Abstract

Squeezed states of light have found their way into a number of applications in quantum-enhanced metrology due to their reduced noise properties. In order to extend such an enhancement to metrology experiments based on atomic ensembles, an efficient light-atom interaction is required. Thus, there is a particular interest in generating narrow-band squeezed light that is on atomic resonance. This will make it possible not only to enhance the sensitivity of atomic based sensors, but also to deterministically transfer quantum correlations between two distant atomic ensembles. We generate bright two-mode squeezed states of light, or twin beams, with a non-degenerate four-wave mixing (FWM) process in hot 85Rb in a double-lambda configuration. Given the proximity of the energy levels in the D1 line of 85Rb and 87Rb, we are able to operate the FWM in 85Rb in a regime that generates two-mode squeezed states in which both modes are simultaneously on resonance with transitions in the D1 line of 87Rb, one mode with the F = 2 to F′ = 2 transition and the other one with the F = 1 to F′ = 1 transition. For this configuration, we obtain an intensity difference squeezing level of 3.5 dB. Moreover, the intensity difference squeezing increases to −5.4 dB and −5.0 dB when only one of the modes of the squeezed state is resonant with the D1 F = 2 to F′ =−2 or F = 1 to F′ = 1 transition of 87Rb, respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of pulsed and continuous-wave squeezed light with 87Rb vapor

Imad H. Agha, Gaétan Messin, and Philippe Grangier
Opt. Express 18(5) 4198-4205 (2010)

Atomic resonant single-mode squeezed light from four-wave mixing through feedforward

Saesun Kim and Alberto M. Marino
Opt. Lett. 44(19) 4630-4633 (2019)

Quantum correlated light beams from non-degenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of 85Rb and 87Rb

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett
Opt. Express 17(19) 16722-16730 (2009)

References

  • View by:
  • |
  • |
  • |

  1. E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
    [Crossref] [PubMed]
  2. T. L. S. Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
    [Crossref]
  3. M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-enhanced plasmonic sensing,” Optica 5, 628–633 (2018).
    [Crossref]
  4. A. M. Marino and C. R. Stroud, “Deterministic secure communications using two-mode squeezed states,” Phys. Rev. A 74, 022315 (2006).
    [Crossref]
  5. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
    [Crossref]
  6. T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun.  6, 8795 (2015).
    [Crossref] [PubMed]
  7. G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4, 227–230 (2010).
    [Crossref]
  8. A. Kumar, H. Nunley, and A. M. Marino, “Observation of spatial quantum correlations in the macroscopic regime,” Phys. Rev. A 95, 053849 (2017).
    [Crossref]
  9. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
    [Crossref] [PubMed]
  10. N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
    [Crossref] [PubMed]
  11. G. S. Agarwal and M. O. Scully, “Ramsey spectroscopy with nonclassical light sources,” Phys. Rev. A 53, 467–470 (1996).
    [Crossref] [PubMed]
  12. S. S. Szigeti, B. Tonekaboni, W. Yung, S. Lau, S. N. Hood, and S. A. Haine, “Squeezed-light-enhanced atom interferometry below the standard quantum limit,” Phys. Rev. A 90, 063630 (2014).
    [Crossref]
  13. F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
    [Crossref] [PubMed]
  14. T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
    [Crossref]
  15. A. Kuzmich, K. Molmer, and E. S. Polzik, “of atomic interferometers,” Phys. Rev. Lett. 79, 4782–4785 (1997).
    [Crossref] [PubMed]
  16. D. Akamatsu, K. Akiba, and M. Kozuma, “Electromagnetically induced transparency with squeezed vacuum,” Phys. Rev. Lett. 92, 203602 (2004).
    [Crossref] [PubMed]
  17. A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
    [Crossref]
  18. K. Honda and et al., “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
    [Crossref] [PubMed]
  19. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
    [Crossref] [PubMed]
  20. L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
    [Crossref] [PubMed]
  21. J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, and E. Giacobino, “Improvements in the observed intensity correlation of optical parametric oscillator twin beams,” Opt. Lett. 16, 1234–1236 (1991).
    [Crossref] [PubMed]
  22. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
    [Crossref]
  23. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
    [Crossref] [PubMed]
  24. W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
    [Crossref] [PubMed]
  25. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
    [Crossref] [PubMed]
  26. A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66, 043815 (2002).
    [Crossref]
  27. G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40, 221–226 (2007).
    [Crossref]
  28. J.A. Zielińska and M. W. Mitchell, “Atom-resonant squeezed light from a tunable monolithic PPRKTP parametric amplifier,” Opt. Lett. 43, 643–646 (2018).
    [Crossref]
  29. Y. Han, X. Wen, J. He, B. Yang, Y. Wang, and J. Wang, “Improvement of vacuum squeezing resonant on the rubidium D1 line at 795 nm,” Opt. Express 24, 2350–2359 (2016).
    [Crossref] [PubMed]
  30. S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express 17, 3777–3781 (2009).
    [Crossref] [PubMed]
  31. J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68, 025801 (2003).
    [Crossref]
  32. S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84, 033851 (2011).
    [Crossref]
  33. I. H. Agha, G. Messin, and P. Grangier, “Generation of pulsed and continuous-wave squeezed light with 87Rb vapor,” Opt. Express 18, 4198–4205 (2010).
    [Crossref] [PubMed]
  34. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
    [Crossref]
  35. R. Pooser, A. Marino, V. Boyer, K. Jones, and P. D. Lett, “Quantum correlated light beams from non-degenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of 85Rb and 87Rb,” Opt. Express 17, 16722–16730 (2009).
    [Crossref] [PubMed]
  36. Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
    [Crossref]
  37. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
    [Crossref]
  38. Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
    [Crossref] [PubMed]
  39. S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72, 033601 (2005).
    [Crossref]
  40. M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
    [Crossref]
  41. M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
    [Crossref]
  42. M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158, 273–286 (1998).
    [Crossref]
  43. M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
    [Crossref]
  44. N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19, 21358–21369 (2011).
    [Crossref] [PubMed]

2018 (2)

2017 (2)

A. Kumar, H. Nunley, and A. M. Marino, “Observation of spatial quantum correlations in the macroscopic regime,” Phys. Rev. A 95, 053849 (2017).
[Crossref]

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

2016 (2)

Y. Han, X. Wen, J. He, B. Yang, Y. Wang, and J. Wang, “Improvement of vacuum squeezing resonant on the rubidium D1 line at 795 nm,” Opt. Express 24, 2350–2359 (2016).
[Crossref] [PubMed]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

2015 (1)

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun.  6, 8795 (2015).
[Crossref] [PubMed]

2014 (1)

S. S. Szigeti, B. Tonekaboni, W. Yung, S. Lau, S. N. Hood, and S. A. Haine, “Squeezed-light-enhanced atom interferometry below the standard quantum limit,” Phys. Rev. A 90, 063630 (2014).
[Crossref]

2013 (1)

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

2012 (2)

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

2011 (3)

T. L. S. Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
[Crossref]

S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84, 033851 (2011).
[Crossref]

N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19, 21358–21369 (2011).
[Crossref] [PubMed]

2010 (4)

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

I. H. Agha, G. Messin, and P. Grangier, “Generation of pulsed and continuous-wave squeezed light with 87Rb vapor,” Opt. Express 18, 4198–4205 (2010).
[Crossref] [PubMed]

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4, 227–230 (2010).
[Crossref]

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (4)

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

K. Honda and et al., “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref] [PubMed]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

2007 (1)

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40, 221–226 (2007).
[Crossref]

2006 (1)

A. M. Marino and C. R. Stroud, “Deterministic secure communications using two-mode squeezed states,” Phys. Rev. A 74, 022315 (2006).
[Crossref]

2005 (3)

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72, 033601 (2005).
[Crossref]

2004 (1)

D. Akamatsu, K. Akiba, and M. Kozuma, “Electromagnetically induced transparency with squeezed vacuum,” Phys. Rev. Lett. 92, 203602 (2004).
[Crossref] [PubMed]

2003 (1)

J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68, 025801 (2003).
[Crossref]

2002 (1)

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66, 043815 (2002).
[Crossref]

2001 (1)

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[Crossref] [PubMed]

1999 (1)

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
[Crossref]

1998 (2)

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[Crossref]

M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158, 273–286 (1998).
[Crossref]

1997 (1)

A. Kuzmich, K. Molmer, and E. S. Polzik, “of atomic interferometers,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[Crossref] [PubMed]

1996 (1)

G. S. Agarwal and M. O. Scully, “Ramsey spectroscopy with nonclassical light sources,” Phys. Rev. A 53, 467–470 (1996).
[Crossref] [PubMed]

1992 (1)

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[Crossref] [PubMed]

1991 (2)

J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, and E. Giacobino, “Improvements in the observed intensity correlation of optical parametric oscillator twin beams,” Opt. Lett. 16, 1234–1236 (1991).
[Crossref] [PubMed]

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[Crossref] [PubMed]

1986 (2)

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

1985 (1)

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

Agarwal, G. S.

G. S. Agarwal and M. O. Scully, “Ramsey spectroscopy with nonclassical light sources,” Phys. Rev. A 53, 467–470 (1996).
[Crossref] [PubMed]

Agha, I. H.

Akamatsu, D.

D. Akamatsu, K. Akiba, and M. Kozuma, “Electromagnetically induced transparency with squeezed vacuum,” Phys. Rev. Lett. 92, 203602 (2004).
[Crossref] [PubMed]

Akiba, K.

D. Akamatsu, K. Akiba, and M. Kozuma, “Electromagnetically induced transparency with squeezed vacuum,” Phys. Rev. Lett. 92, 203602 (2004).
[Crossref] [PubMed]

Appel, J.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Bachor, H. A.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40, 221–226 (2007).
[Crossref]

Bachor, H.-A.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

Barreiro, S.

S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84, 033851 (2011).
[Crossref]

Beduini, F. A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref] [PubMed]

Bowen, W. P.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

Boyer, V.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

R. Pooser, A. Marino, V. Boyer, K. Jones, and P. D. Lett, “Quantum correlated light beams from non-degenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of 85Rb and 87Rb,” Opt. Express 17, 16722–16730 (2009).
[Crossref] [PubMed]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

Bramati, A.

Braunstein, S. L.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Brezger, B.

J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68, 025801 (2003).
[Crossref]

Brida, G.

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4, 227–230 (2010).
[Crossref]

Briegel, H. J.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[Crossref] [PubMed]

Buchler, B. C.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40, 221–226 (2007).
[Crossref]

Budker, D.

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66, 043815 (2002).
[Crossref]

Burks, S.

Carri, J.

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[Crossref] [PubMed]

Cerè, A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref] [PubMed]

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Chiummo, A.

Corzo, N.

Coudreau, T.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

Danzmann, K.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

Debuisschert, T.

Deng, R.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

DeVoe, R. G.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

Dowling, J. P.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Dowran, M.

Duhme, J.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun.  6, 8795 (2015).
[Crossref] [PubMed]

Embrey, C. S.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

Fabre, C.

Failache, H.

S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84, 033851 (2011).
[Crossref]

Figueroa, E.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Flammia, S. T.

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

Fleischhauer, M.

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
[Crossref]

Franz, T.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun.  6, 8795 (2015).
[Crossref] [PubMed]

Furrer, F.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun.  6, 8795 (2015).
[Crossref] [PubMed]

García-Patrón, R.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Gehring, T.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun.  6, 8795 (2015).
[Crossref] [PubMed]

Genovese, M.

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4, 227–230 (2010).
[Crossref]

Giacobino, E.

Glöckl, O.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40, 221–226 (2007).
[Crossref]

Glorieux, Q.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

Grangier, P.

Guibal, S.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

Guidoni, L.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

Haine, S. A.

S. S. Szigeti, B. Tonekaboni, W. Yung, S. Lau, S. N. Hood, and S. A. Haine, “Squeezed-light-enhanced atom interferometry below the standard quantum limit,” Phys. Rev. A 90, 063630 (2014).
[Crossref]

S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72, 033601 (2005).
[Crossref]

Hall, J. L.

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

Han, Y.

Händchen, V.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun.  6, 8795 (2015).
[Crossref] [PubMed]

Harb, C. C.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40, 221–226 (2007).
[Crossref]

He, J.

Heidmann, A.

Hemmer, P. R.

M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158, 273–286 (1998).
[Crossref]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[Crossref]

Hétet, G.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40, 221–226 (2007).
[Crossref]

Hollberg, L. W.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

Honda, K.

K. Honda and et al., “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref] [PubMed]

Hood, S. N.

S. S. Szigeti, B. Tonekaboni, W. Yung, S. Lau, S. N. Hood, and S. A. Haine, “Squeezed-light-enhanced atom interferometry below the standard quantum limit,” Phys. Rev. A 90, 063630 (2014).
[Crossref]

Hope, J. J.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72, 033601 (2005).
[Crossref]

Horrom, T.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Jia, X.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express 17, 3777–3781 (2009).
[Crossref] [PubMed]

Johnsson, M.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

Jones, K.

Jones, K. M.

Kimball, D. F.

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66, 043815 (2002).
[Crossref]

Kimble, H. J.

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[Crossref] [PubMed]

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

Korystov, D.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Koschorreck, M.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref] [PubMed]

Kozuma, M.

D. Akamatsu, K. Akiba, and M. Kozuma, “Electromagnetically induced transparency with squeezed vacuum,” Phys. Rev. Lett. 92, 203602 (2004).
[Crossref] [PubMed]

Kumar, A.

M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-enhanced plasmonic sensing,” Optica 5, 628–633 (2018).
[Crossref]

A. Kumar, H. Nunley, and A. M. Marino, “Observation of spatial quantum correlations in the macroscopic regime,” Phys. Rev. A 95, 053849 (2017).
[Crossref]

Kuzmich, A.

A. Kuzmich, K. Molmer, and E. S. Polzik, “of atomic interferometers,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[Crossref] [PubMed]

Lam, P. K.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40, 221–226 (2007).
[Crossref]

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

Lau, S.

S. S. Szigeti, B. Tonekaboni, W. Yung, S. Lau, S. N. Hood, and S. A. Haine, “Squeezed-light-enhanced atom interferometry below the standard quantum limit,” Phys. Rev. A 90, 063630 (2014).
[Crossref]

Laurat, J.

Lawrie, B. J.

Lett, P. D.

Levenson, M. D.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

Lezama, A.

S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84, 033851 (2011).
[Crossref]

Li, S.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Likforman, J.-P.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

Liu, Y.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Lloyd, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Lobino, M.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Löffler, M.

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[Crossref]

Lukin, M. D.

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
[Crossref]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[Crossref]

Lvovsky, A. I.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68, 025801 (2003).
[Crossref]

Machida, S.

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[Crossref] [PubMed]

Marino, A.

Marino, A. M.

M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-enhanced plasmonic sensing,” Optica 5, 628–633 (2018).
[Crossref]

A. Kumar, H. Nunley, and A. M. Marino, “Observation of spatial quantum correlations in the macroscopic regime,” Phys. Rev. A 95, 053849 (2017).
[Crossref]

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19, 21358–21369 (2011).
[Crossref] [PubMed]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

A. M. Marino and C. R. Stroud, “Deterministic secure communications using two-mode squeezed states,” Phys. Rev. A 74, 022315 (2006).
[Crossref]

Matsko, A. B.

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66, 043815 (2002).
[Crossref]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
[Crossref]

McCormick, C. F.

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

Mehmet, M.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

Menicucci, N. C.

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

Mertz, J.

Mertz, J. C.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

Messin, G.

Mikhailov, E. E.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Mitchell, M. W.

J.A. Zielińska and M. W. Mitchell, “Atom-resonant squeezed light from a tunable monolithic PPRKTP parametric amplifier,” Opt. Lett. 43, 643–646 (2018).
[Crossref]

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref] [PubMed]

Molmer, K.

A. Kuzmich, K. Molmer, and E. S. Polzik, “of atomic interferometers,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[Crossref] [PubMed]

Novikova, I.

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66, 043815 (2002).
[Crossref]

Nunley, H.

A. Kumar, H. Nunley, and A. M. Marino, “Observation of spatial quantum correlations in the macroscopic regime,” Phys. Rev. A 95, 053849 (2017).
[Crossref]

Ortalo, J.

Pacher, C.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun.  6, 8795 (2015).
[Crossref] [PubMed]

Peng, A.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

Peng, K.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Perlmutter, S. H.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

Petrov, P. G.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

Pfister, O.

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

Pilypas, K. A.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40, 221–226 (2007).
[Crossref]

Pirandola, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Polzik, E. S.

A. Kuzmich, K. Molmer, and E. S. Polzik, “of atomic interferometers,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[Crossref] [PubMed]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[Crossref] [PubMed]

Pooser, R.

Pooser, R. C.

Predojevic, A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref] [PubMed]

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Raussendorf, R.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[Crossref] [PubMed]

Richardson, W. H.

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[Crossref] [PubMed]

Ries, J.

J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68, 025801 (2003).
[Crossref]

Rochester, S. M.

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66, 043815 (2002).
[Crossref]

Ruo Berchera, I.

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4, 227–230 (2010).
[Crossref]

Schnabel, R.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun.  6, 8795 (2015).
[Crossref] [PubMed]

Scully, M. O.

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
[Crossref]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[Crossref]

G. S. Agarwal and M. O. Scully, “Ramsey spectroscopy with nonclassical light sources,” Phys. Rev. A 53, 467–470 (1996).
[Crossref] [PubMed]

Shahriar, M. S.

M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158, 273–286 (1998).
[Crossref]

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Shelby, R. M.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

Singh, R.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Slusher, R. E.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

Stroud, C. R.

A. M. Marino and C. R. Stroud, “Deterministic secure communications using two-mode squeezed states,” Phys. Rev. A 74, 022315 (2006).
[Crossref]

Szigeti, S. S.

S. S. Szigeti, B. Tonekaboni, W. Yung, S. Lau, S. N. Hood, and S. A. Haine, “Squeezed-light-enhanced atom interferometry below the standard quantum limit,” Phys. Rev. A 90, 063630 (2014).
[Crossref]

Tonekaboni, B.

S. S. Szigeti, B. Tonekaboni, W. Yung, S. Lau, S. N. Hood, and S. A. Haine, “Squeezed-light-enhanced atom interferometry below the standard quantum limit,” Phys. Rev. A 90, 063630 (2014).
[Crossref]

Turnbull, M. T.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

Valente, P.

S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84, 033851 (2011).
[Crossref]

Valley, J. F.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

van Loock, P.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Villa, F.

Walls, D. F.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

Wang, H.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Wang, J.

Wang, Y.

Weedbrook, C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Welch, G. R.

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66, 043815 (2002).
[Crossref]

Wen, X.

Werner, R. F.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun.  6, 8795 (2015).
[Crossref] [PubMed]

Wolfgramm, F.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref] [PubMed]

Wu, H.

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

Wu, L.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Wu, L.-A.

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

Xie, C.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Yamamoto, Y.

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[Crossref] [PubMed]

Yan, Z.

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Yang, B.

Yung, W.

S. S. Szigeti, B. Tonekaboni, W. Yung, S. Lau, S. N. Hood, and S. A. Haine, “Squeezed-light-enhanced atom interferometry below the standard quantum limit,” Phys. Rev. A 90, 063630 (2014).
[Crossref]

Yurke, B.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

Zielinska, J.A.

J. Phys. B (1)

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40, 221–226 (2007).
[Crossref]

Nat. Commun (1)

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun.  6, 8795 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, and K. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Nat. Photon. (1)

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4, 227–230 (2010).
[Crossref]

Nat. Phys. (1)

T. L. S. Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
[Crossref]

Opt. Commun. (1)

M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158, 273–286 (1998).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (12)

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66, 043815 (2002).
[Crossref]

J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68, 025801 (2003).
[Crossref]

S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84, 033851 (2011).
[Crossref]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72, 033601 (2005).
[Crossref]

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

A. Kumar, H. Nunley, and A. M. Marino, “Observation of spatial quantum correlations in the macroscopic regime,” Phys. Rev. A 95, 053849 (2017).
[Crossref]

A. M. Marino and C. R. Stroud, “Deterministic secure communications using two-mode squeezed states,” Phys. Rev. A 74, 022315 (2006).
[Crossref]

G. S. Agarwal and M. O. Scully, “Ramsey spectroscopy with nonclassical light sources,” Phys. Rev. A 53, 467–470 (1996).
[Crossref] [PubMed]

S. S. Szigeti, B. Tonekaboni, W. Yung, S. Lau, S. N. Hood, and S. A. Haine, “Squeezed-light-enhanced atom interferometry below the standard quantum limit,” Phys. Rev. A 90, 063630 (2014).
[Crossref]

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

Phys. Rev. Lett. (15)

K. Honda and et al., “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref] [PubMed]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[Crossref] [PubMed]

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref] [PubMed]

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[Crossref] [PubMed]

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

A. Kuzmich, K. Molmer, and E. S. Polzik, “of atomic interferometers,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[Crossref] [PubMed]

D. Akamatsu, K. Akiba, and M. Kozuma, “Electromagnetically induced transparency with squeezed vacuum,” Phys. Rev. Lett. 92, 203602 (2004).
[Crossref] [PubMed]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[Crossref] [PubMed]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[Crossref]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
[Crossref]

Proc. SPIE (1)

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

Rev. Mod. Phys. (2)

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Energy level diagram of the double-lambda system in the D1 line of 85Rb. (a) Optimized FWM configuration for the generation of off-resonance two-mode squeezed states with −9 dB of squeezing. (b) When the one-photon detuning of the pump is tuned ∼700 MHz to the red of the D1 F = 2 to F′ transition of 85Rb (figure on left), the generated probe and conjugate can be resonant with the D1 F = 2 to F′ = 2 and F = 1 to F′ = 1 transitions in 87Rb, respectively (figure on right).
Fig. 2
Fig. 2 Simplified schematic of the experimental setup. The pump and probe beams intersect at a slight angle inside a 85Rb vapor cell. As a result of the FWM, the probe beam is amplified and a new beam, the conjugate, is generated. After the cell, the pump beam is filtered with a PBS, and the probe and conjugate intensity difference noise is measured with a spectrum analyzer. A saturated absorption spectroscopy setup is used to obtain a measure of the absolute frequency of the probe beam. AOM: acousto-optic modulator, ND filter: neutral density filter, PBS: polarizing beam splitter.
Fig. 3
Fig. 3 FWM configuration for resonant probe or conjugate. (a) Transmission spectra for the probe (red trace) and the conjugate (blue trace) generated with the FWM process in the D1 line of 85Rb as the one-photon detuning of the pump is scanned while the two-photon detuning is kept fixed at δ = 16 MHz. The black trace shows the saturated absorption spectroscopy spectrum for a natural abundance Rb cell and serves as a frequency reference. The vertical red dashed (blue dashed-dotted) lines indicate the frequencies for the probe and the conjugate for the configuration in which the probe (conjugate) is on resonance with the D1 F = 2 to F′ = 2 (F = 1 to F′ = 1) transition of 87Rb. The black dots indicate the normalized transmission for the probe and the conjugate for each of these frequencies. (b) Intensity difference squeezing as a function of the detuning of the probe from the D1 F = 2 to F′ = 2 transition in 87Rb. Squeezing is present over a range of 500 MHz around the resonance frequency. The vertical and horizontal red dashed (blue dashed-dotted) lines indicate the frequency at which the probe (conjugate) is on resonance and the corresponding level of squeezing, respectively. For these measurements, the spectrum analyzer was set to a resolution bandwidth of 30 kHz, a video bandwidth of 100 Hz, and an analysis frequency of 750 kHz.
Fig. 4
Fig. 4 Intensity difference squeezing spectra. The orange traces show the shot noise limit while the blue traces show the intensity difference squeezing when the FWM is tuned to have (a) the probe on resonance with D1 F = 2 to F′ = 2 transition of 87Rb and (b) the conjugate on resonance with D1 F = 1 to F′ = 1 transition of 87Rb. For these measurements the electronic noise has been subtracted and the spectrum analyzer was set to a resolution bandwidth of 30 kHz and a video bandwidth of 100 Hz.
Fig. 5
Fig. 5 FWM configuration for probe and conjugate simultaneously on resonance. (a) Transmission spectra for the probe (red trace) and the conjugate (blue trace) generated with the FWM process in the D1 line of 85Rb as the one-photon detuning of the pump is scanned while the two-photon detuning is kept fixed at δ = −26 MHz. The black trace shows the saturated absorption spectroscopy spectrum for a natural abundance Rb cell and serves as a frequency reference. The vertical dashed lines indicate the resonance frequencies for the probe and the conjugate with the D1 F = 2 to F′ = 2 and F = 1 to F′ = 1 transitions of 87Rb, respectively. The black dots indicate the normalized transmission for the probe and the conjugate for each of these frequencies. (b) Intensity difference squeezing as a function of the detuning of the probe from the D1 F = 2 to F′ = 2 transition in 87Rb. Squeezing is present over a range of 300 MHz around the resonance frequency. The vertical and horizontal dashed lines indicate the resonance frequency for the probe and conjugate and the corresponding level of squeezing, respectively. For these measurements, the spectrum analyzer was set to a resolution bandwidth of 30 kHz, a video bandwidth of 100 Hz, and an analysis frequency of 750 kHz.

Metrics