Abstract

We investigate Airy-soliton interaction in a nonlinear fiber with Raman effect. We find that Airy solitons may fuse upon interaction at a position that can be controlled by a proper engineering of the Airy tail direction. This control allows us to generate Airy solitons with varying deceleration. At variance with the case of two solitons interaction, Raman-induced soliton self-frequency shift (SSFS) is strongly enhanced when the leading soliton is replaced with the accelerating Airy pulse and slightly suppressed for the decelerating one. These notable features are ascribed to the unique properties of asymmetrical Airy pulses with a switchable direction of the oscillatory tails. We show the way these processes are uncovered unambiguously by cross-correlation frequency resolved optical gating. We also investigate the impact of chirp imposed on the input pulse on the SSFS dynamics. Our results not only provide a new way to manipulate the SSFS, but may help to improve the control of soliton fusion events during supercontinuum generation, optical rogue waves and giant dispersive waves formation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Manipulation of Raman-induced frequency shift by use of asymmetric self-accelerating Airy pulse

Lifu Zhang, Haizhe Zhong, Ying Li, and Dianyuan Fan
Opt. Express 22(19) 22598-22607 (2014)

Dressed dynamics of two time-reversed shapes of Airy pulses in a relaxing nonlinear medium

Xiaohui Shi, Chao Tan, Yanfeng Bai, Rui Wang, Ziyang Zhang, and Xiquan Fu
J. Opt. Soc. Am. B 32(9) 1816-1823 (2015)

Decelerating Airy pulse propagation in highly non-instantaneous cubic media

Lifu Zhang, Pengwei Huang, Claudio Conti, Zhiteng Wang, Yonghua Hu, Dajun Lei, Ying Li, and Dianyuan Fan
Opt. Express 25(3) 1856-1866 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  2. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref] [PubMed]
  3. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref] [PubMed]
  4. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [Crossref] [PubMed]
  5. J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1), 413–420 (2003).
    [Crossref]
  6. C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
    [Crossref] [PubMed]
  7. A. M. Al-kadry and M. Rochette, “Mid-infrared sources based on the soliton self-frequency shift,” J. Opt. Soc. Am. B 29(6), 1347–1355 (2012).
    [Crossref]
  8. P. Tchofo Dinda, K. Nakkeeran, and A. Labruyére, “Suppression of soliton self-frequency shift by upshifted filtering,” Opt. Lett. 27(6), 382–384 (2002).
    [Crossref] [PubMed]
  9. I. M. Uzunov, “Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification,” Phys. Rev. E. 82(6), 066603 (2010).
    [Crossref] [PubMed]
  10. D. Schadt and B. Jaskorzynska, “Suppression of the Raman self-frequency shift by cross-phase modulation,” J. Opt. Soc. Am. B 5(11), 2374–2378 (1988).
    [Crossref]
  11. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008).
    [Crossref] [PubMed]
  12. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
    [Crossref] [PubMed]
  13. E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
    [Crossref]
  14. A. Bendahmane, O. Vanvincq, A. Mussot, and A. Kudlinski, “Control of the soliton self-frequency shift dynamics using topographic optical fibers,” Opt. Lett. 38(17), 3390–3393 (2013).
    [Crossref] [PubMed]
  15. A. C. Judge, B. J. Eggleton, B. T. Kuhlmey, E. C. Magi, M. D. Sterke, and R. Pant, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27(9), 1894–1901 (2010).
    [Crossref]
  16. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
    [Crossref]
  17. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
    [Crossref] [PubMed]
  18. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
    [Crossref] [PubMed]
  19. I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011).
    [Crossref] [PubMed]
  20. Y. Fattal, A. Rudnick, and D. M. Marom, “Soliton shedding from Airy pulses in Kerr media,” Opt. Express 19(18), 17298–17307 (2011).
    [Crossref] [PubMed]
  21. Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, “Soliton pair generation in the interactions of Airy and nonlinear accelerating beams,” Opt. Lett. 38(22), 4585–4588 (2013).
    [Crossref] [PubMed]
  22. Y. Zhang, M. R. Belić, H. Zheng, H. Chen, C. Li, Y. Li, and Y. Zhang, “Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media,” Opt. Express 22(6), 7160–7171 (2014).
    [Crossref] [PubMed]
  23. C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing Airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
    [Crossref] [PubMed]
  24. L. Zhang, X. Zhang, D. Pierangeli, Y. Li, D. Fan, and C. Conti, “Synchrotron resonant radiation from nonlinear self-accelerating pulses,” Opt. Express 26(11), 14710–14717 (2018).
    [Crossref] [PubMed]
  25. C. Ament, M. Kolesik, J. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
    [Crossref]
  26. L. Zhang and H. Zhong, “Modulation instability of finite energy Airy pulse in optical fiber,” Opt. Express 22(14), 17107–17115 (2014).
    [Crossref] [PubMed]
  27. L. Zhang, J. Zhang, Y. Chen, A. Liu, and G. Liu, “Dynamic propagation of finite-energy Airy pulses in the presence of higher-order effects,” J. Opt. Soc. Am. B 31(4), 889–897 (2014).
    [Crossref]
  28. L. Zhang, H. Zhong, Y. Li, and D. Fan, “Manipulation of Raman-induced frequency shift by use of asymmetric self-accelerating Airy pulse,” Opt. Express 22(19), 22598–22607 (2014).
    [Crossref] [PubMed]
  29. Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse raman scattering control via asymmetric airy pulses,” Phys. Rev. Lett. 114(7), 073901 (2015).
    [Crossref] [PubMed]
  30. A. Rudnick and D. M. Marom, “Airy-soliton interactions in Kerr media,” Opt. Express 19(25), 25570–25582 (2011).
    [Crossref] [PubMed]
  31. L. Zhang, K. Liu, H. Zhong, J. Zhang, Y. Hu, J. Deng, D. Lei, Y. Li, and D. Fan, “Discriminating the role of Raman effects in the propagation of decelerating and accelerating Airy pulses by time–frequency analysis,” J. Opt. 18(1), 015505 (2016).
    [Crossref]
  32. R. Driben and I. Babushkin, “Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers,” Opt. Lett. 37(24), 5157–5159 (2012).
    [Crossref] [PubMed]
  33. M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35(5), 658–660 (2010).
    [Crossref] [PubMed]
  34. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  35. Y. Kodama and K. Nozaki, “Soliton interaction in optical fibers,” Opt. Lett. 12(12), 1038–1040 (1987).
    [Crossref] [PubMed]
  36. P. Balla, S. Buch, and G. P. Agrawal, “Effect of Raman scattering on soliton interactions in optical fibers,” J. Opt. Soc. Am. B 34(6), 1247–1254 (2017).
    [Crossref]
  37. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
    [Crossref] [PubMed]
  38. A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25(7), R73–R83 (2012).
    [Crossref]
  39. R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).
    [Crossref]
  40. L. Zhang, K. Liu, H. Zhong, J. Zhang, Y. Li, and D. Fan, “Effect of initial frequency chirp on Airy pulse propagation in an optical fiber,” Opt. Express 23(3), 2566–2576 (2015).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

2016 (1)

L. Zhang, K. Liu, H. Zhong, J. Zhang, Y. Hu, J. Deng, D. Lei, Y. Li, and D. Fan, “Discriminating the role of Raman effects in the propagation of decelerating and accelerating Airy pulses by time–frequency analysis,” J. Opt. 18(1), 015505 (2016).
[Crossref]

2015 (2)

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse raman scattering control via asymmetric airy pulses,” Phys. Rev. Lett. 114(7), 073901 (2015).
[Crossref] [PubMed]

L. Zhang, K. Liu, H. Zhong, J. Zhang, Y. Li, and D. Fan, “Effect of initial frequency chirp on Airy pulse propagation in an optical fiber,” Opt. Express 23(3), 2566–2576 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (3)

2012 (4)

A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25(7), R73–R83 (2012).
[Crossref]

A. M. Al-kadry and M. Rochette, “Mid-infrared sources based on the soliton self-frequency shift,” J. Opt. Soc. Am. B 29(6), 1347–1355 (2012).
[Crossref]

C. Ament, M. Kolesik, J. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
[Crossref]

R. Driben and I. Babushkin, “Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers,” Opt. Lett. 37(24), 5157–5159 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (3)

2008 (2)

2007 (2)

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

2005 (1)

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

2003 (3)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1), 413–420 (2003).
[Crossref]

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

2002 (1)

1988 (1)

1987 (1)

1986 (2)

1979 (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Agrawal, G. P.

P. Balla, S. Buch, and G. P. Agrawal, “Effect of Raman scattering on soliton interactions in optical fibers,” J. Opt. Soc. Am. B 34(6), 1247–1254 (2017).
[Crossref]

J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1), 413–420 (2003).
[Crossref]

Al-kadry, A. M.

Ament, C.

C. Ament, M. Kolesik, J. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
[Crossref]

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing Airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

Antikainen, A.

A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25(7), R73–R83 (2012).
[Crossref]

Babushkin, I.

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Balla, P.

Belic, M.

Belic, M. R.

Bendahmane, A.

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Broky, J.

Buch, S.

Chai, L.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Chen, H.

Chen, Y.

Chen, Z.

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse raman scattering control via asymmetric airy pulses,” Phys. Rev. Lett. 114(7), 073901 (2015).
[Crossref] [PubMed]

Christodoulides, D. N.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Conti, C.

Deng, J.

L. Zhang, K. Liu, H. Zhong, J. Zhang, Y. Hu, J. Deng, D. Lei, Y. Li, and D. Fan, “Discriminating the role of Raman effects in the propagation of decelerating and accelerating Airy pulses by time–frequency analysis,” J. Opt. 18(1), 015505 (2016).
[Crossref]

Dogariu, A.

Driben, R.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).
[Crossref]

R. Driben and I. Babushkin, “Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers,” Opt. Lett. 37(24), 5157–5159 (2012).
[Crossref] [PubMed]

Dudley, J. M.

A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25(7), R73–R83 (2012).
[Crossref]

M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35(5), 658–660 (2010).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Eggleton, B. J.

Erkintalo, M.

A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25(7), R73–R83 (2012).
[Crossref]

M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35(5), 658–660 (2010).
[Crossref] [PubMed]

Fan, D.

Fattal, Y.

Genty, G.

A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25(7), R73–R83 (2012).
[Crossref]

M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35(5), 658–660 (2010).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gordon, J. P.

Hu, M. L.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Hu, Y.

L. Zhang, K. Liu, H. Zhong, J. Zhang, Y. Hu, J. Deng, D. Lei, Y. Li, and D. Fan, “Discriminating the role of Raman effects in the propagation of decelerating and accelerating Airy pulses by time–frequency analysis,” J. Opt. 18(1), 015505 (2016).
[Crossref]

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse raman scattering control via asymmetric airy pulses,” Phys. Rev. Lett. 114(7), 073901 (2015).
[Crossref] [PubMed]

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Jaskorzynska, B.

Judge, A. C.

Kaminer, I.

Kashyap, R.

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse raman scattering control via asymmetric airy pulses,” Phys. Rev. Lett. 114(7), 073901 (2015).
[Crossref] [PubMed]

Knight, J. C.

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Kodama, Y.

Kolesik, M.

C. Ament, M. Kolesik, J. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
[Crossref]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Kudlinski, A.

Kuhlmey, B. T.

Labruyére, A.

Lei, D.

L. Zhang, K. Liu, H. Zhong, J. Zhang, Y. Hu, J. Deng, D. Lei, Y. Li, and D. Fan, “Discriminating the role of Raman effects in the propagation of decelerating and accelerating Airy pulses by time–frequency analysis,” J. Opt. 18(1), 015505 (2016).
[Crossref]

Li, C.

Li, Y.

Li, Y. F.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Liu, A.

Liu, G.

Liu, K.

L. Zhang, K. Liu, H. Zhong, J. Zhang, Y. Hu, J. Deng, D. Lei, Y. Li, and D. Fan, “Discriminating the role of Raman effects in the propagation of decelerating and accelerating Airy pulses by time–frequency analysis,” J. Opt. 18(1), 015505 (2016).
[Crossref]

L. Zhang, K. Liu, H. Zhong, J. Zhang, Y. Li, and D. Fan, “Effect of initial frequency chirp on Airy pulse propagation in an optical fiber,” Opt. Express 23(3), 2566–2576 (2015).
[Crossref] [PubMed]

Liu, X.

Lu, K.

Luan, F.

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Lumer, Y.

Magi, E. C.

Malomed, B. A.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).
[Crossref]

Marom, D. M.

Mitschke, F. M.

Mollenauer, L. F.

Moloney, J.

C. Ament, M. Kolesik, J. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
[Crossref]

Moloney, J. V.

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing Airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

Morandotti, R.

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse raman scattering control via asymmetric airy pulses,” Phys. Rev. Lett. 114(7), 073901 (2015).
[Crossref] [PubMed]

Mussot, A.

Nakkeeran, K.

Nozaki, K.

Pant, R.

Pierangeli, D.

Polynkin, P.

C. Ament, M. Kolesik, J. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
[Crossref]

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing Airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

Rochette, M.

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Rudnick, A.

Russell, P. S. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Santhanam, J.

J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1), 413–420 (2003).
[Crossref]

Schadt, D.

Segev, M.

Serebryannikov, E. E.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Siviloglou, G. A.

Skryabin, D. V.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).
[Crossref]

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Sterke, M. D.

Tchofo Dinda, P.

Tehranchi, A.

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse raman scattering control via asymmetric airy pulses,” Phys. Rev. Lett. 114(7), 073901 (2015).
[Crossref] [PubMed]

Uzunov, I. M.

I. M. Uzunov, “Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification,” Phys. Rev. E. 82(6), 066603 (2010).
[Crossref] [PubMed]

Vanvincq, O.

Voronin, A. A.

Wabnitz, S.

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse raman scattering control via asymmetric airy pulses,” Phys. Rev. Lett. 114(7), 073901 (2015).
[Crossref] [PubMed]

Wang, C. Y.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Wang, Z.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Wu, Z.

Xu, C.

Yulin, A. V.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).
[Crossref]

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

Zhang, J.

Zhang, L.

Zhang, X.

Zhang, Y.

Zheltikov, A. M.

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008).
[Crossref] [PubMed]

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Zheng, H.

Zhong, H.

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

J. Opt. (1)

L. Zhang, K. Liu, H. Zhong, J. Zhang, Y. Hu, J. Deng, D. Lei, Y. Li, and D. Fan, “Discriminating the role of Raman effects in the propagation of decelerating and accelerating Airy pulses by time–frequency analysis,” J. Opt. 18(1), 015505 (2016).
[Crossref]

J. Opt. Soc. Am. B (5)

JETP Lett. (1)

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Nonlinearity (1)

A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25(7), R73–R83 (2012).
[Crossref]

Opt. Commun. (1)

J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1), 413–420 (2003).
[Crossref]

Opt. Express (10)

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011).
[Crossref] [PubMed]

Y. Fattal, A. Rudnick, and D. M. Marom, “Soliton shedding from Airy pulses in Kerr media,” Opt. Express 19(18), 17298–17307 (2011).
[Crossref] [PubMed]

L. Zhang, H. Zhong, Y. Li, and D. Fan, “Manipulation of Raman-induced frequency shift by use of asymmetric self-accelerating Airy pulse,” Opt. Express 22(19), 22598–22607 (2014).
[Crossref] [PubMed]

L. Zhang, X. Zhang, D. Pierangeli, Y. Li, D. Fan, and C. Conti, “Synchrotron resonant radiation from nonlinear self-accelerating pulses,” Opt. Express 26(11), 14710–14717 (2018).
[Crossref] [PubMed]

Y. Zhang, M. R. Belić, H. Zheng, H. Chen, C. Li, Y. Li, and Y. Zhang, “Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media,” Opt. Express 22(6), 7160–7171 (2014).
[Crossref] [PubMed]

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

L. Zhang and H. Zhong, “Modulation instability of finite energy Airy pulse in optical fiber,” Opt. Express 22(14), 17107–17115 (2014).
[Crossref] [PubMed]

A. Rudnick and D. M. Marom, “Airy-soliton interactions in Kerr media,” Opt. Express 19(25), 25570–25582 (2011).
[Crossref] [PubMed]

L. Zhang, K. Liu, H. Zhong, J. Zhang, Y. Li, and D. Fan, “Effect of initial frequency chirp on Airy pulse propagation in an optical fiber,” Opt. Express 23(3), 2566–2576 (2015).
[Crossref] [PubMed]

Opt. Lett. (11)

Y. Kodama and K. Nozaki, “Soliton interaction in optical fibers,” Opt. Lett. 12(12), 1038–1040 (1987).
[Crossref] [PubMed]

R. Driben and I. Babushkin, “Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers,” Opt. Lett. 37(24), 5157–5159 (2012).
[Crossref] [PubMed]

M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35(5), 658–660 (2010).
[Crossref] [PubMed]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, “Soliton pair generation in the interactions of Airy and nonlinear accelerating beams,” Opt. Lett. 38(22), 4585–4588 (2013).
[Crossref] [PubMed]

A. Bendahmane, O. Vanvincq, A. Mussot, and A. Kudlinski, “Control of the soliton self-frequency shift dynamics using topographic optical fibers,” Opt. Lett. 38(17), 3390–3393 (2013).
[Crossref] [PubMed]

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
[Crossref] [PubMed]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
[Crossref] [PubMed]

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008).
[Crossref] [PubMed]

P. Tchofo Dinda, K. Nakkeeran, and A. Labruyére, “Suppression of soliton self-frequency shift by upshifted filtering,” Opt. Lett. 27(6), 382–384 (2002).
[Crossref] [PubMed]

Phys. Rev. A (2)

C. Ament, M. Kolesik, J. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
[Crossref]

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).
[Crossref]

Phys. Rev. E. (1)

I. M. Uzunov, “Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification,” Phys. Rev. E. 82(6), 066603 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

Y. Hu, A. Tehranchi, S. Wabnitz, R. Kashyap, Z. Chen, and R. Morandotti, “Improved intrapulse raman scattering control via asymmetric airy pulses,” Phys. Rev. Lett. 114(7), 073901 (2015).
[Crossref] [PubMed]

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing Airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Supplementary Material (3)

NameDescription
» Visualization 1       The evolution of spectrograms of two solitons interaction as a function of propagation distance.
» Visualization 2       The evolution of spectrograms of decelerating Airy soliton interaction as a function of propagation distance.
» Visualization 3       The evolution of spectrograms of accelerating Airy soliton interaction as a function of propagation distance.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Temporal (b, c, d) and spectral (f, g, h) evolutions of two pulses interaction in a nonlinear fiber in the presence of Raman effect for different soliton cases. Panels (a) and (e) show the output pulse and spectral shapes at Z=13. The parameters are fixed to as a=0.05, d=20, T R =0.1 and r=10. Insets in (b-d) show intensity distributions of the incident pulses.
Fig. 2
Fig. 2 Peak intensity of two red-shifted solitons and fused soliton as a function of the propagation distance for three different cases: (a) S-S, (b) S-DEAP and (c) S-ACAP.
Fig. 3
Fig. 3 (a) Interval between the two red-shifted solitons and (b) average frequency centroids as a function of propagation distance for the three different interaction cases.
Fig. 4
Fig. 4 Spectrograms of the S-S (left column, Visualization 1), S-DEAP (middle column, Visualization 2) and S-ACAP (right column, Visualization 3) at five different propagation distances.
Fig. 5
Fig. 5 (a) Spectral evolutions of soliton interacting with an ACAP, with a=0.3and initial interval d=20, in anomalous dispersion regime and under the simultaneous action of SPM ( N=2) and Raman scattering ( T R =0.1). (b) The minimum interval observed varying the parameter a.
Fig. 6
Fig. 6 Frequency centroids as a function of propagation distance for the case of (a) chirped accelerating Airy and soliton interaction and (b) chirped decelerating Airy and soliton interaction.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i U Z + 1 2 2 U T 2 + N 2 | U | 2 U N 2 T R U | U | 2 T =0.
U A ( Z=0,T )=Airy( ±T )exp( ±aT ).
U S ( Z=0,T )=sech( T ).
U( Z=0,T )=C( a ) U A ( T+d )Θ[ ( T+r ) ]+ U S ( T ).
S( ω,T,Z )=ln | A( Z,t )g( tT )exp( iωt ) dt | 2 .

Metrics