Zhang, Qiang Sun, Jiyao Yang, Jiming Cao, and Wangzhe Li
Opt. Express 27(24) 34519-34529 (2019)

Optical frequency comb based multi-band microwave frequency conversion for satellite applications

Xinwu Yang, Kun Xu, Jie Yin, Yitang Dai, Feifei Yin, Jianqiang Li, Hua Lu, Tao Liu, and Yuefeng Ji
Opt. Express 22(1) 869-877 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. L. Pan, D. Zhu, and F. Z. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014).
  2. G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
    [Crossref]
  3. F. Gini, A. De Maio, and L. Patton, eds., Waveform design and diversity for advanced radar systems, (Institution of Engineering and Technology, 2012).
  4. H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
    [Crossref]
  5. Q. H. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (ICMMT), (2012) pp.1–4.
    [Crossref]
  6. A. Vega, D. E. Leaird, and A. M. Weiner, “High-speed direct space-to-time pulse shaping with 1 ns reconfiguration,” Opt. Lett. 35(10), 1554–1556 (2010).
    [Crossref] [PubMed]
  7. W. F. Zhang and J. P. Yao, “Silicon-based on-chip electrically-tunable spectral shaper for continuously tunable linearly chirped microwave waveform generation,” J. Lightwave Technol. 34(20), 4664–4672 (2016).
    [Crossref]
  8. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
    [Crossref]
  9. W. Li, W. T. Wang, W. H. Sun, L. X. Wang, and N. H. Zhu, “Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM,” Opt. Express 22(7), 7446–7457 (2014).
    [Crossref] [PubMed]
  10. A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
    [Crossref]
  11. H. Gao, C. Lei, M. Chen, F. Xing, H. Chen, and S. Xie, “A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio,” Opt. Express 21(20), 23107–23115 (2013).
    [Crossref] [PubMed]
  12. H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
    [Crossref] [PubMed]
  13. Y. Zhang, X. Ye, Q. Guo, F. Zhang, and S. Pan, “Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation,” J. Lightwave Technol. 35(10), 1821–1829 (2017).
    [Crossref]
  14. J. M. Wun, C. C. Wei, J. Chen, C. S. Goh, S. Y. Set, and J. W. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express 21(9), 11475–11481 (2013).
    [Crossref] [PubMed]
  15. X. Li, S. Zhao, Y. Li, Z. Zhu, K. Qu, T. Li, and D. Hu, “Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator,” Opt. Commun. 410, 240–247 (2018).
    [Crossref]
  16. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
    [Crossref]
  17. P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express 24(16), 18460–18467 (2016).
    [Crossref] [PubMed]
  18. B. W. Zhang, D. Zhu, and S. L. Pan, “Dual-chirp microwave waveform generation for radar application based on an optically injected semiconductor laser,” in the 5th IEEE MTT-S International Wireless Symposium (IEEE, 2018), paper. 353.
  19. D. Zhu and J. P. Yao, “Dual-chirp microwave waveform generation using a dual-parallel mach-zehnder modulator,” IEEE Photonics Technol. Lett. 27(13), 1410–1413 (2015).
    [Crossref]
  20. Q. S. Guo, F. Z. Zhang, P. Zhou, and S. L. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
    [Crossref]
  21. P. Ghelfi, F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “Photonics for radars operating on multiple coherent bands,” J. Lightwave Technol. 34(2), 500–507 (2016).
    [Crossref]
  22. Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica 4(4), 418–423 (2017).
    [Crossref]
  23. A. Loayssa, C. Lim, A. Nirmalathas, and D. Benito, “Design and performance of the bidirectional optical single-sideband modulator,” J. Lightwave Technol. 21(4), 1071–1082 (2003).
    [Crossref]
  24. W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nat. Commun. 8, 15389 (2017).
    [Crossref] [PubMed]
  25. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [Crossref]
  26. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]

2018 (1)

X. Li, S. Zhao, Y. Li, Z. Zhu, K. Qu, T. Li, and D. Hu, “Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator,” Opt. Commun. 410, 240–247 (2018).
[Crossref]

2017 (4)

Q. S. Guo, F. Z. Zhang, P. Zhou, and S. L. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nat. Commun. 8, 15389 (2017).
[Crossref] [PubMed]

Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica 4(4), 418–423 (2017).
[Crossref]

Y. Zhang, X. Ye, Q. Guo, F. Zhang, and S. Pan, “Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation,” J. Lightwave Technol. 35(10), 1821–1829 (2017).
[Crossref]

2016 (3)

2015 (2)

H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
[Crossref] [PubMed]

D. Zhu and J. P. Yao, “Dual-chirp microwave waveform generation using a dual-parallel mach-zehnder modulator,” IEEE Photonics Technol. Lett. 27(13), 1410–1413 (2015).
[Crossref]

2014 (2)

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, and N. H. Zhu, “Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM,” Opt. Express 22(7), 7446–7457 (2014).
[Crossref] [PubMed]

S. L. Pan, D. Zhu, and F. Z. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014).

2013 (3)

2012 (1)

2010 (3)

A. Vega, D. E. Leaird, and A. M. Weiner, “High-speed direct space-to-time pulse shaping with 1 ns reconfiguration,” Opt. Lett. 35(10), 1554–1556 (2010).
[Crossref] [PubMed]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

2005 (3)

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

2003 (1)

Alter, J. J.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Benito, D.

Bogoni, A.

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Chan, S. C.

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

Chen, H.

Chen, J.

Chen, M.

Choudhary, A.

Coldren, L. A.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nat. Commun. 8, 15389 (2017).
[Crossref] [PubMed]

Crnkovich, J. G.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

de Graaf, J. W.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Eggleton, B. J.

Evins, J. B.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Gao, H.

Ghelfi, P.

Goh, C. S.

Guo, Q.

Guo, Q. S.

Q. S. Guo, F. Z. Zhang, P. Zhou, and S. L. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

Guzzon, R. S.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nat. Commun. 8, 15389 (2017).
[Crossref] [PubMed]

Habicht, W.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Hagewood, S. M.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Hilterbrick, C. L.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Horowitz, M.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Hrin, G. P.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Hu, D.

X. Li, S. Zhao, Y. Li, Z. Zhu, K. Qu, T. Li, and D. Hu, “Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator,” Opt. Commun. 410, 240–247 (2018).
[Crossref]

Huo, Q. L.

Q. H. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (ICMMT), (2012) pp.1–4.
[Crossref]

Kang, B.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Kwon, H.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Laghezza, F.

Leaird, D. E.

A. Vega, D. E. Leaird, and A. M. Weiner, “High-speed direct space-to-time pulse shaping with 1 ns reconfiguration,” Opt. Lett. 35(10), 1554–1556 (2010).
[Crossref] [PubMed]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Lei, C.

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Lessin, S. A.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Levinson, O.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Li, M.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nat. Commun. 8, 15389 (2017).
[Crossref] [PubMed]

Li, Q. H.

Q. H. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (ICMMT), (2012) pp.1–4.
[Crossref]

Li, T.

X. Li, S. Zhao, Y. Li, Z. Zhu, K. Qu, T. Li, and D. Hu, “Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator,” Opt. Commun. 410, 240–247 (2018).
[Crossref]

Li, W.

Li, X.

X. Li, S. Zhao, Y. Li, Z. Zhu, K. Qu, T. Li, and D. Hu, “Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator,” Opt. Commun. 410, 240–247 (2018).
[Crossref]

Li, Y.

X. Li, S. Zhao, Y. Li, Z. Zhu, K. Qu, T. Li, and D. Hu, “Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator,” Opt. Commun. 410, 240–247 (2018).
[Crossref]

Lim, C.

Liu, W.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nat. Commun. 8, 15389 (2017).
[Crossref] [PubMed]

Liu, Y.

Loayssa, A.

Lu, M.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nat. Commun. 8, 15389 (2017).
[Crossref] [PubMed]

Marpaung, D.

Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica 4(4), 418–423 (2017).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Mu, X. H.

Q. H. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (ICMMT), (2012) pp.1–4.
[Crossref]

Nirmalathas, A.

Norberg, E. J.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nat. Commun. 8, 15389 (2017).
[Crossref] [PubMed]

Onori, D.

Pan, S.

Pan, S. L.

Q. S. Guo, F. Z. Zhang, P. Zhou, and S. L. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

S. L. Pan, D. Zhu, and F. Z. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014).

Parker, J. S.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nat. Commun. 8, 15389 (2017).
[Crossref] [PubMed]

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Qu, K.

X. Li, S. Zhao, Y. Li, Z. Zhu, K. Qu, T. Li, and D. Hu, “Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator,” Opt. Commun. 410, 240–247 (2018).
[Crossref]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Scotti, F.

Set, S. Y.

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Shi, J. W.

Stepanov, S.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Sun, W. H.

Tavik, G. C.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Vega, A.

Wang, L. X.

Wang, W. T.

Wei, C. C.

Weiner, A. M.

A. Vega, D. E. Leaird, and A. M. Weiner, “High-speed direct space-to-time pulse shaping with 1 ns reconfiguration,” Opt. Lett. 35(10), 1554–1556 (2010).
[Crossref] [PubMed]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Wu, D. C.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Wun, J. M.

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Xie, S.

Xing, F.

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Yang, D.

Q. H. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (ICMMT), (2012) pp.1–4.
[Crossref]

Yao, J.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nat. Commun. 8, 15389 (2017).
[Crossref] [PubMed]

Yao, J. P.

W. F. Zhang and J. P. Yao, “Silicon-based on-chip electrically-tunable spectral shaper for continuously tunable linearly chirped microwave waveform generation,” J. Lightwave Technol. 34(20), 4664–4672 (2016).
[Crossref]

D. Zhu and J. P. Yao, “Dual-chirp microwave waveform generation using a dual-parallel mach-zehnder modulator,” IEEE Photonics Technol. Lett. 27(13), 1410–1413 (2015).
[Crossref]

Ye, X.

Zeitouny, A.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Zhang, F.

Zhang, F. Z.

Q. S. Guo, F. Z. Zhang, P. Zhou, and S. L. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

S. L. Pan, D. Zhu, and F. Z. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014).

Zhang, H.

Zhang, W. F.

Zhang, Y.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Zhao, S.

X. Li, S. Zhao, Y. Li, Z. Zhu, K. Qu, T. Li, and D. Hu, “Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator,” Opt. Commun. 410, 240–247 (2018).
[Crossref]

Zhou, P.

Q. S. Guo, F. Z. Zhang, P. Zhou, and S. L. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express 24(16), 18460–18467 (2016).
[Crossref] [PubMed]

Zhu, D.

D. Zhu and J. P. Yao, “Dual-chirp microwave waveform generation using a dual-parallel mach-zehnder modulator,” IEEE Photonics Technol. Lett. 27(13), 1410–1413 (2015).
[Crossref]

S. L. Pan, D. Zhu, and F. Z. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014).

Zhu, N. H.

Zhu, Z.

X. Li, S. Zhao, Y. Li, Z. Zhu, K. Qu, T. Li, and D. Hu, “Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator,” Opt. Commun. 410, 240–247 (2018).
[Crossref]

Zou, W.

IEEE J. Quantum Electron. (1)

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

D. Zhu and J. P. Yao, “Dual-chirp microwave waveform generation using a dual-parallel mach-zehnder modulator,” IEEE Photonics Technol. Lett. 27(13), 1410–1413 (2015).
[Crossref]

Q. S. Guo, F. Z. Zhang, P. Zhou, and S. L. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

J. Lightwave Technol. (5)

Laser Photonics Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Nat. Commun. (1)

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nat. Commun. 8, 15389 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Opt. Commun. (1)

X. Li, S. Zhao, Y. Li, Z. Zhu, K. Qu, T. Li, and D. Hu, “Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator,” Opt. Commun. 410, 240–247 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Trans. Nanjing Univ. Aeronaut. Astronaut. (1)

S. L. Pan, D. Zhu, and F. Z. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014).

Other (3)

F. Gini, A. De Maio, and L. Patton, eds., Waveform design and diversity for advanced radar systems, (Institution of Engineering and Technology, 2012).

Q. H. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (ICMMT), (2012) pp.1–4.
[Crossref]

B. W. Zhang, D. Zhu, and S. L. Pan, “Dual-chirp microwave waveform generation for radar application based on an optically injected semiconductor laser,” in the 5th IEEE MTT-S International Wireless Symposium (IEEE, 2018), paper. 353.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the proposed reconfigurable multi-band LFM signal generator. OFC: optical frequency comb; CS-SSB: carrier-suppressed single sideband; PD: photodetector.
Fig. 2
Fig. 2 Principle of the reconfigurable multi-band LFM signal generator. (a) The signal OFC before and after CS-SSB modulation; (b) the local OFC before and after frequency shifting; (c) the optical components selection by the photonic processor for different channels ; (d) multi sub-LFM signals generation; (e) LFM/step-frequency LFM signals generation combined with multi time-delayed sub signals.
Fig. 3
Fig. 3 Experimental setup of the proposed reconfigurable multi-band LFM signal generator. LD: laser diode; PC: polarization controller; MZM: Mach-Zehnder modulator; OBPF: optical bandpass filter; DPMZM: dual-parallel Mach-Zehnder modulator; OVDL: optical variable delay line.
Fig. 4
Fig. 4 Measured optical spectra of (a) signal OFC and local OFC with FSRs of 30 and 32 GHz respectively, (b) the signal OFC before and after modulation and (c) the selected optical components for the five channels by the photonic processor.
Fig. 5
Fig. 5 The measured (a) electrical spectra, (b) waveforms and (c) time-frequency diagrams for the (1) 1st to (5) 5th channel, respectively.
Fig. 6
Fig. 6 The measured (a) electrical spectrum, (b) waveform and (c) the time-frequency diagram of the generated LFM signal centered at 14 GHz with 4-GHz bandwidth and 2-µs time duration by combining the 2nd channel and the delayed 3rd channel.
Fig. 7
Fig. 7 (a) The normalized waveform and (b) the time-frequency diagram of the generated frequency-stepped LFM signal with five frequency steps between 10 GHz and 20 GHz by combining the five delayed sub-LFM signals in the digital domain.
Fig. 8
Fig. 8 The experimentally measured electrical spectra of the generated sub-LFM signals with frequencies tuning from DC to 30 GHz when fs is set to be (a) 8 GHz and (b) 28 GHz. The time-frequency diagrams of the LFM signals with 10-GHz bandwidth and 5-µs time duration by combining the time-delayed sub-LFM signals when fs is set to be (c) 8 GHz and (d) 28 GHz.
Fig. 9
Fig. 9 (a) The optical spectra of the selected optical components into the photonic processor for the five channels when the 1.75-2.25 GHz IF-LFM signal is introduced, and (b) the corresponding electrical spectra of the experimentally output sub-band signals at each channel. (c) The time-frequency diagram of the generated LFM signal centered at 25 GHz with a bandwidth of 2.5 GHz and time duration of 5 μs by combining the time-delayed sub-LFM signals.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E sig ( t ) n = 1 N e j 2 π t [ f c 0 + ( n 1 ) f FSR ] E lo ( t ) n = 1 N e j 2 π t [ f c 0 + f 0 + ( n 1 ) ( f FSR + Δ f ) ] .
f sig_modulation ( n ) = f c 0 + ( n 1 ) f FSR + ( f IF + δ IF / 2 δ IF t / T IF ) 0 t T IF f l o _ s h i f t e d ( n ) = f c 0 + f 0 + ( n 1 ) ( f FSR + Δ f ) + f s .
f out ( n ) = | f 0 + f s + ( n 1 ) Δ f ( f IF + δ IF / 2 δ IF t / T IF ) | 0 t T IF .

Metrics