Abstract

We report the femtosecond laser inscription of fiber Bragg gratings (FBGs) in an Er-doped fluoride glass fiber used for lasing at a mid-infrared wavelength of 2.8 µm. The lasing evolution is discussed in terms of the FBG reflectivity, wavelength transition to the Bragg wavelength, and output power of the mid-infrared fiber laser. A first-order and short (2.5-mm-long) Bragg grating showed a reflectivity of 97%, because of a laser-induced index modulation of 1.1 × 10−3. This modulation was sufficient to saturate this system’s output power. The laser oscillator is designed to lase in the atmospheric window of 2799–2800 nm slope. Further, this oscillator’s efficiency is as high as 29.1% for the launched pump power over the range of 0.4–4.6 W and at a lasing wavelength of 2799.7 nm. This oscillator also exhibited a FWHM bandwidth of 0.12 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers

Gayathri Bharathan, Robert I. Woodward, Martin Ams, Darren D. Hudson, Stuart D. Jackson, and Alex Fuerbach
Opt. Express 25(24) 30013-30019 (2017)

Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask

M. Bernier, R. Vallée, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng
Opt. Express 17(21) 18887-18893 (2009)

Femtosecond inscription of fiber Bragg gratings through the coating with a Low-NA lens

Aviran Halstuch, Avishay Shamir, and Amiel A. Ishaaya
Opt. Express 27(12) 16935-16944 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Theodosiou, A. Lacraz, M. Polis, K. Kalli, M. Tsangari, A. Stassis, and M. Komodromos, “Modified fs-Laser Inscribed FBG Array for Rapid Mode Shape Capture of Free-Free Vibrating Beams,” IEEE Photonics Technol. Lett. 28(14), 1509–1512 (2016).
    [Crossref]
  2. P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lit. Technol. 36(4), 926–931 (2018).
    [Crossref]
  3. A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opt. Lett. 42(24), 5198–5201 (2017).
    [Crossref] [PubMed]
  4. A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lit. Technol. 35(24), 5404–5410 (2017).
    [Crossref]
  5. J. Aubrecht, A. Theodosiou, P. Peterka, I. Kašík, F. Todorov, O. Moravec, P. Honzátko, and K. Kalli, “Monolithic Er/Yb double-clad fibre laser with FBG inscribed using the direct-write plane-by-plane fs-laser inscription method,” in Fiber Lasers and Glass Photonics: Materials through Applications (2018), p. 1068304.
  6. D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photonics Technol. Lett. 18(24), 2686–2688 (2006).
    [Crossref]
  7. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–756 (2011).
    [Crossref]
  8. G. Bharathan, R. I. Woodward, M. Ams, D. D. Hudson, S. D. Jackson, and A. Fuerbach, “Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers,” Opt. Express 25(24), 30013–30019 (2017).
    [Crossref] [PubMed]
  9. M. Bernier, D. Faucher, N. Caron, and R. Vallée, “Highly stable and efficient erbium-doped 2.8 microm all fiber laser,” Opt. Express 17(19), 16941–16946 (2009).
    [Crossref] [PubMed]
  10. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
    [Crossref] [PubMed]
  11. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
    [Crossref] [PubMed]
  12. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
    [Crossref] [PubMed]
  13. J.-P. Bérubé, M. Bernier, and R. Vallée, “Femtosecond laser-induced refractive index modifications in fluoride glass,” Opt. Mater. Express 3(5), 598–611 (2013).
    [Crossref]
  14. V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015).
    [Crossref] [PubMed]
  15. L.-P. Pleau, P. Paradis, J.-S. Freniére, M. Huneault, S. Gouin, S. M. Aljamimi, Y. O. Aydin, S. Duval, J.-C. Gauthier, J. Habel, F. Jobin, F. Maes, L.-R. Robichaud, N. Grégoire, S. Morency, and M. Bernier, “20 W splice-free erbium-doped all-fiber laser operating at 1610 nm,” Opt. Express 26(17), 22378–22388 (2018).
    [Crossref] [PubMed]
  16. P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10 W-level gain-switched all-fiber laser at 2.8 μm,” Opt. Lett. 43(13), 3196–3199 (2018).
    [Crossref] [PubMed]
  17. K. Gouya and K. Watanabe, “Micro-void arrays in an optical fiber machined by a femtosecond laser for obtaining bending direction sensitive sensors,” Proc. of SPIE (2013), 86770Q1–6.
  18. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
    [Crossref]
  19. A. Borowiec, H. F. Tiedje, and H. K. Haugen, “Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400-2050 nm range,” Appl. Surf. Sci. 243(1-4), 129–137 (2005).
    [Crossref]
  20. J. Noack and A. Vogel, “Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales : Calculation of Thresholds, Absorption Coefficients, and Energy Density,” IEEE J Quant. Electr. 35(8), 1156–1167 (1999).
    [Crossref]
  21. J. Hernandez-Rueda, J. Clarijs, D. Van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
    [Crossref]
  22. D. Kouznetsov and J. V. Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers III Calculation of modes,” J. Opt. Soc. Am. B 19(6), 1304–1309 (2002).
    [Crossref]
  23. M. Gorjan, M. Marincek, and M. Copic, “Pump absorption and temperature distribution in erbium-doped double-clad fluoride-glass fibers,” Opt. Express 17(22), 19814–19822 (2009).
    [Crossref] [PubMed]
  24. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lit. Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  25. M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008).
    [Crossref] [PubMed]
  26. N. Caron, M. Bernier, D. Faucher, and R. Vallée, “Understanding the fiber tip thermal runaway present in 3 µm fluoride glass fiber lasers,” Opt. Express 20(20), 22188–22194 (2012).
    [Crossref] [PubMed]
  27. C. A. Schäfer, H. Uehara, D. Konishi, S. Hattori, H. Matsukuma, M. Murakami, S. Shimizu, and S. Tokita, “Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8 μm,” Opt. Lett. 43(10), 2340–2343 (2018).
    [Crossref] [PubMed]
  28. M. Pollnau and S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
    [Crossref]

2018 (4)

2017 (5)

J. Hernandez-Rueda, J. Clarijs, D. Van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
[Crossref] [PubMed]

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opt. Lett. 42(24), 5198–5201 (2017).
[Crossref] [PubMed]

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lit. Technol. 35(24), 5404–5410 (2017).
[Crossref]

G. Bharathan, R. I. Woodward, M. Ams, D. D. Hudson, S. D. Jackson, and A. Fuerbach, “Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers,” Opt. Express 25(24), 30013–30019 (2017).
[Crossref] [PubMed]

2016 (1)

A. Theodosiou, A. Lacraz, M. Polis, K. Kalli, M. Tsangari, A. Stassis, and M. Komodromos, “Modified fs-Laser Inscribed FBG Array for Rapid Mode Shape Capture of Free-Free Vibrating Beams,” IEEE Photonics Technol. Lett. 28(14), 1509–1512 (2016).
[Crossref]

2015 (1)

2013 (1)

2012 (1)

2011 (2)

2009 (2)

2008 (1)

2007 (1)

2006 (1)

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photonics Technol. Lett. 18(24), 2686–2688 (2006).
[Crossref]

2005 (1)

A. Borowiec, H. F. Tiedje, and H. K. Haugen, “Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400-2050 nm range,” Appl. Surf. Sci. 243(1-4), 129–137 (2005).
[Crossref]

2002 (3)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

M. Pollnau and S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
[Crossref]

D. Kouznetsov and J. V. Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers III Calculation of modes,” J. Opt. Soc. Am. B 19(6), 1304–1309 (2002).
[Crossref]

1999 (1)

J. Noack and A. Vogel, “Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales : Calculation of Thresholds, Absorption Coefficients, and Energy Density,” IEEE J Quant. Electr. 35(8), 1156–1167 (1999).
[Crossref]

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lit. Technol. 15(8), 1263–1276 (1997).
[Crossref]

Aljamimi, S. M.

Ams, M.

Androz, G.

Åslund, M. L.

Aydin, Y. O.

Bah, S. T.

Bernier, M.

P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10 W-level gain-switched all-fiber laser at 2.8 μm,” Opt. Lett. 43(13), 3196–3199 (2018).
[Crossref] [PubMed]

L.-P. Pleau, P. Paradis, J.-S. Freniére, M. Huneault, S. Gouin, S. M. Aljamimi, Y. O. Aydin, S. Duval, J.-C. Gauthier, J. Habel, F. Jobin, F. Maes, L.-R. Robichaud, N. Grégoire, S. Morency, and M. Bernier, “20 W splice-free erbium-doped all-fiber laser operating at 1610 nm,” Opt. Express 26(17), 22378–22388 (2018).
[Crossref] [PubMed]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
[Crossref] [PubMed]

V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015).
[Crossref] [PubMed]

J.-P. Bérubé, M. Bernier, and R. Vallée, “Femtosecond laser-induced refractive index modifications in fluoride glass,” Opt. Mater. Express 3(5), 598–611 (2013).
[Crossref]

N. Caron, M. Bernier, D. Faucher, and R. Vallée, “Understanding the fiber tip thermal runaway present in 3 µm fluoride glass fiber lasers,” Opt. Express 20(20), 22188–22194 (2012).
[Crossref] [PubMed]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
[Crossref] [PubMed]

M. Bernier, D. Faucher, N. Caron, and R. Vallée, “Highly stable and efficient erbium-doped 2.8 microm all fiber laser,” Opt. Express 17(19), 16941–16946 (2009).
[Crossref] [PubMed]

M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
[Crossref] [PubMed]

Bérubé, J.-P.

Bharathan, G.

Borowiec, A.

A. Borowiec, H. F. Tiedje, and H. K. Haugen, “Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400-2050 nm range,” Appl. Surf. Sci. 243(1-4), 129–137 (2005).
[Crossref]

Canning, J.

Caron, N.

Caucheteur, C.

Chin, S. L.

Clarijs, J.

J. Hernandez-Rueda, J. Clarijs, D. Van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

Copic, M.

Coulas, D.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lit. Technol. 36(4), 926–931 (2018).
[Crossref]

Ding, H.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lit. Technol. 36(4), 926–931 (2018).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–756 (2011).
[Crossref]

Duval, S.

Faucher, D.

Fortin, V.

Freniére, J.-S.

Fuerbach, A.

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Gauthier, J.-C.

Gorjan, M.

Gouin, S.

Grégoire, N.

Grobnic, D.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lit. Technol. 36(4), 926–931 (2018).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–756 (2011).
[Crossref]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photonics Technol. Lett. 18(24), 2686–2688 (2006).
[Crossref]

Groothoff, N.

Habel, J.

Hattori, S.

Haugen, H. K.

A. Borowiec, H. F. Tiedje, and H. K. Haugen, “Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400-2050 nm range,” Appl. Surf. Sci. 243(1-4), 129–137 (2005).
[Crossref]

Hernandez-Rueda, J.

J. Hernandez-Rueda, J. Clarijs, D. Van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lit. Technol. 15(8), 1263–1276 (1997).
[Crossref]

Hnatovsky, C.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lit. Technol. 36(4), 926–931 (2018).
[Crossref]

Hudson, D. D.

Huneault, M.

Ioannou, A.

Jackson, S. D.

Jobin, F.

Kalli, K.

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lit. Technol. 35(24), 5404–5410 (2017).
[Crossref]

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opt. Lett. 42(24), 5198–5201 (2017).
[Crossref] [PubMed]

A. Theodosiou, A. Lacraz, M. Polis, K. Kalli, M. Tsangari, A. Stassis, and M. Komodromos, “Modified fs-Laser Inscribed FBG Array for Rapid Mode Shape Capture of Free-Free Vibrating Beams,” IEEE Photonics Technol. Lett. 28(14), 1509–1512 (2016).
[Crossref]

Komodromos, M.

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lit. Technol. 35(24), 5404–5410 (2017).
[Crossref]

A. Theodosiou, A. Lacraz, M. Polis, K. Kalli, M. Tsangari, A. Stassis, and M. Komodromos, “Modified fs-Laser Inscribed FBG Array for Rapid Mode Shape Capture of Free-Free Vibrating Beams,” IEEE Photonics Technol. Lett. 28(14), 1509–1512 (2016).
[Crossref]

Konishi, D.

Koutsides, C.

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lit. Technol. 35(24), 5404–5410 (2017).
[Crossref]

Kouznetsov, D.

Krol, D. M.

J. Hernandez-Rueda, J. Clarijs, D. Van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

Lacraz, A.

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lit. Technol. 35(24), 5404–5410 (2017).
[Crossref]

A. Theodosiou, A. Lacraz, M. Polis, K. Kalli, M. Tsangari, A. Stassis, and M. Komodromos, “Modified fs-Laser Inscribed FBG Array for Rapid Mode Shape Capture of Free-Free Vibrating Beams,” IEEE Photonics Technol. Lett. 28(14), 1509–1512 (2016).
[Crossref]

Lu, P.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lit. Technol. 36(4), 926–931 (2018).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–756 (2011).
[Crossref]

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Maes, F.

Marincek, M.

Marshall, G. D.

Matsukuma, H.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lit. Technol. 15(8), 1263–1276 (1997).
[Crossref]

Mihailov, S. J.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lit. Technol. 36(4), 926–931 (2018).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–756 (2011).
[Crossref]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photonics Technol. Lett. 18(24), 2686–2688 (2006).
[Crossref]

Moloney, J. V.

Morency, S.

Murakami, M.

Naumov, A. Y.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lit. Technol. 36(4), 926–931 (2018).
[Crossref]

Nemanja, N.

Noack, J.

J. Noack and A. Vogel, “Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales : Calculation of Thresholds, Absorption Coefficients, and Energy Density,” IEEE J Quant. Electr. 35(8), 1156–1167 (1999).
[Crossref]

Paradis, P.

Pleau, L.-P.

Polis, M.

A. Theodosiou, A. Lacraz, M. Polis, K. Kalli, M. Tsangari, A. Stassis, and M. Komodromos, “Modified fs-Laser Inscribed FBG Array for Rapid Mode Shape Capture of Free-Free Vibrating Beams,” IEEE Photonics Technol. Lett. 28(14), 1509–1512 (2016).
[Crossref]

Pollnau, M.

M. Pollnau and S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
[Crossref]

Robichaud, L.-R.

Rode, A. V.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Saliminia, A.

Schäfer, C. A.

Sheng, Y.

Shimizu, S.

Smelser, C. W.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–756 (2011).
[Crossref]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photonics Technol. Lett. 18(24), 2686–2688 (2006).
[Crossref]

Stassis, A.

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lit. Technol. 35(24), 5404–5410 (2017).
[Crossref]

A. Theodosiou, A. Lacraz, M. Polis, K. Kalli, M. Tsangari, A. Stassis, and M. Komodromos, “Modified fs-Laser Inscribed FBG Array for Rapid Mode Shape Capture of Free-Free Vibrating Beams,” IEEE Photonics Technol. Lett. 28(14), 1509–1512 (2016).
[Crossref]

Theodosiou, A.

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lit. Technol. 35(24), 5404–5410 (2017).
[Crossref]

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opt. Lett. 42(24), 5198–5201 (2017).
[Crossref] [PubMed]

A. Theodosiou, A. Lacraz, M. Polis, K. Kalli, M. Tsangari, A. Stassis, and M. Komodromos, “Modified fs-Laser Inscribed FBG Array for Rapid Mode Shape Capture of Free-Free Vibrating Beams,” IEEE Photonics Technol. Lett. 28(14), 1509–1512 (2016).
[Crossref]

Tiedje, H. F.

A. Borowiec, H. F. Tiedje, and H. K. Haugen, “Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400-2050 nm range,” Appl. Surf. Sci. 243(1-4), 129–137 (2005).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Tokita, S.

Tsangari, M.

A. Theodosiou, A. Lacraz, M. Polis, K. Kalli, M. Tsangari, A. Stassis, and M. Komodromos, “Modified fs-Laser Inscribed FBG Array for Rapid Mode Shape Capture of Free-Free Vibrating Beams,” IEEE Photonics Technol. Lett. 28(14), 1509–1512 (2016).
[Crossref]

Uehara, H.

Vallée, R.

P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10 W-level gain-switched all-fiber laser at 2.8 μm,” Opt. Lett. 43(13), 3196–3199 (2018).
[Crossref] [PubMed]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
[Crossref] [PubMed]

V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015).
[Crossref] [PubMed]

J.-P. Bérubé, M. Bernier, and R. Vallée, “Femtosecond laser-induced refractive index modifications in fluoride glass,” Opt. Mater. Express 3(5), 598–611 (2013).
[Crossref]

N. Caron, M. Bernier, D. Faucher, and R. Vallée, “Understanding the fiber tip thermal runaway present in 3 µm fluoride glass fiber lasers,” Opt. Express 20(20), 22188–22194 (2012).
[Crossref] [PubMed]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
[Crossref] [PubMed]

M. Bernier, D. Faucher, N. Caron, and R. Vallée, “Highly stable and efficient erbium-doped 2.8 microm all fiber laser,” Opt. Express 17(19), 16941–16946 (2009).
[Crossref] [PubMed]

M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
[Crossref] [PubMed]

Van Oosten, D.

J. Hernandez-Rueda, J. Clarijs, D. Van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

Vogel, A.

J. Noack and A. Vogel, “Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales : Calculation of Thresholds, Absorption Coefficients, and Energy Density,” IEEE J Quant. Electr. 35(8), 1156–1167 (1999).
[Crossref]

Walker, R.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lit. Technol. 36(4), 926–931 (2018).
[Crossref]

Walker, R. B.

Withford, M. J.

Woodward, R. I.

Appl. Phys. Lett. (1)

J. Hernandez-Rueda, J. Clarijs, D. Van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

Appl. Surf. Sci. (1)

A. Borowiec, H. F. Tiedje, and H. K. Haugen, “Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400-2050 nm range,” Appl. Surf. Sci. 243(1-4), 129–137 (2005).
[Crossref]

IEEE J Quant. Electr. (1)

J. Noack and A. Vogel, “Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales : Calculation of Thresholds, Absorption Coefficients, and Energy Density,” IEEE J Quant. Electr. 35(8), 1156–1167 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Pollnau and S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photonics Technol. Lett. 18(24), 2686–2688 (2006).
[Crossref]

A. Theodosiou, A. Lacraz, M. Polis, K. Kalli, M. Tsangari, A. Stassis, and M. Komodromos, “Modified fs-Laser Inscribed FBG Array for Rapid Mode Shape Capture of Free-Free Vibrating Beams,” IEEE Photonics Technol. Lett. 28(14), 1509–1512 (2016).
[Crossref]

J. Lit. Technol. (3)

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lit. Technol. 36(4), 926–931 (2018).
[Crossref]

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lit. Technol. 35(24), 5404–5410 (2017).
[Crossref]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lit. Technol. 15(8), 1263–1276 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Lett. (7)

Opt. Mater. Express (2)

Phys. Plasmas (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Other (2)

J. Aubrecht, A. Theodosiou, P. Peterka, I. Kašík, F. Todorov, O. Moravec, P. Honzátko, and K. Kalli, “Monolithic Er/Yb double-clad fibre laser with FBG inscribed using the direct-write plane-by-plane fs-laser inscription method,” in Fiber Lasers and Glass Photonics: Materials through Applications (2018), p. 1068304.

K. Gouya and K. Watanabe, “Micro-void arrays in an optical fiber machined by a femtosecond laser for obtaining bending direction sensitive sensors,” Proc. of SPIE (2013), 86770Q1–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Intensity of fluorescence from Er-doped fluoride fiber (open circles) and light transmitted through the fiber (closed circles). Laser diode at a wavelength of 975.7 nm was used as the light source.
Fig. 2
Fig. 2 Experimental setup for FBG inscription and laser monitoring.
Fig. 3
Fig. 3 Transmission spectra measured for various grating lengths. Resolution: 350 pm.
Fig. 4
Fig. 4 FBG peak reflectivity at each grating length.
Fig. 5
Fig. 5 Wavelength transition during FBG inscription. The figure insets show emission spectra at a grating length of 0.0, 1.5 and 2.5 mm. Resolution: 200 pm.
Fig. 6
Fig. 6 Output power at a pump power of 2 W and the calculated reflectivity RB as a function of grating length. The inset shows the output power at the beginning of FBG inscription.
Fig. 7
Fig. 7 Output power versus launched pump power.
Fig. 8
Fig. 8 Laser emission spectrum for an output power of 0.5 W. The figure inset shows the narrowband spectrum measured with a resolution of 200 pm.
Fig. 9
Fig. 9 Thermal characteristics of (a) laser output power and (b) wavelength as a function of temperature. The fiber was heated until the wavelength was stable.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R B =tanh( π δ n L λ )+T R F

Metrics