Abstract

Liquid crystal displays are the leading technology for flat panel displays. Their energy efficiency is low, however, due to the light absorption caused by polarizers and color filters and power consumption by driving circuitries. In displaying static images, their energy efficiency can be improved if a low driving frequency is used. As the driving frequency is decreased, the transmittance of the displays may change with time, a phenomenon known as image flickering. In this research we demonstrated that polymer stabilization can significantly reduce the flickering in fringe field switching (FFS) liquid crystal display. Under the polymer stabilization, the driving voltage remains low and the response time becomes shorter. Through simulation study, we find that the polymer stabilization smooths the spatial variation of the liquid crystal orientation in the display, and thus reduce the flexoelectric effect which is responsible for image flickering. The polymer stabilization can be implemented in the current main stream manufacturing to produce displays that can show static images under low power consumption.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Elimination of image flicker in a fringe-field switching liquid crystal display by applying a bipolar voltage wave

Seung-Won Oh, Jun-Hee Park, Ji-Hoon Lee, and Tae-Hoon Yoon
Opt. Express 23(18) 24013-24018 (2015)

Elimination of image flicker in fringe-field switching liquid crystal display driven with low frequency electric field

Jung-Wook Kim, Tae-Hoon Choi, Tae-Hoon Yoon, E-Joon Choi, and Ji-Hoon Lee
Opt. Express 22(25) 30586-30591 (2014)

Flexoelectric in-plane switching (IPS) mode with ultra-high-transmittance, low-voltage, low-frequency, and a flicker-free image

MinSu Kim, Hyeong Gyun Ham, Han-Sol Choi, Philip J. Bos, Deng-Ke Yang, Joong Hee Lee, and Seung Hee Lee
Opt. Express 25(6) 5962-5971 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J.-H. Lee, D. N. Liu, and S.-T. Wu, Introduction to flat panel displays (John Wiley & Sons, Ltd, 2008).
  2. E. Lueder, Liquid Crystal Displays (John Wiley & Sons, Ltd, 2010).
  3. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices, 2νδ εδ. (John Wiley & Sons, Ltd, 2014).
  4. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [Crossref]
  5. R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45(12), 5466–5468 (1974).
    [Crossref]
  6. M. F. Schiekel and K. Fahrenschon, “Deformation of nematic liquid crystals with vertical orientation in electrical fields,” Appl. Phys. Lett. 19(10), 391–393 (1971).
    [Crossref]
  7. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, Y. Koike, T. Sasabayashi, and K. Okamoto, Super‐High Image Quality Multi‐Domain Vertical Alignment LCD by New Rubbing‐Less Technology, SID Symp. Dig. Tech. Pap. 29, 1077 (1998).
  8. R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45(12), 5466–5468 (1974).
    [Crossref]
  9. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
    [Crossref]
  10. M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
    [Crossref]
  11. M. Ohta, M. Oh-e, and K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Proc of Asia Display 95, 707–710 (1995).
  12. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
    [Crossref]
  13. Y. M. Jeon, I. S. Song, S. H. Lee, H. Y. Kim, S. Y. Kim, and Y. J. Lim, “P-165: Optimized electrode design to improve transmittance in the fringe-field switching (FFS) liquid crystal cell,” SID Symp. Dig. Tech. Pap. 36(1), 328–331 (2005).
  14. H. S. Choi, J. H. Kim, H. G. Ham, Y. J. Lim, J. M. Lee, H. S. Jin, R. Manda, M. S. Kim, D.-K. Yang, and S. H. Lee, “P-131: Studies on flickering in low frequency driven fringe-field switching (FFS) liquid crystal display,” SID Symp. Dig. Tech. Pap. 47(1), 1610–1613 (2016).
  15. C.-S. Lee, H.-S. Choi, H.-G. Ham, H.-S. Yoo, M. Kim, Y.-J. Lim, T.-H. Kim, P. J. Bos, D.-K. Yang, and S.-H. Lee, “P-149: Maximization of transmittance and minimization of image-flickering due to flexoelectric effect in low-frequency driving fringe-field switching (FFS) mode using LCs with negative dielectric anisotropy,” SID Symp. Dig. Tech. Pap. 48(1), 1841–1844 (2017).
  16. H. Chen, F. Peng, M. Hu, and S.-T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
    [Crossref]
  17. H. Chen, F. Peng, M. Hu, and S. T. Wu, “23-1: Distinguished student paper: Flexoelectric effect on image elickering of fringe field switching LCDs,” SID Symp. Dig. Tech. Pap. 47(1), 274–277 (2016).
  18. H. Lee, H. Kim, J. Kim, and J.-H. Lee, “Dependence of image flickering of negative dielectric anisotropy liquid crystal on the flexoelectric coefficient ratio and the interdigitated electrode structure,” J. Phys. D Appl. Phys. 49(7), 075501 (2016).
    [Crossref]
  19. J.-W. Kim, T.-H. Choi, T.-H. Yoon, E.-J. Choi, and J.-H. Lee, “Elimination of image flicker in fringe-field switching liquid crystal display driven with low frequency electric field,” Opt. Express 22(25), 30586–30591 (2014).
    [Crossref] [PubMed]
  20. S.-W. Oh, J.-H. Park, J.-H. Lee, and T.-H. Yoon, “Elimination of image flicker in a fringe-field switching liquid crystal display by applying a bipolar voltage wave,” Opt. Express 23(18), 24013–24018 (2015).
    [Crossref] [PubMed]
  21. S.-W. Oh, J.-H. Park, J.-M. Baek, T.-H. Choi, and T.-H. Yoon, “Effect of electrode spacing on image flicker in fringe-field-switching liquid crystal display,” Liq. Cryst. 43(7), 972–979 (2016).
    [Crossref]
  22. M. Kim, H.-G. Ham, H.-S. Choi, P. J. Bos, D.-K. Yang, J.-H. Lee, and S.-H. Lee, “Flexoelectric in-plane switching (IPS) mode with ultra-high-transmittance, low-voltage, low-frequency, and a flicker-free image,” Opt. Express 25(6), 5962–5971 (2017).
    [Crossref] [PubMed]
  23. M. S. Kim, P. J. Bos, D.-W. Kim, D.-K. Yang, J. H. Lee, and S. H. Lee, “Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices,” Sci. Rep. 6(1), 35254–35264 (2016).
    [Crossref] [PubMed]
  24. R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett. 22(18), 917 (1969).
    [Crossref]
  25. J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
    [Crossref] [PubMed]
  26. F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
    [Crossref] [PubMed]
  27. L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
    [Crossref]
  28. X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid-crystal display,” Phys. Rev. Appl. 8(5), 054033 (2017).
    [Crossref]
  29. T. Tsuruma, Y. Goto, A. Higashi, M. Watanabe, H. Yamaguchi, and T. Tomooka, “Novel image sticking model in the fringe field switching mode based on the flexoelectric effect,” Proc. Eurodisplay 11, 13 (2011).
  30. I. H. Jeong, I. W. Jang, D. H. Kim, J. S. Han, B. V. Kumar, and S. H. Lee, “Investigation on flexoelectric effect in the fringe field switching mode,” SID Symp. Dig. Tech. Pap. 44, 1368–1371 (2013).
  31. D.-J. Lee, G.-Y. Shim, J.-C. Choi, J.-S. Park, J.-H. Lee, J.-H. Baek, H. C. Choi, Y. M. Ha, A. Ranjkesh, and H.-R. Kim, “Transient flickering behavior in fringe-field switching liquid crystal mode analyzed by positional asymmetric flexoelectric dynamics,” Opt. Express 23(26), 34055–34070 (2015).
    [Crossref] [PubMed]
  32. M. S. Kim, P. J. Bos, D.-W. Kim, C.-M. Keum, D.-K. Yang, H. G. Ham, K.-U. Jeong, J. H. Lee, and S. H. Lee, “Field-symmetrization to solve luminance deviation between frames in a low-frequency-driven fringe-field switching liquid crystal cell,” Opt. Express 24(26), 29568–29576 (2016).
    [Crossref] [PubMed]
  33. D. J. Broer, “Liquid crystalline networks formed by photoinitiated chain cross-linking” in Liquid Crystals in Complex Geometries, ed. G.P. Crawford and S. Zumer (Taylor & Francis, 1996).
  34. I. Dierking, “Recent developments in polymer stabilised liquid crystals,” Polym. Chem. 1(8), 1153–1159 (2010).
    [Crossref]
  35. D.-K. Yang, “Polymer stabilized liquid crystal displays,” in Progress in liquid crystal science and technology, ed. H-S. Kwok, S. Naemura and H. L. Ong, (World Scientific, 2013).
  36. R. Q. Ma and D.-K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
    [Crossref] [PubMed]
  37. X.-C. Zhou, G.-K. Qin, Y.-M. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
    [Crossref]
  38. D.-K. Yang, Y. Cui, H. Nemati, X.-C. Zhou, and A. Moheghi, “Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals,” J. Appl. Phys. 114(24), 243515 (2013).
    [Crossref]
  39. Y. Jiang, X. Zhou, G. Qin, X. Xu, S.-H. Lee, and D.-K. Yang, “81-3: Effects of flexoelectricity and ion on the flicker of fringe field switching liquid crystal display,” SID Symp. Dig. Tech. Pap. 49(1), 1095–1098 (2018).
  40. L. De Sio, P. F. Lloyd, N. V. Tabiryan, and T. J. Bunning, “Hidden gratings in holographic liquid crystal polymer-dispersed liquid crystal films,” Appl. Mater. Interfaces 10, 13107–13112 (2018).
  41. C.-H. Pai, T.-Y. Cho, S.-C. Tsai, C.-Y. Chiu, T.-S. Chen, H.-C. Lin, J.-J. Su, and A. Lien, “Fast‐response study of polymer‐stabilized VA‐LCD,” J. of SID 18, 960–967 (2012).

2018 (1)

L. De Sio, P. F. Lloyd, N. V. Tabiryan, and T. J. Bunning, “Hidden gratings in holographic liquid crystal polymer-dispersed liquid crystal films,” Appl. Mater. Interfaces 10, 13107–13112 (2018).

2017 (2)

M. Kim, H.-G. Ham, H.-S. Choi, P. J. Bos, D.-K. Yang, J.-H. Lee, and S.-H. Lee, “Flexoelectric in-plane switching (IPS) mode with ultra-high-transmittance, low-voltage, low-frequency, and a flicker-free image,” Opt. Express 25(6), 5962–5971 (2017).
[Crossref] [PubMed]

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid-crystal display,” Phys. Rev. Appl. 8(5), 054033 (2017).
[Crossref]

2016 (4)

H. Lee, H. Kim, J. Kim, and J.-H. Lee, “Dependence of image flickering of negative dielectric anisotropy liquid crystal on the flexoelectric coefficient ratio and the interdigitated electrode structure,” J. Phys. D Appl. Phys. 49(7), 075501 (2016).
[Crossref]

M. S. Kim, P. J. Bos, D.-W. Kim, D.-K. Yang, J. H. Lee, and S. H. Lee, “Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices,” Sci. Rep. 6(1), 35254–35264 (2016).
[Crossref] [PubMed]

M. S. Kim, P. J. Bos, D.-W. Kim, C.-M. Keum, D.-K. Yang, H. G. Ham, K.-U. Jeong, J. H. Lee, and S. H. Lee, “Field-symmetrization to solve luminance deviation between frames in a low-frequency-driven fringe-field switching liquid crystal cell,” Opt. Express 24(26), 29568–29576 (2016).
[Crossref] [PubMed]

S.-W. Oh, J.-H. Park, J.-M. Baek, T.-H. Choi, and T.-H. Yoon, “Effect of electrode spacing on image flicker in fringe-field-switching liquid crystal display,” Liq. Cryst. 43(7), 972–979 (2016).
[Crossref]

2015 (4)

2014 (1)

2013 (1)

D.-K. Yang, Y. Cui, H. Nemati, X.-C. Zhou, and A. Moheghi, “Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals,” J. Appl. Phys. 114(24), 243515 (2013).
[Crossref]

2012 (1)

C.-H. Pai, T.-Y. Cho, S.-C. Tsai, C.-Y. Chiu, T.-S. Chen, H.-C. Lin, J.-J. Su, and A. Lien, “Fast‐response study of polymer‐stabilized VA‐LCD,” J. of SID 18, 960–967 (2012).

2011 (1)

T. Tsuruma, Y. Goto, A. Higashi, M. Watanabe, H. Yamaguchi, and T. Tomooka, “Novel image sticking model in the fringe field switching mode based on the flexoelectric effect,” Proc. Eurodisplay 11, 13 (2011).

2010 (1)

I. Dierking, “Recent developments in polymer stabilised liquid crystals,” Polym. Chem. 1(8), 1153–1159 (2010).
[Crossref]

2009 (1)

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

2000 (1)

R. Q. Ma and D.-K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

1998 (1)

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

1996 (1)

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
[Crossref]

1995 (2)

M. Ohta, M. Oh-e, and K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Proc of Asia Display 95, 707–710 (1995).

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

1994 (1)

L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
[Crossref]

1987 (1)

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

1974 (2)

R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45(12), 5466–5468 (1974).
[Crossref]

R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45(12), 5466–5468 (1974).
[Crossref]

1971 (2)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

M. F. Schiekel and K. Fahrenschon, “Deformation of nematic liquid crystals with vertical orientation in electrical fields,” Appl. Phys. Lett. 19(10), 391–393 (1971).
[Crossref]

1969 (1)

R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett. 22(18), 917 (1969).
[Crossref]

Baek, J.-H.

Baek, J.-M.

S.-W. Oh, J.-H. Park, J.-M. Baek, T.-H. Choi, and T.-H. Yoon, “Effect of electrode spacing on image flicker in fringe-field-switching liquid crystal display,” Liq. Cryst. 43(7), 972–979 (2016).
[Crossref]

Bos, P. J.

Bunning, T. J.

L. De Sio, P. F. Lloyd, N. V. Tabiryan, and T. J. Bunning, “Hidden gratings in holographic liquid crystal polymer-dispersed liquid crystal films,” Appl. Mater. Interfaces 10, 13107–13112 (2018).

Castles, F.

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

Chen, H.

H. Chen, F. Peng, M. Hu, and S.-T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
[Crossref]

Chen, T.-S.

C.-H. Pai, T.-Y. Cho, S.-C. Tsai, C.-Y. Chiu, T.-S. Chen, H.-C. Lin, J.-J. Su, and A. Lien, “Fast‐response study of polymer‐stabilized VA‐LCD,” J. of SID 18, 960–967 (2012).

Chiu, C.-Y.

C.-H. Pai, T.-Y. Cho, S.-C. Tsai, C.-Y. Chiu, T.-S. Chen, H.-C. Lin, J.-J. Su, and A. Lien, “Fast‐response study of polymer‐stabilized VA‐LCD,” J. of SID 18, 960–967 (2012).

Cho, T.-Y.

C.-H. Pai, T.-Y. Cho, S.-C. Tsai, C.-Y. Chiu, T.-S. Chen, H.-C. Lin, J.-J. Su, and A. Lien, “Fast‐response study of polymer‐stabilized VA‐LCD,” J. of SID 18, 960–967 (2012).

Choi, E.-J.

Choi, H. C.

Choi, H.-S.

Choi, J.-C.

Choi, T.-H.

S.-W. Oh, J.-H. Park, J.-M. Baek, T.-H. Choi, and T.-H. Yoon, “Effect of electrode spacing on image flicker in fringe-field-switching liquid crystal display,” Liq. Cryst. 43(7), 972–979 (2016).
[Crossref]

J.-W. Kim, T.-H. Choi, T.-H. Yoon, E.-J. Choi, and J.-H. Lee, “Elimination of image flicker in fringe-field switching liquid crystal display driven with low frequency electric field,” Opt. Express 22(25), 30586–30591 (2014).
[Crossref] [PubMed]

Coles, H. J.

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

Cui, Y.

D.-K. Yang, Y. Cui, H. Nemati, X.-C. Zhou, and A. Moheghi, “Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals,” J. Appl. Phys. 114(24), 243515 (2013).
[Crossref]

De Sio, L.

L. De Sio, P. F. Lloyd, N. V. Tabiryan, and T. J. Bunning, “Hidden gratings in holographic liquid crystal polymer-dispersed liquid crystal films,” Appl. Mater. Interfaces 10, 13107–13112 (2018).

Dierking, I.

I. Dierking, “Recent developments in polymer stabilised liquid crystals,” Polym. Chem. 1(8), 1153–1159 (2010).
[Crossref]

Dong, Y.-M.

X.-C. Zhou, G.-K. Qin, Y.-M. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
[Crossref]

Fahrenschon, K.

M. F. Schiekel and K. Fahrenschon, “Deformation of nematic liquid crystals with vertical orientation in electrical fields,” Appl. Phys. Lett. 19(10), 391–393 (1971).
[Crossref]

Goto, Y.

T. Tsuruma, Y. Goto, A. Higashi, M. Watanabe, H. Yamaguchi, and T. Tomooka, “Novel image sticking model in the fringe field switching mode based on the flexoelectric effect,” Proc. Eurodisplay 11, 13 (2011).

Ha, Y. M.

Ham, H. G.

Ham, H.-G.

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Higashi, A.

T. Tsuruma, Y. Goto, A. Higashi, M. Watanabe, H. Yamaguchi, and T. Tomooka, “Novel image sticking model in the fringe field switching mode based on the flexoelectric effect,” Proc. Eurodisplay 11, 13 (2011).

Hu, M.

H. Chen, F. Peng, M. Hu, and S.-T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
[Crossref]

Jeong, K.-U.

Jiang, Y.

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid-crystal display,” Phys. Rev. Appl. 8(5), 054033 (2017).
[Crossref]

Keum, C.-M.

Kim, D.-W.

M. S. Kim, P. J. Bos, D.-W. Kim, C.-M. Keum, D.-K. Yang, H. G. Ham, K.-U. Jeong, J. H. Lee, and S. H. Lee, “Field-symmetrization to solve luminance deviation between frames in a low-frequency-driven fringe-field switching liquid crystal cell,” Opt. Express 24(26), 29568–29576 (2016).
[Crossref] [PubMed]

M. S. Kim, P. J. Bos, D.-W. Kim, D.-K. Yang, J. H. Lee, and S. H. Lee, “Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices,” Sci. Rep. 6(1), 35254–35264 (2016).
[Crossref] [PubMed]

Kim, H.

H. Lee, H. Kim, J. Kim, and J.-H. Lee, “Dependence of image flickering of negative dielectric anisotropy liquid crystal on the flexoelectric coefficient ratio and the interdigitated electrode structure,” J. Phys. D Appl. Phys. 49(7), 075501 (2016).
[Crossref]

Kim, H. Y.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Kim, H.-R.

Kim, J.

H. Lee, H. Kim, J. Kim, and J.-H. Lee, “Dependence of image flickering of negative dielectric anisotropy liquid crystal on the flexoelectric coefficient ratio and the interdigitated electrode structure,” J. Phys. D Appl. Phys. 49(7), 075501 (2016).
[Crossref]

Kim, J.-W.

Kim, M.

Kim, M. S.

M. S. Kim, P. J. Bos, D.-W. Kim, C.-M. Keum, D.-K. Yang, H. G. Ham, K.-U. Jeong, J. H. Lee, and S. H. Lee, “Field-symmetrization to solve luminance deviation between frames in a low-frequency-driven fringe-field switching liquid crystal cell,” Opt. Express 24(26), 29568–29576 (2016).
[Crossref] [PubMed]

M. S. Kim, P. J. Bos, D.-W. Kim, D.-K. Yang, J. H. Lee, and S. H. Lee, “Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices,” Sci. Rep. 6(1), 35254–35264 (2016).
[Crossref] [PubMed]

Komitov, L.

L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
[Crossref]

Kondo, K.

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
[Crossref]

M. Ohta, M. Oh-e, and K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Proc of Asia Display 95, 707–710 (1995).

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Lagerwall, S. T.

L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
[Crossref]

Lee, D.-J.

Lee, H.

H. Lee, H. Kim, J. Kim, and J.-H. Lee, “Dependence of image flickering of negative dielectric anisotropy liquid crystal on the flexoelectric coefficient ratio and the interdigitated electrode structure,” J. Phys. D Appl. Phys. 49(7), 075501 (2016).
[Crossref]

Lee, J. H.

M. S. Kim, P. J. Bos, D.-W. Kim, D.-K. Yang, J. H. Lee, and S. H. Lee, “Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices,” Sci. Rep. 6(1), 35254–35264 (2016).
[Crossref] [PubMed]

M. S. Kim, P. J. Bos, D.-W. Kim, C.-M. Keum, D.-K. Yang, H. G. Ham, K.-U. Jeong, J. H. Lee, and S. H. Lee, “Field-symmetrization to solve luminance deviation between frames in a low-frequency-driven fringe-field switching liquid crystal cell,” Opt. Express 24(26), 29568–29576 (2016).
[Crossref] [PubMed]

Lee, J.-H.

Lee, S. H.

M. S. Kim, P. J. Bos, D.-W. Kim, C.-M. Keum, D.-K. Yang, H. G. Ham, K.-U. Jeong, J. H. Lee, and S. H. Lee, “Field-symmetrization to solve luminance deviation between frames in a low-frequency-driven fringe-field switching liquid crystal cell,” Opt. Express 24(26), 29568–29576 (2016).
[Crossref] [PubMed]

M. S. Kim, P. J. Bos, D.-W. Kim, D.-K. Yang, J. H. Lee, and S. H. Lee, “Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices,” Sci. Rep. 6(1), 35254–35264 (2016).
[Crossref] [PubMed]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, S. L.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, S.-H.

Lien, A.

C.-H. Pai, T.-Y. Cho, S.-C. Tsai, C.-Y. Chiu, T.-S. Chen, H.-C. Lin, J.-J. Su, and A. Lien, “Fast‐response study of polymer‐stabilized VA‐LCD,” J. of SID 18, 960–967 (2012).

Lin, H.-C.

C.-H. Pai, T.-Y. Cho, S.-C. Tsai, C.-Y. Chiu, T.-S. Chen, H.-C. Lin, J.-J. Su, and A. Lien, “Fast‐response study of polymer‐stabilized VA‐LCD,” J. of SID 18, 960–967 (2012).

Lloyd, P. F.

L. De Sio, P. F. Lloyd, N. V. Tabiryan, and T. J. Bunning, “Hidden gratings in holographic liquid crystal polymer-dispersed liquid crystal films,” Appl. Mater. Interfaces 10, 13107–13112 (2018).

Ma, R. Q.

R. Q. Ma and D.-K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

Meyer, R. B.

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett. 22(18), 917 (1969).
[Crossref]

Moheghi, A.

D.-K. Yang, Y. Cui, H. Nemati, X.-C. Zhou, and A. Moheghi, “Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals,” J. Appl. Phys. 114(24), 243515 (2013).
[Crossref]

Morris, S. M.

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

Nemati, H.

D.-K. Yang, Y. Cui, H. Nemati, X.-C. Zhou, and A. Moheghi, “Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals,” J. Appl. Phys. 114(24), 243515 (2013).
[Crossref]

Oh, S.-W.

S.-W. Oh, J.-H. Park, J.-M. Baek, T.-H. Choi, and T.-H. Yoon, “Effect of electrode spacing on image flicker in fringe-field-switching liquid crystal display,” Liq. Cryst. 43(7), 972–979 (2016).
[Crossref]

S.-W. Oh, J.-H. Park, J.-H. Lee, and T.-H. Yoon, “Elimination of image flicker in a fringe-field switching liquid crystal display by applying a bipolar voltage wave,” Opt. Express 23(18), 24013–24018 (2015).
[Crossref] [PubMed]

Oh-e, M.

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

M. Ohta, M. Oh-e, and K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Proc of Asia Display 95, 707–710 (1995).

Ohta, M.

M. Ohta, M. Oh-e, and K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Proc of Asia Display 95, 707–710 (1995).

Pai, C.-H.

C.-H. Pai, T.-Y. Cho, S.-C. Tsai, C.-Y. Chiu, T.-S. Chen, H.-C. Lin, J.-J. Su, and A. Lien, “Fast‐response study of polymer‐stabilized VA‐LCD,” J. of SID 18, 960–967 (2012).

Park, J.-H.

S.-W. Oh, J.-H. Park, J.-M. Baek, T.-H. Choi, and T.-H. Yoon, “Effect of electrode spacing on image flicker in fringe-field-switching liquid crystal display,” Liq. Cryst. 43(7), 972–979 (2016).
[Crossref]

S.-W. Oh, J.-H. Park, J.-H. Lee, and T.-H. Yoon, “Elimination of image flicker in a fringe-field switching liquid crystal display by applying a bipolar voltage wave,” Opt. Express 23(18), 24013–24018 (2015).
[Crossref] [PubMed]

Park, J.-S.

Patel, J. S.

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Peng, F.

H. Chen, F. Peng, M. Hu, and S.-T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
[Crossref]

Qin, G.

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid-crystal display,” Phys. Rev. Appl. 8(5), 054033 (2017).
[Crossref]

Qin, G.-K.

X.-C. Zhou, G.-K. Qin, Y.-M. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
[Crossref]

Ranjkesh, A.

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Schiekel, M. F.

M. F. Schiekel and K. Fahrenschon, “Deformation of nematic liquid crystals with vertical orientation in electrical fields,” Appl. Phys. Lett. 19(10), 391–393 (1971).
[Crossref]

Shim, G.-Y.

Soref, R. A.

R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45(12), 5466–5468 (1974).
[Crossref]

R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45(12), 5466–5468 (1974).
[Crossref]

Stebler, B.

L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
[Crossref]

Strigazzi, A.

L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
[Crossref]

Su, J.-J.

C.-H. Pai, T.-Y. Cho, S.-C. Tsai, C.-Y. Chiu, T.-S. Chen, H.-C. Lin, J.-J. Su, and A. Lien, “Fast‐response study of polymer‐stabilized VA‐LCD,” J. of SID 18, 960–967 (2012).

Tabiryan, N. V.

L. De Sio, P. F. Lloyd, N. V. Tabiryan, and T. J. Bunning, “Hidden gratings in holographic liquid crystal polymer-dispersed liquid crystal films,” Appl. Mater. Interfaces 10, 13107–13112 (2018).

Tomooka, T.

T. Tsuruma, Y. Goto, A. Higashi, M. Watanabe, H. Yamaguchi, and T. Tomooka, “Novel image sticking model in the fringe field switching mode based on the flexoelectric effect,” Proc. Eurodisplay 11, 13 (2011).

Tsai, S.-C.

C.-H. Pai, T.-Y. Cho, S.-C. Tsai, C.-Y. Chiu, T.-S. Chen, H.-C. Lin, J.-J. Su, and A. Lien, “Fast‐response study of polymer‐stabilized VA‐LCD,” J. of SID 18, 960–967 (2012).

Tsuruma, T.

T. Tsuruma, Y. Goto, A. Higashi, M. Watanabe, H. Yamaguchi, and T. Tomooka, “Novel image sticking model in the fringe field switching mode based on the flexoelectric effect,” Proc. Eurodisplay 11, 13 (2011).

Watanabe, M.

T. Tsuruma, Y. Goto, A. Higashi, M. Watanabe, H. Yamaguchi, and T. Tomooka, “Novel image sticking model in the fringe field switching mode based on the flexoelectric effect,” Proc. Eurodisplay 11, 13 (2011).

Wu, S.-T.

H. Chen, F. Peng, M. Hu, and S.-T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
[Crossref]

Xu, X.

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid-crystal display,” Phys. Rev. Appl. 8(5), 054033 (2017).
[Crossref]

Yamaguchi, H.

T. Tsuruma, Y. Goto, A. Higashi, M. Watanabe, H. Yamaguchi, and T. Tomooka, “Novel image sticking model in the fringe field switching mode based on the flexoelectric effect,” Proc. Eurodisplay 11, 13 (2011).

Yang, D.-K.

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid-crystal display,” Phys. Rev. Appl. 8(5), 054033 (2017).
[Crossref]

M. Kim, H.-G. Ham, H.-S. Choi, P. J. Bos, D.-K. Yang, J.-H. Lee, and S.-H. Lee, “Flexoelectric in-plane switching (IPS) mode with ultra-high-transmittance, low-voltage, low-frequency, and a flicker-free image,” Opt. Express 25(6), 5962–5971 (2017).
[Crossref] [PubMed]

M. S. Kim, P. J. Bos, D.-W. Kim, C.-M. Keum, D.-K. Yang, H. G. Ham, K.-U. Jeong, J. H. Lee, and S. H. Lee, “Field-symmetrization to solve luminance deviation between frames in a low-frequency-driven fringe-field switching liquid crystal cell,” Opt. Express 24(26), 29568–29576 (2016).
[Crossref] [PubMed]

M. S. Kim, P. J. Bos, D.-W. Kim, D.-K. Yang, J. H. Lee, and S. H. Lee, “Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices,” Sci. Rep. 6(1), 35254–35264 (2016).
[Crossref] [PubMed]

X.-C. Zhou, G.-K. Qin, Y.-M. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
[Crossref]

D.-K. Yang, Y. Cui, H. Nemati, X.-C. Zhou, and A. Moheghi, “Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals,” J. Appl. Phys. 114(24), 243515 (2013).
[Crossref]

R. Q. Ma and D.-K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

Yoon, T.-H.

Zhou, X.

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid-crystal display,” Phys. Rev. Appl. 8(5), 054033 (2017).
[Crossref]

Zhou, X.-C.

X.-C. Zhou, G.-K. Qin, Y.-M. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
[Crossref]

D.-K. Yang, Y. Cui, H. Nemati, X.-C. Zhou, and A. Moheghi, “Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals,” J. Appl. Phys. 114(24), 243515 (2013).
[Crossref]

Appl. Mater. Interfaces (1)

L. De Sio, P. F. Lloyd, N. V. Tabiryan, and T. J. Bunning, “Hidden gratings in holographic liquid crystal polymer-dispersed liquid crystal films,” Appl. Mater. Interfaces 10, 13107–13112 (2018).

Appl. Phys. Lett. (5)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

M. F. Schiekel and K. Fahrenschon, “Deformation of nematic liquid crystals with vertical orientation in electrical fields,” Appl. Phys. Lett. 19(10), 391–393 (1971).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

J. Appl. Phys. (4)

R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45(12), 5466–5468 (1974).
[Crossref]

L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
[Crossref]

R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45(12), 5466–5468 (1974).
[Crossref]

D.-K. Yang, Y. Cui, H. Nemati, X.-C. Zhou, and A. Moheghi, “Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals,” J. Appl. Phys. 114(24), 243515 (2013).
[Crossref]

J. of SID (1)

C.-H. Pai, T.-Y. Cho, S.-C. Tsai, C.-Y. Chiu, T.-S. Chen, H.-C. Lin, J.-J. Su, and A. Lien, “Fast‐response study of polymer‐stabilized VA‐LCD,” J. of SID 18, 960–967 (2012).

J. Phys. D Appl. Phys. (1)

H. Lee, H. Kim, J. Kim, and J.-H. Lee, “Dependence of image flickering of negative dielectric anisotropy liquid crystal on the flexoelectric coefficient ratio and the interdigitated electrode structure,” J. Phys. D Appl. Phys. 49(7), 075501 (2016).
[Crossref]

J. Soc. Inf. Disp. (1)

X.-C. Zhou, G.-K. Qin, Y.-M. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
[Crossref]

Liq. Cryst. (2)

S.-W. Oh, J.-H. Park, J.-M. Baek, T.-H. Choi, and T.-H. Yoon, “Effect of electrode spacing on image flicker in fringe-field-switching liquid crystal display,” Liq. Cryst. 43(7), 972–979 (2016).
[Crossref]

H. Chen, F. Peng, M. Hu, and S.-T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
[Crossref]

Opt. Express (5)

Phys. Rev. Appl. (1)

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid-crystal display,” Phys. Rev. Appl. 8(5), 054033 (2017).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

R. Q. Ma and D.-K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett. 22(18), 917 (1969).
[Crossref]

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Polym. Chem. (1)

I. Dierking, “Recent developments in polymer stabilised liquid crystals,” Polym. Chem. 1(8), 1153–1159 (2010).
[Crossref]

Proc of Asia Display (1)

M. Ohta, M. Oh-e, and K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Proc of Asia Display 95, 707–710 (1995).

Proc. Eurodisplay (1)

T. Tsuruma, Y. Goto, A. Higashi, M. Watanabe, H. Yamaguchi, and T. Tomooka, “Novel image sticking model in the fringe field switching mode based on the flexoelectric effect,” Proc. Eurodisplay 11, 13 (2011).

Sci. Rep. (1)

M. S. Kim, P. J. Bos, D.-W. Kim, D.-K. Yang, J. H. Lee, and S. H. Lee, “Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices,” Sci. Rep. 6(1), 35254–35264 (2016).
[Crossref] [PubMed]

Other (12)

I. H. Jeong, I. W. Jang, D. H. Kim, J. S. Han, B. V. Kumar, and S. H. Lee, “Investigation on flexoelectric effect in the fringe field switching mode,” SID Symp. Dig. Tech. Pap. 44, 1368–1371 (2013).

D.-K. Yang, “Polymer stabilized liquid crystal displays,” in Progress in liquid crystal science and technology, ed. H-S. Kwok, S. Naemura and H. L. Ong, (World Scientific, 2013).

D. J. Broer, “Liquid crystalline networks formed by photoinitiated chain cross-linking” in Liquid Crystals in Complex Geometries, ed. G.P. Crawford and S. Zumer (Taylor & Francis, 1996).

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, Y. Koike, T. Sasabayashi, and K. Okamoto, Super‐High Image Quality Multi‐Domain Vertical Alignment LCD by New Rubbing‐Less Technology, SID Symp. Dig. Tech. Pap. 29, 1077 (1998).

J.-H. Lee, D. N. Liu, and S.-T. Wu, Introduction to flat panel displays (John Wiley & Sons, Ltd, 2008).

E. Lueder, Liquid Crystal Displays (John Wiley & Sons, Ltd, 2010).

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices, 2νδ εδ. (John Wiley & Sons, Ltd, 2014).

H. Chen, F. Peng, M. Hu, and S. T. Wu, “23-1: Distinguished student paper: Flexoelectric effect on image elickering of fringe field switching LCDs,” SID Symp. Dig. Tech. Pap. 47(1), 274–277 (2016).

Y. M. Jeon, I. S. Song, S. H. Lee, H. Y. Kim, S. Y. Kim, and Y. J. Lim, “P-165: Optimized electrode design to improve transmittance in the fringe-field switching (FFS) liquid crystal cell,” SID Symp. Dig. Tech. Pap. 36(1), 328–331 (2005).

H. S. Choi, J. H. Kim, H. G. Ham, Y. J. Lim, J. M. Lee, H. S. Jin, R. Manda, M. S. Kim, D.-K. Yang, and S. H. Lee, “P-131: Studies on flickering in low frequency driven fringe-field switching (FFS) liquid crystal display,” SID Symp. Dig. Tech. Pap. 47(1), 1610–1613 (2016).

C.-S. Lee, H.-S. Choi, H.-G. Ham, H.-S. Yoo, M. Kim, Y.-J. Lim, T.-H. Kim, P. J. Bos, D.-K. Yang, and S.-H. Lee, “P-149: Maximization of transmittance and minimization of image-flickering due to flexoelectric effect in low-frequency driving fringe-field switching (FFS) mode using LCs with negative dielectric anisotropy,” SID Symp. Dig. Tech. Pap. 48(1), 1841–1844 (2017).

Y. Jiang, X. Zhou, G. Qin, X. Xu, S.-H. Lee, and D.-K. Yang, “81-3: Effects of flexoelectricity and ion on the flicker of fringe field switching liquid crystal display,” SID Symp. Dig. Tech. Pap. 49(1), 1095–1098 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of FFS mode, (a) Voltage-off state, (b) Voltage-on state
Fig. 2
Fig. 2 Electro-optical properties before polymerization of the FFS cells with various polymer concentrations. (a) Transmittance-voltage curves, (b) Transmittance-time curves.
Fig. 3
Fig. 3 Electro-optical properties after polymerization of the FFS cells with various polymer concentrations. (a) Transmittance-voltage curves, (b) Transmittance-time.
Fig. 4
Fig. 4 Flickering value of the cells after polymerization as a function of the frequency of the applied voltage. The lines are guide to the eye.
Fig. 5
Fig. 5 Transmittance vs. time curves of the polymer stabilized FFS displays (after polymerization). The percentages shown are the monomer concentrations. (a) Turn-on curve, (b) Turn-off curve.
Fig. 6
Fig. 6 Microphotographs of the polymer stabilized FFS cells with 2% monomer. (a) at 0 V and polarizer parallel to rubbing direction. (b) at 0 V and polarizer parallel making 45° to rubbing direction. (c) at 3.6 V and polarizer parallel to rubbing direction.
Fig. 7
Fig. 7 Simulated electro-optical properties if the FFS displays under various polymer aligning fields. (a) Transmittance-voltage curves, (b) Transmittance-time
Fig. 8
Fig. 8 Simulated splay deformation parameters
Fig. 9
Fig. 9 Simulated bend deformation parameters

Tables (1)

Tables Icon

Table 1 Turn-on and turn-off times of the polymer stabilized FFS displays

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

F= ( T h T l ) [( T h + T l )/2] ,
f dielectric = 1 2 ε o Δε ( E n ) 2 ,
f elastic = 1 2 K 11 ( n ) 2 + 1 2 K 22 ( n n ) 2 + 1 2 K 33 ( n ×× n ) 2 ,
f flexo =[ e s ( n n )+ e b ( n ×× n )] E ,
f polymer = 1 2 ε 0 Δε ( E p n ) 2 ,
f= f dielectric + f elastic + f flexo + f polymer ,
E P = (πcK/2 ε o Δε) 1/2 /R,
S x = [ n ( n )] x =( n x x + n y y + n z z ) n x
S z = [ n ( n )] z =( n x x + n y y + n z z ) n z
B x = ( n ×× n ) x = n x n x x n y n x y n z n x z
B z = ( n ×× n ) z = n x n z x n y n z y n z n z z

Metrics