Abstract

We propose an integrated holographic waveguide display system. An infrared volume holographic grating (IVHG) and a visible light grating are recorded on the same waveguide to achieve the purpose of a common light path for system miniaturization. Simulated and experimental results verify the feasibility of this method. The coupling efficiencies of the infrared module for eye tracking and the visible light module for augmented reality (AR) display are 40% and 45%. The holographic waveguide has a weight of only 4.3 grams. It is believed that this technique is a good way to achieve a light and thin eye tracking near-eye display.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient waveguide display with space-variant volume holographic gratings

Chao Yu, Yifan Peng, Qing Zhao, Haifeng Li, and Xu Liu
Appl. Opt. 56(34) 9390-9397 (2017)

Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms

Jian Han, Juan Liu, Xincheng Yao, and Yongtian Wang
Opt. Express 23(3) 3534-3549 (2015)

Efficient coupling to a waveguide by combined gratings in a holographic waveguide display system

Lanlan Yang, Yan Tu, Zaiyao Shi, Jingjing Guo, Lili Wang, Yuning Zhang, Xiaohua Li, and Baoping Wang
Appl. Opt. 57(35) 10135-10145 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial hmd optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
    [Crossref]
  2. D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide field of view varifocal near-eye display using see-through deformable membrane mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
    [Crossref] [PubMed]
  3. H. Hua, A. Girardot, C. Gao, and J. P. Rolland, “Engineering of head-mounted projective displays,” Appl. Opt. 39(22), 3814–3824 (2000).
    [Crossref] [PubMed]
  4. R. Martins, V. Shaoulov, Y. Ha, and J. Rolland, “A mobile head-worn projection display,” Opt. Express 15(22), 14530–14538 (2007).
    [Crossref] [PubMed]
  5. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [Crossref] [PubMed]
  6. R. Shi, J. Liu, H. Zhao, Z. Wu, Y. Liu, Y. Hu, Y. Chen, J. Xie, and Y. Wang, “Chromatic dispersion correction in planar waveguide using one-layer volume holograms based on three-step exposure,” Appl. Opt. 51(20), 4703–4708 (2012).
    [Crossref] [PubMed]
  7. A. A. Cameron, “Optical waveguide technology and its application in head-mounted displays,” Proc. SPIE 8383, 83830E (2012).
    [Crossref]
  8. Z. Wu, J. Liu, and Y. Wang, “A high-efficiency holographic waveguide display system with a prism in-coupler,” J. Soc. Inf. Disp. 21(12), 524–528 (2013).
    [Crossref]
  9. J. Han, J. Liu, X. Yao, and Y. Wang, “Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms,” Opt. Express 23(3), 3534–3549 (2015).
    [Crossref] [PubMed]
  10. A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
    [Crossref]
  11. C. Yu, Y. Peng, Q. Zhao, H. Li, and X. Liu, “Highly efficient waveguide display with space-variant volume holographic gratings,” Appl. Opt. 56(34), 9390–9397 (2017).
    [Crossref] [PubMed]
  12. Wikipedia, “Eye tracking,” https://en.wikipedia.org/wiki/Eye_tracking .
  13. A. T. Duchowski and A. Çöltekin, “Foveated gaze-contingent displays for peripheral LOD management, 3D visualization, and stereo imaging,” ACM Trans. Multimed. Comput. Commun. Appl. 3(4), 1–18 (2007).
    [Crossref]
  14. H. Hua, C. W. Pansing, and J. P. Rolland, “Modeling of an eye-imaging system for optimizing illumination schemes in an eye-tracked head-mounted display,” Appl. Opt. 46(31), 7757–7770 (2007).
    [Crossref] [PubMed]
  15. H. Hua, X. Hu, and C. Gao, “A high-resolution optical see-through head-mounted display with eyetracking capability,” Opt. Express 21(25), 30993–30998 (2013).
    [Crossref] [PubMed]
  16. S. Calixto and C. Menchaca, “Infrared recording of transient and permanent interference gratings with commercial plastics,” Appl. Opt. 28(20), 4370–4374 (1989).
    [Crossref] [PubMed]
  17. Q. Huang and P. R. Ashley, “Holographic Bragg grating input-output couplers for polymer waveguides at an 850-nm wavelength,” Appl. Opt. 36(6), 1198–1203 (1997).
    [Crossref] [PubMed]
  18. S. Robbins, I. A. Nguyen, and X. Lou, “Waveguide eye tracking employing volume Bragg grating,” U.S. patent US 9377623 (2016).
  19. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  20. J.-A. Piao, G. Li, M.-L. Piao, and N. Kim, “Full color holographic optical element fabrication for waveguide-type head mounted display using photopolymer,” J. Opt. Soc. Korea 17(3), 242–248 (2013).
    [Crossref]
  21. Z. Zhu and Q. Ji, “Novel eye gaze tracking techniques under natural head movement,” IEEE Trans. Biomed. Eng. 54(12), 2246–2260 (2007).
    [Crossref] [PubMed]

2017 (3)

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide field of view varifocal near-eye display using see-through deformable membrane mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

C. Yu, Y. Peng, Q. Zhao, H. Li, and X. Liu, “Highly efficient waveguide display with space-variant volume holographic gratings,” Appl. Opt. 56(34), 9390–9397 (2017).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (3)

2012 (2)

2007 (4)

R. Martins, V. Shaoulov, Y. Ha, and J. Rolland, “A mobile head-worn projection display,” Opt. Express 15(22), 14530–14538 (2007).
[Crossref] [PubMed]

H. Hua, C. W. Pansing, and J. P. Rolland, “Modeling of an eye-imaging system for optimizing illumination schemes in an eye-tracked head-mounted display,” Appl. Opt. 46(31), 7757–7770 (2007).
[Crossref] [PubMed]

A. T. Duchowski and A. Çöltekin, “Foveated gaze-contingent displays for peripheral LOD management, 3D visualization, and stereo imaging,” ACM Trans. Multimed. Comput. Commun. Appl. 3(4), 1–18 (2007).
[Crossref]

Z. Zhu and Q. Ji, “Novel eye gaze tracking techniques under natural head movement,” IEEE Trans. Biomed. Eng. 54(12), 2246–2260 (2007).
[Crossref] [PubMed]

2000 (1)

1997 (1)

1996 (1)

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial hmd optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

1989 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Akiyama, T.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial hmd optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

Aksit, K.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide field of view varifocal near-eye display using see-through deformable membrane mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Ashley, P. R.

Calixto, S.

Cameron, A. A.

A. A. Cameron, “Optical waveguide technology and its application in head-mounted displays,” Proc. SPIE 8383, 83830E (2012).
[Crossref]

Chen, Y.

Çöltekin, A.

A. T. Duchowski and A. Çöltekin, “Foveated gaze-contingent displays for peripheral LOD management, 3D visualization, and stereo imaging,” ACM Trans. Multimed. Comput. Commun. Appl. 3(4), 1–18 (2007).
[Crossref]

Didyk, P.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide field of view varifocal near-eye display using see-through deformable membrane mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Duchowski, A. T.

A. T. Duchowski and A. Çöltekin, “Foveated gaze-contingent displays for peripheral LOD management, 3D visualization, and stereo imaging,” ACM Trans. Multimed. Comput. Commun. Appl. 3(4), 1–18 (2007).
[Crossref]

Dunn, D.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide field of view varifocal near-eye display using see-through deformable membrane mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Fuchs, H.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide field of view varifocal near-eye display using see-through deformable membrane mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Gao, C.

Georgiou, A.

A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Girardot, A.

Ha, Y.

Hahn, J.

Han, J.

Hoshi, H.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial hmd optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

Hu, X.

Hu, Y.

Hua, H.

Huang, Q.

Ji, Q.

Z. Zhu and Q. Ji, “Novel eye gaze tracking techniques under natural head movement,” IEEE Trans. Biomed. Eng. 54(12), 2246–2260 (2007).
[Crossref] [PubMed]

Kellnhofer, P.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide field of view varifocal near-eye display using see-through deformable membrane mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Kim, H.

Kim, M.

Kim, N.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kollin, J.

A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Li, G.

Li, H.

Liu, J.

Liu, X.

Liu, Y.

Luebke, D.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide field of view varifocal near-eye display using see-through deformable membrane mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Maimone, A.

A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Martins, R.

Menchaca, C.

Moon, E.

Morishima, H.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial hmd optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

Myszkowski, K.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide field of view varifocal near-eye display using see-through deformable membrane mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Okuyama, A.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial hmd optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

Pansing, C. W.

Peng, Y.

Piao, J.-A.

Piao, M.-L.

Roh, J.

Rolland, J.

Rolland, J. P.

Shaoulov, V.

Shi, R.

Taniguchi, N.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial hmd optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

Tippets, C.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide field of view varifocal near-eye display using see-through deformable membrane mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Torell, K.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide field of view varifocal near-eye display using see-through deformable membrane mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Wang, Y.

Wu, Z.

Xie, J.

Yamazaki, S.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial hmd optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

Yao, X.

Yu, C.

Zhao, H.

Zhao, Q.

Zhu, Z.

Z. Zhu and Q. Ji, “Novel eye gaze tracking techniques under natural head movement,” IEEE Trans. Biomed. Eng. 54(12), 2246–2260 (2007).
[Crossref] [PubMed]

ACM Trans. Graph. (1)

A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

ACM Trans. Multimed. Comput. Commun. Appl. (1)

A. T. Duchowski and A. Çöltekin, “Foveated gaze-contingent displays for peripheral LOD management, 3D visualization, and stereo imaging,” ACM Trans. Multimed. Comput. Commun. Appl. 3(4), 1–18 (2007).
[Crossref]

Appl. Opt. (6)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

Z. Zhu and Q. Ji, “Novel eye gaze tracking techniques under natural head movement,” IEEE Trans. Biomed. Eng. 54(12), 2246–2260 (2007).
[Crossref] [PubMed]

IEEE Trans. Vis. Comput. Graph. (1)

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide field of view varifocal near-eye display using see-through deformable membrane mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

J. Opt. Soc. Korea (1)

J. Soc. Inf. Disp. (1)

Z. Wu, J. Liu, and Y. Wang, “A high-efficiency holographic waveguide display system with a prism in-coupler,” J. Soc. Inf. Disp. 21(12), 524–528 (2013).
[Crossref]

Opt. Express (4)

Proc. SPIE (2)

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial hmd optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

A. A. Cameron, “Optical waveguide technology and its application in head-mounted displays,” Proc. SPIE 8383, 83830E (2012).
[Crossref]

Other (2)

Wikipedia, “Eye tracking,” https://en.wikipedia.org/wiki/Eye_tracking .

S. Robbins, I. A. Nguyen, and X. Lou, “Waveguide eye tracking employing volume Bragg grating,” U.S. patent US 9377623 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagram of the proposed integrated holographic waveguide displays.
Fig. 2
Fig. 2 Geometric relationship of volume grating reconstruction. (a) satisfied Bragg incidence. (b)and (c) deviated from Bragg incidence. (d) satisfied Bragg incidence when reconstructed with infrared light. The x axis is parallel to the surface of the material and the z axis is perpendicular to the surface of the material.
Fig. 3
Fig. 3 The relationship between the angle offset and the diffraction efficiency. The premise is to ensure the vertical reconstruction of 785 nm.
Fig. 4
Fig. 4 Relationship between the incident angle of reconstruction wave, the wavelength of reconstruction wave and the diffraction efficiency.
Fig. 5
Fig. 5 The size and spacing of the individual gratings in the entire system
Fig. 6
Fig. 6 Simulation diagram of the system
Fig. 7
Fig. 7 The relationship between the angle offset and the diffraction efficiency after introducing the material shrinkage factor.
Fig. 8
Fig. 8 The relationship between reconstruction wavelength and diffraction efficiency.
Fig. 9
Fig. 9 Actually photographed holographic waveguide.
Fig. 10
Fig. 10 Photographs of the prototype for AR display.
Fig. 11
Fig. 11 (a)-(c) are the input original image. (d)-(e) are the photographs of the displayed results. (a) is a binary image. (b) is a grayscale image. (c) is a color image.
Fig. 12
Fig. 12 Experimental results displayed by AR.

Tables (2)

Tables Icon

Table 1 Diffraction efficiency of a single grating

Tables Icon

Table 2 Coupling efficiency of visible light module and infrared module of the system

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ξ= d 2cos θ s (Kcos(ϕ θ r ) K 2 λ 4π n 0 ),
ν= πΔnd λ (cos θ r cos θ s ) 1/2 ,
η= s h 2 ( ν 2 ξ 2 ) 1/2 s h 2 ( ν 2 ξ 2 ) 1/2 +[1 (ξ/ν) 2 ] .
K Z1 = K Z S 1 ,
K X1 = K X S 2 ,
K 1 = (Kcosϕ S 1 ) 2 + (Ksinϕ S 2 ) 2 .

Metrics