Abstract

The detection of circulating tumor cells (CTCs) from peripheral blood is considered as great significance for the diagnosis and prognosis of cancer patients. Raman spectroscopy is a highly sensitive optical detection technique that can provide fingerprint molecular identification information. In this paper, the silver film substrate surface-enhanced Raman scattering (SERS) was used to research several tumor cells, immortalized cells, clinical cancer cells isolated from cancer patient’s tissue and blood cells. The results display that there is great difference for the nucleic acid characteristic peaks of those cells. The red blood cells have almost none nucleic acid characteristic peak and the SERS signals of white blood cells are only a slight increase. Except for immortalized cells and few tumor cells, the nucleic acid characteristic peaks of some tumor cells have huge enhancement. Nucleic acid characteristic peaks of clinical cancer cells also have greater enhancement. The discriminant model established by the intensity ratio of the nucleic acid characteristic peak 730 cm−1 to the substrate background peak 900 cm−1 shows that some tumor cells and clinical sample cells can be separated from white blood cells, but tumor cells with relatively low-DNA index cannot be differentiated from white blood cells. This study demonstrates that thin-film SERS technology can distinguish between blood cells and some types of tumor cells. This study opens up a new possible method for the detection of CTCs with label-free SERS spectra.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis

Duo Lin, Shangyuan Feng, Jianji Pan, Yanping Chen, Juqiang Lin, Guannan Chen, Shusen Xie, Haishan Zeng, and Rong Chen
Opt. Express 19(14) 13565-13577 (2011)

Label-free surface-enhanced Raman spectroscopy for detection of colorectal cancer and precursor lesions using blood plasma

Shangyuan Feng, Wenbo Wang, Isabella T. Tai, Guannan Chen, Rong Chen, and Haishan Zeng
Biomed. Opt. Express 6(9) 3494-3502 (2015)

In vivo quantitation of injected circulating tumor cells from great saphenous vein based on video-rate confocal microscopy

Howon Seo, Yoonha Hwang, Kibaek Choe, and Pilhan Kim
Biomed. Opt. Express 6(6) 2158-2167 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Kowalik, M. Kowalewska, and S. Góźdź, “Current approaches for avoiding the limitations of circulating tumor cell detection methods-implications for diagnosis and treatment of patients with solid tumors,” Transl. Res. 185, 58–84 (2017).
    [Crossref] [PubMed]
  2. M. Ilie, V. Hofman, E. Long, O. Bordone, E. Selva, K. Washetine, C. H. Marquette, and P. Hofman, “Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine?” Ann. Transl. Med. 2(11), 107 (2014).
    [PubMed]
  3. X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
    [Crossref] [PubMed]
  4. M. Lin, J.-F. Chen, Y. T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H. R. Tseng, “Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells,” Acc. Chem. Res. 47(10), 2941–2950 (2014).
    [Crossref] [PubMed]
  5. F. Zhan, X. Liao, F. Gao, W. Qiu, and Q. Wang, “Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s,” Biosens. Bioelectron. 92, 589–595 (2017).
    [Crossref] [PubMed]
  6. C. L. O’Connell, R. Nooney, and C. McDonagh, “Cyanine5-doped silica nanoparticles as ultra-bright immunospecific labels for model circulating tumour cells in flow cytometry and microscopy,” Biosens. Bioelectron. 91, 190–198 (2017).
    [Crossref] [PubMed]
  7. X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
    [Crossref] [PubMed]
  8. G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
    [Crossref] [PubMed]
  9. X. Wu, Y. Xia, Y. Huang, J. Li, H. Ruan, T. Chen, L. Luo, Z. Shen, and A. Wu, “Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity,” ACS Appl. Mater. Interfaces 8(31), 19928–19938 (2016).
    [Crossref] [PubMed]
  10. Z. Huang, H. Lui, D. I. McLean, M. Korbelik, and H. Zeng, “cRaman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues,” J. Photochem. Photobiol. B 81(5), 1219–1226 (2005).
    [Crossref]
  11. K. W. Short, S. Carpenter, J. P. Freyer, and J. R. Mourant, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88(6), 4274–4288 (2005).
    [Crossref] [PubMed]
  12. Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
    [Crossref] [PubMed]
  13. M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128(11), 2673–2680 (2011).
    [Crossref] [PubMed]
  14. S. Li, G. Chen, Y. Zhang, Z. Guo, Z. Liu, J. Xu, X. Li, and L. Lin, “Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques,” Opt. Express 22(21), 25895–25908 (2014).
    [Crossref] [PubMed]
  15. S. X. Li, Q. Y. Chen, Y. J. Zhang, Z. M. Liu, H. L. Xiong, Z. Y. Guo, H. Q. Mai, and S. H. Liu, “Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique,” J. Biomed. Opt. 17(12), 125003 (2012).
    [Crossref] [PubMed]
  16. S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for optical diagnosis in the stomach: identification of Helicobacter-pylori infection and intestinal metaplasia,” Int. J. Cancer 126(8), 1920–1927 (2010).
    [Crossref] [PubMed]
  17. H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
    [Crossref] [PubMed]
  18. D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
    [Crossref] [PubMed]
  19. J. E. Kim, J. H. Choi, M. Colas, D. H. Kim, and H. Lee, “Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications,” Biosens. Bioelectron. 80, 543–559 (2016).
    [Crossref] [PubMed]
  20. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
    [Crossref] [PubMed]
  21. S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
    [Crossref] [PubMed]
  22. Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).
    [Crossref] [PubMed]
  23. S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
    [Crossref] [PubMed]
  24. P. Rajapandiyan and J. Yang, “Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases,” Anal. Chem. 84(23), 10277–10282 (2012).
    [Crossref] [PubMed]
  25. Z. G. Zhao, W. Zhao, G. Claire, and S. L. Huang, “A spectrum signals detection method for surface enhanced raman scattering under high fluorescence and background noise,” Guangpuxue Yu Guangpu Fenxi 30(8), 2146–2150 (2010).
    [PubMed]
  26. J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
    [Crossref] [PubMed]
  27. S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
    [Crossref] [PubMed]
  28. C. G. Atkins, K. Buckley, M. W. Blades, and R. F. B. Turner, “Raman Spectroscopy of Blood and Blood Components,” Appl. Spectrosc. 71(5), 767–793 (2017).
    [Crossref] [PubMed]
  29. B. R. Wood and D. McNaughton, “Raman Excitation Wavelength Investigation of Single Red Blood Cells In Vivo,” J. Raman Spectrosc. 33(7), 517–523 (2002).
    [Crossref]
  30. G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy,” Nature 347(6290), 301–303 (1990).
    [Crossref] [PubMed]
  31. A. Giuliani, “The application of principal component analysis to drug discovery and biomedical data,” Drug Discov. Today 22(7), 1069–1076 (2017).
    [Crossref] [PubMed]
  32. M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosens. Bioelectron. 26(10), 4104–4110 (2011).
    [Crossref] [PubMed]
  33. A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
    [Crossref] [PubMed]
  34. S. A. Hosseini, M. Abdolahad, S. Zanganeh, M. Dahmardeh, M. Gharooni, H. Abiri, A. Alikhani, S. Mohajerzadeh, and O. Mashinchian, “Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes,” Small 12(7), 883–891 (2016).
    [Crossref] [PubMed]
  35. J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25(2), 388–394 (2009).
    [Crossref] [PubMed]
  36. N. Beije, A. Jager, and S. Sleijfer, “Circulating tumor cell enumeration by the CellSearch system: the clinician’s guide to breast cancer treatment?” Cancer Treat. Rev. 41(2), 144–150 (2015).
    [Crossref] [PubMed]
  37. A. Huefner, W. L. Kuan, R. A. Barker, and S. Mahajan, “Intracellular SERS nanoprobes for distinction of different neuronal cell types,” Nano Lett. 13(6), 2463–2470 (2013).
    [Crossref] [PubMed]
  38. P. Rajapandiyan, W.-L. Tang, and J. Yang, “Rapid detection of melamine in milk liquid and powder by surface-enhanced Raman scattering substrate array,” Food Control 56, 155–160 (2015).
    [Crossref]
  39. N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
    [Crossref] [PubMed]

2017 (6)

A. Kowalik, M. Kowalewska, and S. Góźdź, “Current approaches for avoiding the limitations of circulating tumor cell detection methods-implications for diagnosis and treatment of patients with solid tumors,” Transl. Res. 185, 58–84 (2017).
[Crossref] [PubMed]

F. Zhan, X. Liao, F. Gao, W. Qiu, and Q. Wang, “Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s,” Biosens. Bioelectron. 92, 589–595 (2017).
[Crossref] [PubMed]

C. L. O’Connell, R. Nooney, and C. McDonagh, “Cyanine5-doped silica nanoparticles as ultra-bright immunospecific labels for model circulating tumour cells in flow cytometry and microscopy,” Biosens. Bioelectron. 91, 190–198 (2017).
[Crossref] [PubMed]

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

C. G. Atkins, K. Buckley, M. W. Blades, and R. F. B. Turner, “Raman Spectroscopy of Blood and Blood Components,” Appl. Spectrosc. 71(5), 767–793 (2017).
[Crossref] [PubMed]

A. Giuliani, “The application of principal component analysis to drug discovery and biomedical data,” Drug Discov. Today 22(7), 1069–1076 (2017).
[Crossref] [PubMed]

2016 (7)

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

S. A. Hosseini, M. Abdolahad, S. Zanganeh, M. Dahmardeh, M. Gharooni, H. Abiri, A. Alikhani, S. Mohajerzadeh, and O. Mashinchian, “Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes,” Small 12(7), 883–891 (2016).
[Crossref] [PubMed]

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

J. E. Kim, J. H. Choi, M. Colas, D. H. Kim, and H. Lee, “Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications,” Biosens. Bioelectron. 80, 543–559 (2016).
[Crossref] [PubMed]

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

X. Wu, Y. Xia, Y. Huang, J. Li, H. Ruan, T. Chen, L. Luo, Z. Shen, and A. Wu, “Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity,” ACS Appl. Mater. Interfaces 8(31), 19928–19938 (2016).
[Crossref] [PubMed]

2015 (4)

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

P. Rajapandiyan, W.-L. Tang, and J. Yang, “Rapid detection of melamine in milk liquid and powder by surface-enhanced Raman scattering substrate array,” Food Control 56, 155–160 (2015).
[Crossref]

N. Beije, A. Jager, and S. Sleijfer, “Circulating tumor cell enumeration by the CellSearch system: the clinician’s guide to breast cancer treatment?” Cancer Treat. Rev. 41(2), 144–150 (2015).
[Crossref] [PubMed]

2014 (3)

M. Lin, J.-F. Chen, Y. T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H. R. Tseng, “Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells,” Acc. Chem. Res. 47(10), 2941–2950 (2014).
[Crossref] [PubMed]

S. Li, G. Chen, Y. Zhang, Z. Guo, Z. Liu, J. Xu, X. Li, and L. Lin, “Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques,” Opt. Express 22(21), 25895–25908 (2014).
[Crossref] [PubMed]

M. Ilie, V. Hofman, E. Long, O. Bordone, E. Selva, K. Washetine, C. H. Marquette, and P. Hofman, “Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine?” Ann. Transl. Med. 2(11), 107 (2014).
[PubMed]

2013 (2)

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).
[Crossref] [PubMed]

A. Huefner, W. L. Kuan, R. A. Barker, and S. Mahajan, “Intracellular SERS nanoprobes for distinction of different neuronal cell types,” Nano Lett. 13(6), 2463–2470 (2013).
[Crossref] [PubMed]

2012 (2)

P. Rajapandiyan and J. Yang, “Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases,” Anal. Chem. 84(23), 10277–10282 (2012).
[Crossref] [PubMed]

S. X. Li, Q. Y. Chen, Y. J. Zhang, Z. M. Liu, H. L. Xiong, Z. Y. Guo, H. Q. Mai, and S. H. Liu, “Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique,” J. Biomed. Opt. 17(12), 125003 (2012).
[Crossref] [PubMed]

2011 (3)

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128(11), 2673–2680 (2011).
[Crossref] [PubMed]

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosens. Bioelectron. 26(10), 4104–4110 (2011).
[Crossref] [PubMed]

2010 (4)

Z. G. Zhao, W. Zhao, G. Claire, and S. L. Huang, “A spectrum signals detection method for surface enhanced raman scattering under high fluorescence and background noise,” Guangpuxue Yu Guangpu Fenxi 30(8), 2146–2150 (2010).
[PubMed]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[Crossref] [PubMed]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for optical diagnosis in the stomach: identification of Helicobacter-pylori infection and intestinal metaplasia,” Int. J. Cancer 126(8), 1920–1927 (2010).
[Crossref] [PubMed]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

2009 (2)

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25(2), 388–394 (2009).
[Crossref] [PubMed]

2007 (1)

2005 (2)

Z. Huang, H. Lui, D. I. McLean, M. Korbelik, and H. Zeng, “cRaman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues,” J. Photochem. Photobiol. B 81(5), 1219–1226 (2005).
[Crossref]

K. W. Short, S. Carpenter, J. P. Freyer, and J. R. Mourant, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88(6), 4274–4288 (2005).
[Crossref] [PubMed]

2003 (1)

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

2002 (1)

B. R. Wood and D. McNaughton, “Raman Excitation Wavelength Investigation of Single Red Blood Cells In Vivo,” J. Raman Spectrosc. 33(7), 517–523 (2002).
[Crossref]

1990 (1)

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Abdolahad, M.

S. A. Hosseini, M. Abdolahad, S. Zanganeh, M. Dahmardeh, M. Gharooni, H. Abiri, A. Alikhani, S. Mohajerzadeh, and O. Mashinchian, “Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes,” Small 12(7), 883–891 (2016).
[Crossref] [PubMed]

Abiri, H.

S. A. Hosseini, M. Abdolahad, S. Zanganeh, M. Dahmardeh, M. Gharooni, H. Abiri, A. Alikhani, S. Mohajerzadeh, and O. Mashinchian, “Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes,” Small 12(7), 883–891 (2016).
[Crossref] [PubMed]

Alikhani, A.

S. A. Hosseini, M. Abdolahad, S. Zanganeh, M. Dahmardeh, M. Gharooni, H. Abiri, A. Alikhani, S. Mohajerzadeh, and O. Mashinchian, “Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes,” Small 12(7), 883–891 (2016).
[Crossref] [PubMed]

Arndt-Jovin, D. J.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Ashton, L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Atkins, C. G.

Barker, R. A.

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

A. Huefner, W. L. Kuan, R. A. Barker, and S. Mahajan, “Intracellular SERS nanoprobes for distinction of different neuronal cell types,” Nano Lett. 13(6), 2463–2470 (2013).
[Crossref] [PubMed]

Beije, N.

N. Beije, A. Jager, and S. Sleijfer, “Circulating tumor cell enumeration by the CellSearch system: the clinician’s guide to breast cancer treatment?” Cancer Treat. Rev. 41(2), 144–150 (2015).
[Crossref] [PubMed]

Beitler, J. J.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Bergholt, M. S.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128(11), 2673–2680 (2011).
[Crossref] [PubMed]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosens. Bioelectron. 26(10), 4104–4110 (2011).
[Crossref] [PubMed]

Bird, B.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Bivona, T. G.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Blades, M. W.

Bordone, O.

M. Ilie, V. Hofman, E. Long, O. Bordone, E. Selva, K. Washetine, C. H. Marquette, and P. Hofman, “Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine?” Ann. Transl. Med. 2(11), 107 (2014).
[PubMed]

Buckley, K.

Butler, H. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Carpenter, S.

K. W. Short, S. Carpenter, J. P. Freyer, and J. R. Mourant, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88(6), 4274–4288 (2005).
[Crossref] [PubMed]

Chang, C. T.

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Chen, C. J.

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Chen, G.

S. Li, G. Chen, Y. Zhang, Z. Guo, Z. Liu, J. Xu, X. Li, and L. Lin, “Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques,” Opt. Express 22(21), 25895–25908 (2014).
[Crossref] [PubMed]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[Crossref] [PubMed]

Chen, H. C.

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Chen, I. R.

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Chen, J.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[Crossref] [PubMed]

Chen, J.-F.

M. Lin, J.-F. Chen, Y. T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H. R. Tseng, “Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells,” Acc. Chem. Res. 47(10), 2941–2950 (2014).
[Crossref] [PubMed]

Chen, Q. Y.

S. X. Li, Q. Y. Chen, Y. J. Zhang, Z. M. Liu, H. L. Xiong, Z. Y. Guo, H. Q. Mai, and S. H. Liu, “Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique,” J. Biomed. Opt. 17(12), 125003 (2012).
[Crossref] [PubMed]

Chen, R.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[Crossref] [PubMed]

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25(2), 388–394 (2009).
[Crossref] [PubMed]

Chen, T.

X. Wu, Y. Xia, Y. Huang, J. Li, H. Ruan, T. Chen, L. Luo, Z. Shen, and A. Wu, “Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity,” ACS Appl. Mater. Interfaces 8(31), 19928–19938 (2016).
[Crossref] [PubMed]

Chen, X.

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

Chen, Z. G.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Cheng, M.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[Crossref] [PubMed]

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25(2), 388–394 (2009).
[Crossref] [PubMed]

Choi, J. H.

J. E. Kim, J. H. Choi, M. Colas, D. H. Kim, and H. Lee, “Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications,” Biosens. Bioelectron. 80, 543–559 (2016).
[Crossref] [PubMed]

Cialla-May, D.

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

Cinque, G.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Claire, G.

Z. G. Zhao, W. Zhao, G. Claire, and S. L. Huang, “A spectrum signals detection method for surface enhanced raman scattering under high fluorescence and background noise,” Guangpuxue Yu Guangpu Fenxi 30(8), 2146–2150 (2010).
[PubMed]

Colas, M.

J. E. Kim, J. H. Choi, M. Colas, D. H. Kim, and H. Lee, “Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications,” Biosens. Bioelectron. 80, 543–559 (2016).
[Crossref] [PubMed]

Collisson, E. A.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Copren, K. A.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Curtis, K.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Dahmardeh, M.

S. A. Hosseini, M. Abdolahad, S. Zanganeh, M. Dahmardeh, M. Gharooni, H. Abiri, A. Alikhani, S. Mohajerzadeh, and O. Mashinchian, “Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes,” Small 12(7), 883–891 (2016).
[Crossref] [PubMed]

de Mul, F. F.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Deng, Q.

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Dorney, J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Edwards, M.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Esmonde-White, K.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Feng, S.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[Crossref] [PubMed]

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25(2), 388–394 (2009).
[Crossref] [PubMed]

Foye, A.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Freyer, J. P.

K. W. Short, S. Carpenter, J. P. Freyer, and J. R. Mourant, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88(6), 4274–4288 (2005).
[Crossref] [PubMed]

Friedlander, T. W.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Fullwood, N. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Gao, F.

F. Zhan, X. Liao, F. Gao, W. Qiu, and Q. Wang, “Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s,” Biosens. Bioelectron. 92, 589–595 (2017).
[Crossref] [PubMed]

Gao, G.

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

Gardner, B.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Gau, S. L.

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Gharooni, M.

S. A. Hosseini, M. Abdolahad, S. Zanganeh, M. Dahmardeh, M. Gharooni, H. Abiri, A. Alikhani, S. Mohajerzadeh, and O. Mashinchian, “Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes,” Small 12(7), 883–891 (2016).
[Crossref] [PubMed]

Gilbert, E.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Giuliani, A.

A. Giuliani, “The application of principal component analysis to drug discovery and biomedical data,” Drug Discov. Today 22(7), 1069–1076 (2017).
[Crossref] [PubMed]

Gózdz, S.

A. Kowalik, M. Kowalewska, and S. Góźdź, “Current approaches for avoiding the limitations of circulating tumor cell detection methods-implications for diagnosis and treatment of patients with solid tumors,” Transl. Res. 185, 58–84 (2017).
[Crossref] [PubMed]

Greve, J.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Gubens, M.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Guo, Z.

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

S. Li, G. Chen, Y. Zhang, Z. Guo, Z. Liu, J. Xu, X. Li, and L. Lin, “Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques,” Opt. Express 22(21), 25895–25908 (2014).
[Crossref] [PubMed]

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).
[Crossref] [PubMed]

Guo, Z. Y.

S. X. Li, Q. Y. Chen, Y. J. Zhang, Z. M. Liu, H. L. Xiong, Z. Y. Guo, H. Q. Mai, and S. H. Liu, “Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique,” J. Biomed. Opt. 17(12), 125003 (2012).
[Crossref] [PubMed]

Hamirani, A.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Ho, K. Y.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128(11), 2673–2680 (2011).
[Crossref] [PubMed]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosens. Bioelectron. 26(10), 4104–4110 (2011).
[Crossref] [PubMed]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for optical diagnosis in the stomach: identification of Helicobacter-pylori infection and intestinal metaplasia,” Int. J. Cancer 126(8), 1920–1927 (2010).
[Crossref] [PubMed]

Hofman, P.

M. Ilie, V. Hofman, E. Long, O. Bordone, E. Selva, K. Washetine, C. H. Marquette, and P. Hofman, “Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine?” Ann. Transl. Med. 2(11), 107 (2014).
[PubMed]

Hofman, V.

M. Ilie, V. Hofman, E. Long, O. Bordone, E. Selva, K. Washetine, C. H. Marquette, and P. Hofman, “Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine?” Ann. Transl. Med. 2(11), 107 (2014).
[PubMed]

Hosseini, S. A.

S. A. Hosseini, M. Abdolahad, S. Zanganeh, M. Dahmardeh, M. Gharooni, H. Abiri, A. Alikhani, S. Mohajerzadeh, and O. Mashinchian, “Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes,” Small 12(7), 883–891 (2016).
[Crossref] [PubMed]

Hou, S.

M. Lin, J.-F. Chen, Y. T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H. R. Tseng, “Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells,” Acc. Chem. Res. 47(10), 2941–2950 (2014).
[Crossref] [PubMed]

Hough, J.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Huang, S. L.

Z. G. Zhao, W. Zhao, G. Claire, and S. L. Huang, “A spectrum signals detection method for surface enhanced raman scattering under high fluorescence and background noise,” Guangpuxue Yu Guangpu Fenxi 30(8), 2146–2150 (2010).
[PubMed]

Huang, Y.

X. Wu, Y. Xia, Y. Huang, J. Li, H. Ruan, T. Chen, L. Luo, Z. Shen, and A. Wu, “Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity,” ACS Appl. Mater. Interfaces 8(31), 19928–19938 (2016).
[Crossref] [PubMed]

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Huang, Z.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128(11), 2673–2680 (2011).
[Crossref] [PubMed]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosens. Bioelectron. 26(10), 4104–4110 (2011).
[Crossref] [PubMed]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[Crossref] [PubMed]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for optical diagnosis in the stomach: identification of Helicobacter-pylori infection and intestinal metaplasia,” Int. J. Cancer 126(8), 1920–1927 (2010).
[Crossref] [PubMed]

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25(2), 388–394 (2009).
[Crossref] [PubMed]

Z. Huang, H. Lui, D. I. McLean, M. Korbelik, and H. Zeng, “cRaman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues,” J. Photochem. Photobiol. B 81(5), 1219–1226 (2005).
[Crossref]

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Huefner, A.

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

A. Huefner, W. L. Kuan, R. A. Barker, and S. Mahajan, “Intracellular SERS nanoprobes for distinction of different neuronal cell types,” Nano Lett. 13(6), 2463–2470 (2013).
[Crossref] [PubMed]

Huser, T.

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

Ilie, M.

M. Ilie, V. Hofman, E. Long, O. Bordone, E. Selva, K. Washetine, C. H. Marquette, and P. Hofman, “Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine?” Ann. Transl. Med. 2(11), 107 (2014).
[PubMed]

Jager, A.

N. Beije, A. Jager, and S. Sleijfer, “Circulating tumor cell enumeration by the CellSearch system: the clinician’s guide to breast cancer treatment?” Cancer Treat. Rev. 41(2), 144–150 (2015).
[Crossref] [PubMed]

Jin, M.

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

Jovin, T. M.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Ke, Z.

M. Lin, J.-F. Chen, Y. T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H. R. Tseng, “Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells,” Acc. Chem. Res. 47(10), 2941–2950 (2014).
[Crossref] [PubMed]

Khuri, F. R.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Kim, D. H.

J. E. Kim, J. H. Choi, M. Colas, D. H. Kim, and H. Lee, “Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications,” Biosens. Bioelectron. 80, 543–559 (2016).
[Crossref] [PubMed]

Kim, J. E.

J. E. Kim, J. H. Choi, M. Colas, D. H. Kim, and H. Lee, “Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications,” Biosens. Bioelectron. 80, 543–559 (2016).
[Crossref] [PubMed]

Korbelik, M.

Z. Huang, H. Lui, D. I. McLean, M. Korbelik, and H. Zeng, “cRaman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues,” J. Photochem. Photobiol. B 81(5), 1219–1226 (2005).
[Crossref]

Kowalewska, M.

A. Kowalik, M. Kowalewska, and S. Góźdź, “Current approaches for avoiding the limitations of circulating tumor cell detection methods-implications for diagnosis and treatment of patients with solid tumors,” Transl. Res. 185, 58–84 (2017).
[Crossref] [PubMed]

Kowalik, A.

A. Kowalik, M. Kowalewska, and S. Góźdź, “Current approaches for avoiding the limitations of circulating tumor cell detection methods-implications for diagnosis and treatment of patients with solid tumors,” Transl. Res. 185, 58–84 (2017).
[Crossref] [PubMed]

Kuan, W. L.

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

A. Huefner, W. L. Kuan, R. A. Barker, and S. Mahajan, “Intracellular SERS nanoprobes for distinction of different neuronal cell types,” Nano Lett. 13(6), 2463–2470 (2013).
[Crossref] [PubMed]

Lam, S.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Lee, H.

J. E. Kim, J. H. Choi, M. Colas, D. H. Kim, and H. Lee, “Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications,” Biosens. Bioelectron. 80, 543–559 (2016).
[Crossref] [PubMed]

Lewis, M. M.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Li, A.

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

Li, J.

X. Wu, Y. Xia, Y. Huang, J. Li, H. Ruan, T. Chen, L. Luo, Z. Shen, and A. Wu, “Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity,” ACS Appl. Mater. Interfaces 8(31), 19928–19938 (2016).
[Crossref] [PubMed]

Li, J. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, L.

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

Li, S.

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

S. Li, G. Chen, Y. Zhang, Z. Guo, Z. Liu, J. Xu, X. Li, and L. Lin, “Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques,” Opt. Express 22(21), 25895–25908 (2014).
[Crossref] [PubMed]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, S. X.

S. X. Li, Q. Y. Chen, Y. J. Zhang, Z. M. Liu, H. L. Xiong, Z. Y. Guo, H. Q. Mai, and S. H. Liu, “Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique,” J. Biomed. Opt. 17(12), 125003 (2012).
[Crossref] [PubMed]

Li, W.

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

Li, X.

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

S. Li, G. Chen, Y. Zhang, Z. Guo, Z. Liu, J. Xu, X. Li, and L. Lin, “Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques,” Opt. Express 22(21), 25895–25908 (2014).
[Crossref] [PubMed]

Li, Y.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[Crossref] [PubMed]

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25(2), 388–394 (2009).
[Crossref] [PubMed]

Liao, X.

F. Zhan, X. Liao, F. Gao, W. Qiu, and Q. Wang, “Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s,” Biosens. Bioelectron. 92, 589–595 (2017).
[Crossref] [PubMed]

Lin, H. S.

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Lin, J.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[Crossref] [PubMed]

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25(2), 388–394 (2009).
[Crossref] [PubMed]

Lin, K.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosens. Bioelectron. 26(10), 4104–4110 (2011).
[Crossref] [PubMed]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128(11), 2673–2680 (2011).
[Crossref] [PubMed]

Lin, L.

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

S. Li, G. Chen, Y. Zhang, Z. Guo, Z. Liu, J. Xu, X. Li, and L. Lin, “Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques,” Opt. Express 22(21), 25895–25908 (2014).
[Crossref] [PubMed]

Lin, M.

M. Lin, J.-F. Chen, Y. T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H. R. Tseng, “Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells,” Acc. Chem. Res. 47(10), 2941–2950 (2014).
[Crossref] [PubMed]

Lin, T. H.

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Lindquist, K. J.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Liu, S.

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

Liu, S. H.

S. X. Li, Q. Y. Chen, Y. J. Zhang, Z. M. Liu, H. L. Xiong, Z. Y. Guo, H. Q. Mai, and S. H. Liu, “Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique,” J. Biomed. Opt. 17(12), 125003 (2012).
[Crossref] [PubMed]

Liu, Z.

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

S. Li, G. Chen, Y. Zhang, Z. Guo, Z. Liu, J. Xu, X. Li, and L. Lin, “Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques,” Opt. Express 22(21), 25895–25908 (2014).
[Crossref] [PubMed]

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).
[Crossref] [PubMed]

Liu, Z. M.

S. X. Li, Q. Y. Chen, Y. J. Zhang, Z. M. Liu, H. L. Xiong, Z. Y. Guo, H. Q. Mai, and S. H. Liu, “Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique,” J. Biomed. Opt. 17(12), 125003 (2012).
[Crossref] [PubMed]

Long, E.

M. Ilie, V. Hofman, E. Long, O. Bordone, E. Selva, K. Washetine, C. H. Marquette, and P. Hofman, “Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine?” Ann. Transl. Med. 2(11), 107 (2014).
[PubMed]

Lu, Y. T.

M. Lin, J.-F. Chen, Y. T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H. R. Tseng, “Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells,” Acc. Chem. Res. 47(10), 2941–2950 (2014).
[Crossref] [PubMed]

Lui, H.

J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
[Crossref] [PubMed]

Z. Huang, H. Lui, D. I. McLean, M. Korbelik, and H. Zeng, “cRaman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues,” J. Photochem. Photobiol. B 81(5), 1219–1226 (2005).
[Crossref]

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Luo, L.

X. Wu, Y. Xia, Y. Huang, J. Li, H. Ruan, T. Chen, L. Luo, Z. Shen, and A. Wu, “Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity,” ACS Appl. Mater. Interfaces 8(31), 19928–19938 (2016).
[Crossref] [PubMed]

Mahajan, S.

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

A. Huefner, W. L. Kuan, R. A. Barker, and S. Mahajan, “Intracellular SERS nanoprobes for distinction of different neuronal cell types,” Nano Lett. 13(6), 2463–2470 (2013).
[Crossref] [PubMed]

Mai, H. Q.

S. X. Li, Q. Y. Chen, Y. J. Zhang, Z. M. Liu, H. L. Xiong, Z. Y. Guo, H. Q. Mai, and S. H. Liu, “Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique,” J. Biomed. Opt. 17(12), 125003 (2012).
[Crossref] [PubMed]

Marquette, C. H.

M. Ilie, V. Hofman, E. Long, O. Bordone, E. Selva, K. Washetine, C. H. Marquette, and P. Hofman, “Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine?” Ann. Transl. Med. 2(11), 107 (2014).
[PubMed]

Martin, F. L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Martin-Hirsch, P. L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Mashinchian, O.

S. A. Hosseini, M. Abdolahad, S. Zanganeh, M. Dahmardeh, M. Gharooni, H. Abiri, A. Alikhani, S. Mohajerzadeh, and O. Mashinchian, “Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes,” Small 12(7), 883–891 (2016).
[Crossref] [PubMed]

McAinsh, M. R.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

McDonagh, C.

C. L. O’Connell, R. Nooney, and C. McDonagh, “Cyanine5-doped silica nanoparticles as ultra-bright immunospecific labels for model circulating tumour cells in flow cytometry and microscopy,” Biosens. Bioelectron. 91, 190–198 (2017).
[Crossref] [PubMed]

McLean, D. I.

J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
[Crossref] [PubMed]

Z. Huang, H. Lui, D. I. McLean, M. Korbelik, and H. Zeng, “cRaman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues,” J. Photochem. Photobiol. B 81(5), 1219–1226 (2005).
[Crossref]

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

McNaughton, D.

B. R. Wood and D. McNaughton, “Raman Excitation Wavelength Investigation of Single Red Blood Cells In Vivo,” J. Raman Spectrosc. 33(7), 517–523 (2002).
[Crossref]

McWilliams, A.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Mohajerzadeh, S.

S. A. Hosseini, M. Abdolahad, S. Zanganeh, M. Dahmardeh, M. Gharooni, H. Abiri, A. Alikhani, S. Mohajerzadeh, and O. Mashinchian, “Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes,” Small 12(7), 883–891 (2016).
[Crossref] [PubMed]

Mourant, J. R.

K. W. Short, S. Carpenter, J. P. Freyer, and J. R. Mourant, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88(6), 4274–4288 (2005).
[Crossref] [PubMed]

Müller, K. H.

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

Ngo, V. T.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Nie, S.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Nooney, R.

C. L. O’Connell, R. Nooney, and C. McDonagh, “Cyanine5-doped silica nanoparticles as ultra-bright immunospecific labels for model circulating tumour cells in flow cytometry and microscopy,” Biosens. Bioelectron. 91, 190–198 (2017).
[Crossref] [PubMed]

O’Connell, C. L.

C. L. O’Connell, R. Nooney, and C. McDonagh, “Cyanine5-doped silica nanoparticles as ultra-bright immunospecific labels for model circulating tumour cells in flow cytometry and microscopy,” Biosens. Bioelectron. 91, 190–198 (2017).
[Crossref] [PubMed]

Okimoto, R. A.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Otto, C.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Pan, J.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[Crossref] [PubMed]

Paris, P. L.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Paz, R.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Popp, J.

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

Premasekharan, G.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Puppels, G. J.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Qian, X.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Qin, X.

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).
[Crossref] [PubMed]

Qiu, W.

F. Zhan, X. Liao, F. Gao, W. Qiu, and Q. Wang, “Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s,” Biosens. Bioelectron. 92, 589–595 (2017).
[Crossref] [PubMed]

Rajapandiyan, P.

P. Rajapandiyan, W.-L. Tang, and J. Yang, “Rapid detection of melamine in milk liquid and powder by surface-enhanced Raman scattering substrate array,” Food Control 56, 155–160 (2015).
[Crossref]

P. Rajapandiyan and J. Yang, “Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases,” Anal. Chem. 84(23), 10277–10282 (2012).
[Crossref] [PubMed]

Ren, B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Ren, S.

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

Robert-Nicoud, M.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Roy, R.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Ruan, H.

X. Wu, Y. Xia, Y. Huang, J. Li, H. Ruan, T. Chen, L. Luo, Z. Shen, and A. Wu, “Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity,” ACS Appl. Mater. Interfaces 8(31), 19928–19938 (2016).
[Crossref] [PubMed]

Selva, E.

M. Ilie, V. Hofman, E. Long, O. Bordone, E. Selva, K. Washetine, C. H. Marquette, and P. Hofman, “Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine?” Ann. Transl. Med. 2(11), 107 (2014).
[PubMed]

Shen, Z.

X. Wu, Y. Xia, Y. Huang, J. Li, H. Ruan, T. Chen, L. Luo, Z. Shen, and A. Wu, “Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity,” ACS Appl. Mater. Interfaces 8(31), 19928–19938 (2016).
[Crossref] [PubMed]

Shin, D. M.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Shin, H. J.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Short, K. W.

K. W. Short, S. Carpenter, J. P. Freyer, and J. R. Mourant, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88(6), 4274–4288 (2005).
[Crossref] [PubMed]

Skepper, J. N.

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

Sleijfer, S.

N. Beije, A. Jager, and S. Sleijfer, “Circulating tumor cell enumeration by the CellSearch system: the clinician’s guide to breast cancer treatment?” Cancer Treat. Rev. 41(2), 144–150 (2015).
[Crossref] [PubMed]

Small, E. J.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

So, J. B.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosens. Bioelectron. 26(10), 4104–4110 (2011).
[Crossref] [PubMed]

Song, J.

M. Lin, J.-F. Chen, Y. T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H. R. Tseng, “Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells,” Acc. Chem. Res. 47(10), 2941–2950 (2014).
[Crossref] [PubMed]

Sood, R.

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Stone, N.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Su, C.

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

Tang, W.-L.

P. Rajapandiyan, W.-L. Tang, and J. Yang, “Rapid detection of melamine in milk liquid and powder by surface-enhanced Raman scattering substrate array,” Food Control 56, 155–160 (2015).
[Crossref]

Teh, M.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosens. Bioelectron. 26(10), 4104–4110 (2011).
[Crossref] [PubMed]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128(11), 2673–2680 (2011).
[Crossref] [PubMed]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for optical diagnosis in the stomach: identification of Helicobacter-pylori infection and intestinal metaplasia,” Int. J. Cancer 126(8), 1920–1927 (2010).
[Crossref] [PubMed]

Teh, S. K.

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for optical diagnosis in the stomach: identification of Helicobacter-pylori infection and intestinal metaplasia,” Int. J. Cancer 126(8), 1920–1927 (2010).
[Crossref] [PubMed]

Tian, Z. Q.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Tien, N.

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Tsai, M. F.

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Tsai, P. C.

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Tseng, H. R.

M. Lin, J.-F. Chen, Y. T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H. R. Tseng, “Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells,” Acc. Chem. Res. 47(10), 2941–2950 (2014).
[Crossref] [PubMed]

Turner, R. F. B.

Wachsmann-Hogiu, S.

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

Walsh, M. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Wan, M.

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).
[Crossref] [PubMed]

Wang, I. K.

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Wang, Q.

F. Zhan, X. Liao, F. Gao, W. Qiu, and Q. Wang, “Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s,” Biosens. Bioelectron. 92, 589–595 (2017).
[Crossref] [PubMed]

Wang, X.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Washetine, K.

M. Ilie, V. Hofman, E. Long, O. Bordone, E. Selva, K. Washetine, C. H. Marquette, and P. Hofman, “Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine?” Ann. Transl. Med. 2(11), 107 (2014).
[PubMed]

Weber, K.

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

Weeks, T.

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

Wood, B. R.

B. R. Wood and D. McNaughton, “Raman Excitation Wavelength Investigation of Single Red Blood Cells In Vivo,” J. Raman Spectrosc. 33(7), 517–523 (2002).
[Crossref]

Wu, A.

X. Wu, Y. Xia, Y. Huang, J. Li, H. Ruan, T. Chen, L. Luo, Z. Shen, and A. Wu, “Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity,” ACS Appl. Mater. Interfaces 8(31), 19928–19938 (2016).
[Crossref] [PubMed]

Wu, D. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wu, X.

X. Wu, Y. Xia, Y. Huang, J. Li, H. Ruan, T. Chen, L. Luo, Z. Shen, and A. Wu, “Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity,” ACS Appl. Mater. Interfaces 8(31), 19928–19938 (2016).
[Crossref] [PubMed]

Xia, Y.

X. Wu, Y. Xia, Y. Huang, J. Li, H. Ruan, T. Chen, L. Luo, Z. Shen, and A. Wu, “Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity,” ACS Appl. Mater. Interfaces 8(31), 19928–19938 (2016).
[Crossref] [PubMed]

Xie, S.

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25(2), 388–394 (2009).
[Crossref] [PubMed]

Xiong, H. L.

S. X. Li, Q. Y. Chen, Y. J. Zhang, Z. M. Liu, H. L. Xiong, Z. Y. Guo, H. Q. Mai, and S. H. Liu, “Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique,” J. Biomed. Opt. 17(12), 125003 (2012).
[Crossref] [PubMed]

Xu, J.

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

S. Li, G. Chen, Y. Zhang, Z. Guo, Z. Liu, J. Xu, X. Li, and L. Lin, “Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques,” Opt. Express 22(21), 25895–25908 (2014).
[Crossref] [PubMed]

Yan So, J. B.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128(11), 2673–2680 (2011).
[Crossref] [PubMed]

Yang, B.

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).
[Crossref] [PubMed]

Yang, G.

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

Yang, J.

P. Rajapandiyan, W.-L. Tang, and J. Yang, “Rapid detection of melamine in milk liquid and powder by surface-enhanced Raman scattering substrate array,” Food Control 56, 155–160 (2015).
[Crossref]

P. Rajapandiyan and J. Yang, “Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases,” Anal. Chem. 84(23), 10277–10282 (2012).
[Crossref] [PubMed]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Yeoh, K. G.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128(11), 2673–2680 (2011).
[Crossref] [PubMed]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosens. Bioelectron. 26(10), 4104–4110 (2011).
[Crossref] [PubMed]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for optical diagnosis in the stomach: identification of Helicobacter-pylori infection and intestinal metaplasia,” Int. J. Cancer 126(8), 1920–1927 (2010).
[Crossref] [PubMed]

You, B. J.

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Yu, Y.

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25(2), 388–394 (2009).
[Crossref] [PubMed]

Zanganeh, S.

S. A. Hosseini, M. Abdolahad, S. Zanganeh, M. Dahmardeh, M. Gharooni, H. Abiri, A. Alikhani, S. Mohajerzadeh, and O. Mashinchian, “Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes,” Small 12(7), 883–891 (2016).
[Crossref] [PubMed]

Zeng, H.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[Crossref] [PubMed]

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25(2), 388–394 (2009).
[Crossref] [PubMed]

J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
[Crossref] [PubMed]

Z. Huang, H. Lui, D. I. McLean, M. Korbelik, and H. Zeng, “cRaman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues,” J. Photochem. Photobiol. B 81(5), 1219–1226 (2005).
[Crossref]

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Zeng, Q.

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

Zhan, F.

F. Zhan, X. Liao, F. Gao, W. Qiu, and Q. Wang, “Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s,” Biosens. Bioelectron. 92, 589–595 (2017).
[Crossref] [PubMed]

Zhang, L.

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhang, Y.

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

S. Li, G. Chen, Y. Zhang, Z. Guo, Z. Liu, J. Xu, X. Li, and L. Lin, “Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques,” Opt. Express 22(21), 25895–25908 (2014).
[Crossref] [PubMed]

M. Lin, J.-F. Chen, Y. T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H. R. Tseng, “Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells,” Acc. Chem. Res. 47(10), 2941–2950 (2014).
[Crossref] [PubMed]

Zhang, Y. J.

S. X. Li, Q. Y. Chen, Y. J. Zhang, Z. M. Liu, H. L. Xiong, Z. Y. Guo, H. Q. Mai, and S. H. Liu, “Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique,” J. Biomed. Opt. 17(12), 125003 (2012).
[Crossref] [PubMed]

Zhao, C.

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

Zhao, J.

Zhao, W.

Z. G. Zhao, W. Zhao, G. Claire, and S. L. Huang, “A spectrum signals detection method for surface enhanced raman scattering under high fluorescence and background noise,” Guangpuxue Yu Guangpu Fenxi 30(8), 2146–2150 (2010).
[PubMed]

Zhao, Z. G.

Z. G. Zhao, W. Zhao, G. Claire, and S. L. Huang, “A spectrum signals detection method for surface enhanced raman scattering under high fluorescence and background noise,” Guangpuxue Yu Guangpu Fenxi 30(8), 2146–2150 (2010).
[PubMed]

Zheng, W.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosens. Bioelectron. 26(10), 4104–4110 (2011).
[Crossref] [PubMed]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128(11), 2673–2680 (2011).
[Crossref] [PubMed]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for optical diagnosis in the stomach: identification of Helicobacter-pylori infection and intestinal metaplasia,” Int. J. Cancer 126(8), 1920–1927 (2010).
[Crossref] [PubMed]

Zheng, X. S.

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

Zhong, H.

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).
[Crossref] [PubMed]

Zhou, C.

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

Zhou, F.

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

M. Lin, J.-F. Chen, Y. T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H. R. Tseng, “Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells,” Acc. Chem. Res. 47(10), 2941–2950 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

X. Wu, Y. Xia, Y. Huang, J. Li, H. Ruan, T. Chen, L. Luo, Z. Shen, and A. Wu, “Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity,” ACS Appl. Mater. Interfaces 8(31), 19928–19938 (2016).
[Crossref] [PubMed]

ACS Nano (1)

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

Anal. Chem. (1)

P. Rajapandiyan and J. Yang, “Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases,” Anal. Chem. 84(23), 10277–10282 (2012).
[Crossref] [PubMed]

Ann. Transl. Med. (1)

M. Ilie, V. Hofman, E. Long, O. Bordone, E. Selva, K. Washetine, C. H. Marquette, and P. Hofman, “Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine?” Ann. Transl. Med. 2(11), 107 (2014).
[PubMed]

Appl. Spectrosc. (2)

Biophys. J. (1)

K. W. Short, S. Carpenter, J. P. Freyer, and J. R. Mourant, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88(6), 4274–4288 (2005).
[Crossref] [PubMed]

Biosens. Bioelectron. (6)

F. Zhan, X. Liao, F. Gao, W. Qiu, and Q. Wang, “Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s,” Biosens. Bioelectron. 92, 589–595 (2017).
[Crossref] [PubMed]

C. L. O’Connell, R. Nooney, and C. McDonagh, “Cyanine5-doped silica nanoparticles as ultra-bright immunospecific labels for model circulating tumour cells in flow cytometry and microscopy,” Biosens. Bioelectron. 91, 190–198 (2017).
[Crossref] [PubMed]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[Crossref] [PubMed]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosens. Bioelectron. 26(10), 4104–4110 (2011).
[Crossref] [PubMed]

J. E. Kim, J. H. Choi, M. Colas, D. H. Kim, and H. Lee, “Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications,” Biosens. Bioelectron. 80, 543–559 (2016).
[Crossref] [PubMed]

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25(2), 388–394 (2009).
[Crossref] [PubMed]

Cancer Lett. (1)

G. Premasekharan, E. Gilbert, R. A. Okimoto, A. Hamirani, K. J. Lindquist, V. T. Ngo, R. Roy, J. Hough, M. Edwards, R. Paz, A. Foye, R. Sood, K. A. Copren, M. Gubens, E. J. Small, T. G. Bivona, E. A. Collisson, T. W. Friedlander, and P. L. Paris, “An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer,” Cancer Lett. 380(1), 144–152 (2016).
[Crossref] [PubMed]

Cancer Res. (1)

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Cancer Treat. Rev. (1)

N. Beije, A. Jager, and S. Sleijfer, “Circulating tumor cell enumeration by the CellSearch system: the clinician’s guide to breast cancer treatment?” Cancer Treat. Rev. 41(2), 144–150 (2015).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

Clin. Chim. Acta (1)

N. Tien, H. C. Chen, S. L. Gau, T. H. Lin, H. S. Lin, B. J. You, P. C. Tsai, I. R. Chen, M. F. Tsai, I. K. Wang, C. J. Chen, and C. T. Chang, “Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy,” Clin. Chim. Acta 461, 69–75 (2016).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

Drug Discov. Today (1)

A. Giuliani, “The application of principal component analysis to drug discovery and biomedical data,” Drug Discov. Today 22(7), 1069–1076 (2017).
[Crossref] [PubMed]

Food Control (1)

P. Rajapandiyan, W.-L. Tang, and J. Yang, “Rapid detection of melamine in milk liquid and powder by surface-enhanced Raman scattering substrate array,” Food Control 56, 155–160 (2015).
[Crossref]

Guangpuxue Yu Guangpu Fenxi (1)

Z. G. Zhao, W. Zhao, G. Claire, and S. L. Huang, “A spectrum signals detection method for surface enhanced raman scattering under high fluorescence and background noise,” Guangpuxue Yu Guangpu Fenxi 30(8), 2146–2150 (2010).
[PubMed]

Int. J. Cancer (3)

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128(11), 2673–2680 (2011).
[Crossref] [PubMed]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for optical diagnosis in the stomach: identification of Helicobacter-pylori infection and intestinal metaplasia,” Int. J. Cancer 126(8), 1920–1927 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

S. X. Li, Q. Y. Chen, Y. J. Zhang, Z. M. Liu, H. L. Xiong, Z. Y. Guo, H. Q. Mai, and S. H. Liu, “Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique,” J. Biomed. Opt. 17(12), 125003 (2012).
[Crossref] [PubMed]

J. Photochem. Photobiol. B (1)

Z. Huang, H. Lui, D. I. McLean, M. Korbelik, and H. Zeng, “cRaman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues,” J. Photochem. Photobiol. B 81(5), 1219–1226 (2005).
[Crossref]

J. Raman Spectrosc. (1)

B. R. Wood and D. McNaughton, “Raman Excitation Wavelength Investigation of Single Red Blood Cells In Vivo,” J. Raman Spectrosc. 33(7), 517–523 (2002).
[Crossref]

J. Thorac. Oncol. (1)

X. Chen, F. Zhou, X. Li, G. Yang, L. Zhang, S. Ren, C. Zhao, Q. Deng, W. Li, G. Gao, A. Li, and C. Zhou, “Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer,” J. Thorac. Oncol. 10(8), 1163–1171 (2015).
[Crossref] [PubMed]

Nano Lett. (1)

A. Huefner, W. L. Kuan, R. A. Barker, and S. Mahajan, “Intracellular SERS nanoprobes for distinction of different neuronal cell types,” Nano Lett. 13(6), 2463–2470 (2013).
[Crossref] [PubMed]

Nat. Protoc. (1)

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Nature (2)

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Li, L. Li, Q. Zeng, Y. Zhang, Z. Guo, Z. Liu, M. Jin, C. Su, L. Lin, J. Xu, and S. Liu, “Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms,” Sci. Rep. 5(1), 9582 (2015).
[Crossref] [PubMed]

Small (1)

S. A. Hosseini, M. Abdolahad, S. Zanganeh, M. Dahmardeh, M. Gharooni, H. Abiri, A. Alikhani, S. Mohajerzadeh, and O. Mashinchian, “Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes,” Small 12(7), 883–891 (2016).
[Crossref] [PubMed]

Transl. Res. (1)

A. Kowalik, M. Kowalewska, and S. Góźdź, “Current approaches for avoiding the limitations of circulating tumor cell detection methods-implications for diagnosis and treatment of patients with solid tumors,” Transl. Res. 185, 58–84 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Atomic Force Microscope (AFM) topography of the silver film substrate, Fig. 1(a) Scale bar of 20.0μm, Fig. 1(b) Scale bar of 400.0 nm.
Fig. 2
Fig. 2 The comparison of traditional Raman spectrum (Aluminum sheet substrate) and sliver film substrate SERS spectrum. Red lines represent average SERS spectra. The shaded lines represent one standard deviation.
Fig. 3
Fig. 3 Three-dimensional display (3D) SERS spectra of human neuroblastoma cells (SH-SY5Y).
Fig. 4
Fig. 4 The comparison of SERS spectra among tumor cells(SH-SY5Y), white blood cells and red blood cells. Red lines represent average SERS spectra. The shaded lines represent one standard deviation.
Fig. 5
Fig. 5 Average SERS spectra of seven kinds of tumor cells, SH-SY5Y, Hep2, Hela, SMMC7721, MCF-7, NCL-H446 and HO-8910. Red lines represent average SERS spectra. The shaded lines represent one standard deviation.
Fig. 6
Fig. 6 The comparison of SERS spectra between tumor c ells and white blood cells. Tumor cells group (a) include breast cancer cells (MCF-7), human neuroblastoma cells (SY5Y), cervical cancer cells (Hela), hepatocellular carcinoma cells (SMMC7721), laryngeal cancer cells (Hep2) and lung cancer cells (NCL-H449); Tumor cells group (b) is ovarian cancer cells (HO-8910). Red lines represent average SERS spectra of all tumor cells or white blood cells. The shaded lines represent one standard deviation.
Fig. 7
Fig. 7 The distribution of I730/I900 for white blood cells and tumor cells.
Fig. 8
Fig. 8 The average SERS spectra of lung cancer cells (NCI-H446), immortalized cells (16HBE), clinical sample cells and white blood cells. Red lines represent average SERS spectra. The shaded lines represent one standard deviation.

Tables (1)

Tables Icon

Table 1 A simple table of samples preparation

Metrics